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Abstract

We introduce qclab++, a light-weight, fully-templated C++ package for GPU-accelerated
quantum circuit simulations. The code offers a high degree of portability as it has no exter-
nal dependencies and the GPU kernels are generated through OpenMP offloading. qclab++ is
designed for performance and numerical stability through highly optimized gate simulation al-
gorithms for 1-qubit, controlled 1-qubit, and 2-qubit gates. Furthermore, we also introduce
qclab a quantum circuit toolbox for Matlab with a syntax that mimics qclab++. This pro-
vides users the flexibility and ease of use of a scripting language like Matlab for studying their
quantum algorithms, while offering high-performance GPU acceleration when required. As such,
the qclab++ library offers a unique combination of features. We compare the CPU simulator
in qclab++ with the GPU kernels generated by OpenMP and observe a speedup of over 40×.
Furthermore, we also compare qclab++ to other circuit simulation packages, such as cirq-qsim
and qibo, in a series of benchmarks conducted on NERSC’s Perlmutter system and illustrate its
competitiveness.

1 Introduction

The field of quantum computing is quickly progressing as is illustrated by recent developments
in quantum hardware. Recent initial steps towards experimental realization of error correcting
schemes in quantum processors based on superconducting [12] and ion traps [14] are encouraging
milestones for the field. Other qubit modalities, such as neutral atoms [16], have also shown
significant promise.

Most quantum hardware platforms that are currently being developed support a circuit model of
quantum computation. It is thus of interest to the community of quantum algorithm researchers to
have access to advanced computational tools that can help them in their research while quantum
hardware is being developed. In addition to access to QPUs, quantum circuit simulators are of
interest for a variety of reasons. First, it allows the researcher to prototype and investigate novel
algorithms without using up valuable quantum resources for debugging and testing their ideas. This
can instead all be done using simulations on classical hardware. Second, as the currently available
quantum hardware is still suffering from noise, it is not possible to study algorithms that require a
circuit depth that lies beyond the coherence limits of the device. Many algorithms of interest, for
example in molecular sciences [10], require deep circuits.

This has sparked the development of multiple quantum simulators each with their own advan-
tages and strengths. The Cirq toolbox [4] with the qsim simulator [13] is developed by Google
Quantum AI, IBM has Qiskit [11] with the Aer simulator backend, and PennyLane [1] is a differ-
entiable quantum programming framework from Xanadu. Similar efforts are pursued in Qibo [7, 6],
which includes a JIT compiler for quantum simulation, and Quest [9]. All of the aforementioned
packages, with the exception of Quest, provide a Python API to generate the quantum program.
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Recently, NVIDIA has introduced their cuQuantum SDK [8] which offers a collection of GPU ker-
nels to perform quantum gate simulations. Many existing quantum simulation packages, such as
Cirq, Qiskit, PennyLane and Qibo, have started to support the cuQuantum SDK to run circuit
simulations on NVIDIA hardware.

In this work, we introduce two alternative quantum circuit programming and simulation frame-
works, called qclab++1 [15] and qclab2 [2]. The former is a light-weight fully-templated C++ library
that supports GPU accelerated state vector simulations through OpenMP offloading, while the lat-
ter is a Matlab toolbox that has an accessible interface that makes use of the advantages the
Matlab IDE offers. Both libraries provide a similar programming interface, see Figure 1, which
lowers the barrier for converting simulation codes from one framework to the other and allows for
a streamlined workflow where ideas are first prototyped in Matlab and later simulated at larger
scale on the GPU with qclab++. As an example, we illustrate this for the QFT circuit [5, 3] in
Fig. 1. Remark that both implementations are very similar and easy to convert into each other.

% number of qubits

n = 5;

% quantum circuit

circ = qclab .QCircuit (n);

% blocks

for i=0:n-1

% Hadamard

circ.push_back ( H(i) );

% diagonal blocks

for j=2:n-i

ctrl = j+i-1;

th = -2*pi/2^j;

circ.push_back ( ...

CP(ctrl , i, 1, th) );

end

end

% swaps

for i=0: floor(n/2)-1

circ.push_back ( ...

SWAP(i, n-i-1) );

end

// number of qubits

int n = 5 ;

// quantum circuit

qclab :: QCircuit <std :: complex <double >> circ(n);

// blocks

for (int i=0; i<n; i++) {

// Hadamard

circ.push_back ( std :: make_unique <H>(i) );

// diagonal blocks

for (int j=2; j<=n-i; j++) {

int ctrl = j+i-1;

double th = -2*pi/(1<<j);

circ.push_back (

std :: make_unique <CP >(ctrl , i, th) );

}

}

// swaps

for (int i=0; i<n/2; i++) {

circ.push_back (

std :: make_unique <SWAP >(i, n-i -1) );

}

Figure 1: Matlab implementation of the QFT circuit [5, 3] with the qclab toolbox (left) and
equivalent C++ implementation using qclab++ (right).

Our simulators are strong simulators that keep track of all amplitudes in the wavefunction as it
is modified by the quantum circuit. This simulation problem naturally scales exponentially in the
number of qubits of the quantum system and linearly in the number of gates in the circuit. The
main advantages of strong simulation is that we have access to every amplitude at each step of the
simulation and that all computations are exact up to numerical precision. The main disadvantage
is that the wavefunction scales exponentially and this imposes a limit on the size of system one can
simulate classically. This limit is in the range of 40-50 qubits. Approximate simulation methods
using tensor network or sparse representation of the wave function can scale to larger systems but
cannot approximate every state in Hilbert space up to the same accuracy.

The remainder of this paper is organized as follows. In Section 2, we describe the optimized

1qclab++: https://github.com/QuantumComputingLab/qclabpp
2qclab: https://github.com/QuantumComputingLab/qclab
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state vector simulator algorithms for 1-qubit, controlled 1-qubit, and 2-qubit gates. In Section 3,
we discuss the implementation details and the OpenMP offloading used to accelerate qclab++. In
Section 4, we compare the CPU and GPU implementations of qclab++ and benchmark it with
other GPU-accelerated state vector simulation packages.

2 Efficient quantum gate simulations

The application of a unitary quantum gate U to a given state |φ〉 ∈ C
2n (Fig. 2) corresponds

mathematically to the matrix-vector multiplication (matvec)

|ψ〉 = (Il ⊗ U ⊗ Ir) |φ〉 , (1)

where ⊗ denotes the Kronecker product and Il, Ir are identity matrices of appropriate dimensions.
A naive implementation of quantum circuit simulator would carry out the Kronecker products of
(1) explicitly, and require 2 nested for loops.

/

/ U (n)

/






|φ〉

/

U (1)

/






|φ〉

/

U (2)

/






|φ〉

/

•

U (1)

/






|φ〉

/

/ U (k)

/

/ U (ℓ)

/






|φ〉

(a) (b) (c) (d) (e)

Figure 2: Application of (a) a dense n-qubit quantum gate, (b) a 1-qubit quantum gate, (c) a
2-qubit quantum gate, (d) a controlled 1-qubit quantum gate, and (e) a k+ ℓ quantum gate acting
on noncontiguous qubits to a quantum state |φ〉.

In this section, we introduce more efficient algorithms for quantum gate simulation that only
consist of 1 simple for loop combined with bit operations for index calculations. We therefore will
use the big-endian binary convention as given by the following definition.

Definition 1 (Binary representation). We define the binary representation of j ∈ N : 0 ≤ j ≤ 2n−1
as follows

j = [j0j1 · · · jn−1] = j0 · 2
n−1 + j1 · 2

n−2 + · · ·+ jn−1 · 2
0,

where ji ∈ {0, 1} for i = 0, . . . , n− 1.

2.1 1-qubit gates

We start with the simplest class of quantum gates that only act on a single qubit

U :=

[
u0,0 u0,1
u1,0 u1,1

]

. (2)

As illustrated by the different colors in Fig. 3, the state vector simulation of a 1-qubit gate breaks
down in a series of 2× 2 matvec operations

[
ψi0i1···iq−1 0 iq+1···in−1

ψi0i1···iq−1 1 iq+1···in−1

]

=

[
u0,0 u0,1
u1,0 u1,1

] [
φi0i1···iq−1 0 iq+1···in−1

φi0i1···iq−1 1 iq+1···in−1

]

, (3)
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q0 U

q1

q2











a0 a1 a2 a3 b0 b1 b2 b3
a0 ⋆ ⋆
a1 ⋆ ⋆
a2 ⋆ ⋆
a3 ⋆ ⋆
b0 ⋆ ⋆
b1 ⋆ ⋆
b2 ⋆ ⋆
b3 ⋆ ⋆











aj = [ 0 i0i1] → {0, 1, 2, 3}

bj = [ 1 i0i1] → {4, 5, 6, 7}

mL = 0 → [0 · · · 0 00]

mR = 3 → [0 · · · 0 11]

q0

q1 U

q2











a0 a1 b0 b1 a2 a3 b2 b3

a0 ⋆ ⋆
a1 ⋆ ⋆
b0 ⋆ ⋆
b1 ⋆ ⋆
a2 ⋆ ⋆
a3 ⋆ ⋆
b2 ⋆ ⋆
b3 ⋆ ⋆











aj = [i0 0 i1] → {0, 1, 4, 5}

bj = [i0 1 i1] → {2, 3, 6, 7}

mL = 2 → [0 · · · 0 10]

mR = 1 → [0 · · · 0 01]

q0

q1

q2 U











a0 b0 a1 b1 a2 b2 a3 b3

a0 ⋆ ⋆
b0 ⋆ ⋆
a1 ⋆ ⋆
b1 ⋆ ⋆
a2 ⋆ ⋆
b2 ⋆ ⋆
a3 ⋆ ⋆
b3 ⋆ ⋆











aj = [i0i1 0 ] → {0, 2, 4, 6}

bj = [i0i1 1 ] → {1, 3, 5, 7}

mL = 3 → [0 · · · 0 11]

mR = 0 → [0 · · · 0 00]

Figure 3: Graphical illustration of applying a 1-qubit gate U .

where q is the qubit the gate U is acting on. Depending on q, the indices in (3)

[i0i1 · · · iq−1 0 iq+1 · · · in−1] =: aj,

[i0i1 · · · iq−1 1 iq+1 · · · in−1] =: bj,
j = 0, 1, . . . , 2n−1 − 1, (4)

can be next to each other or separated up to 2n−1. We will now describe an efficient way to calculate
(4) solely based on bit operations.

First, we observe that the binary representations of aj and bj can be split into 3 parts, i.e., the
bits left of 0 (and 1), the 0 (and 1) bit, and the bits right of 0 (and 1), respectively. Without loss
of generality, we can select the bits iℓ for 0 ≤ ℓ ≤ n− 1 and ℓ 6= q, so that

j = [i0i1 · · · iq−1 | iq+1 · · · in−1]. (5)

Next, using the following left and right bit masks

mL := [0 · · · 0 |

q
︷ ︸︸ ︷

1 · · · 1 | 0 · · · 0] =
(
2n−1 − 1

)
−

(
2n−q−1 − 1

)
, (6)

mR := [0 · · · 0 | 0 · · · 0 | 1 · · · 1
︸ ︷︷ ︸

n−q−1

] = 2n−q−1 − 1, (7)

we can compute each aj as the sum of j masked with mR and a left shift of j masked with mL,

aj = (j&mR) + [(j&mL) ≪ 1], (8)
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and the corresponding bj index results from the following sum

bj = aj + 2n−q−1. (9)

The algorithm for the vector simulation of a general 1-qubit gate is given in Algorithm 1. Note
that for 1-qubit gates with some of the elements in (2) equal to 0, Lines 5 and 6 can be simplified.
For example, the Pauli-X gate is just a swap operation

ψ[aj ] = φ[bj ],

ψ[bj ] = φ[aj ],

and the Pauli-Y gate

ψ[aj ] = −iφ[bj ],

ψ[bj ] = iφ[aj ].

Remark that for the Pauli-Z gate only half of the vector elements (bj) need to be updated

ψ[aj ] = φ[aj ],

ψ[bj ] = −φ[bj].

Algorithm 1: Apply 1-qubit gate

Input: Input state |φ〉.
Output: Output state |ψ〉 = U |φ〉.

1 Right mask: mR = 2n−q−1 − 1
2 Left mask: mL = 2n−1 − 1−mR

for j = 0, 1, . . . , 2n−1 − 1 do

3 aj = (j&mR) + [(j&mL) ≪ 1]
4 bj = aj + 2n−q−1

5 ψ[aj ] = u0,0φ[aj ] + u0,1φ[bj ]
6 ψ[bj ] = u1,0φ[aj ] + u1,1φ[bj ]

end

2.2 Controlled 1-qubit gates

We now consider the controlled 1-qubit gates and distinguish the following 4 different cases

qc •

qt U

qc

qt U

qt U

qc •

qt U

qc
(10)

where qc is the control qubit and qt the target qubit. As illustrated in Fig. 4, these controlled gates
only update half of the elements. Which elements are updated depend on the actual values of the
qc and qt.

Similar to the standard 1-qubit gate, the state vector simulation of a controlled 1-qubit gate
breaks down in a series of 2× 2 matvec operations

[
ψaj

ψbj

]

=

[
u0,0 u0,1
u1,0 u1,1

] [
φaj
φbj

]

, (11)
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q0 •

q1 U

q2











a0 a1 b0 b1
1
1
1
1

a0 ⋆ ⋆
a1 ⋆ ⋆
b0 ⋆ ⋆
b1 ⋆ ⋆











aj = [1 0 i0] → {4, 5}

bj = [1 1 i0] → {6, 7}

q0

q1 U

q2











a0 a1 b0 b1

a0 ⋆ ⋆
a1 ⋆ ⋆
b0 ⋆ ⋆
b1 ⋆ ⋆

1
1
1
1











aj = [0 0 i0] → {0, 1}

bj = [0 1 i0] → {2, 3}

q0

q1 U

q2 •











a0 b0 a1 b1

1
a0 ⋆ ⋆

1
b0 ⋆ ⋆

1
a1 ⋆ ⋆

1
b2 ⋆ ⋆











aj = [i0 0 1 ] → {1, 5}

bj = [i0 1 1 ] → {3, 7}

q0

q1 U

q2











a0 b0 a1 b1

a0 ⋆ ⋆
1

b0 ⋆ ⋆
1

a1 ⋆ ⋆
1

b1 ⋆ ⋆
1











aj = [i0 0 0 ] → {0, 4}

bj = [i0 1 0 ] → {2, 6}

Figure 4: Graphical illustration of applying a controlled 1-qubit gate U .

where we distinguish between the 2 left cases of (10), i.e., qc < qt,

aj = [i0i1 · · · iqc−1 ∗ iqc+1 · · · iqt−1 0 iqt+1 · · · in−1],

bj = [i0i1 · · · iqc−1 ∗ iqc+1 · · · iqt−1 1 iqt+1 · · · in−1],
j = 0, 1, . . . , 2n−2 − 1, (12)

and the 2 right cases of (10), i.e., qt < qc,

aj = [i0i1 · · · iqt−1 0 iqt+1 · · · iqc−1 ∗ iqc+1 · · · in−1],

bj = [i0i1 · · · iqt−1 1 iqt+1 · · · iqc−1 ∗ iqc+1 · · · in−1],
j = 0, 1, . . . , 2n−2 − 1, (13)

with ∗ = 0 for zero-controlled gates and ∗ = 1 for one-controlled gates. Note that we only have
2n−2 different values for j in contrast to 2n−1 values for the standard 1-qubit gate in (4).

Let

q0 = min(qc, qt), (14)

q1 = max(qc, qt). (15)
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such that q0 < q1. Next, we observe that the indices aj and bj in (12) and (13) can be split into 5
parts. Without loss of generality, we can select the bits iℓ for 0 ≤ ℓ ≤ n − 1 and ℓ 6= {q0, q1}, so
that

j = [i0i1 · · · iq0−1 | iq0+1 · · · iq1−1 | iq1+1 · · · in−1]. (16)

Next, using the following bit masks

mL := [0 · · · 0 |

q0
︷ ︸︸ ︷

1 · · · 1 |

q1−q0−1
︷ ︸︸ ︷

0 · · · 0 | 0 · · · 0] =
(
2n−2 − 1

)
−
(
2n−q0−2 − 1

)
, (17)

mC := [0 · · · 0 | 0 · · · 0 | 1 · · · 1 | 0 · · · 0] =
(
2n−q0−2 − 1

)
−

(
2n−q1−1 − 1

)
, (18)

mR := [0 · · · 0 | 0 · · · 0 | 0 · · · 0 | 1 · · · 1
︸ ︷︷ ︸

n−q1−1

] = 2n−q1−1 − 1, (19)

we can compute the zero-controlled aj indices as the sum of the following 3 terms

aj = (j&mR) + [(j&mC) ≪ 1] + [(j&mL) ≪ 2], (20)

and the corresponding bj indices result from the following sum

bj = aj + 2n−qt−1. (21)

In the case of a one-controlled gate, we need to increment both (20) and (21) by 2n−qc−1.
The algorithm for the vector simulation of a controlled 1-qubit gate is given in Algorithm 2.

Similar to standard 1-qubit gates, controlled 1-qubit gates with some zero elements in (2), Lines 8
and 9 can be simplified. For example, the CNOT gate just swaps half of the elements.

Algorithm 2: Apply controlled 1-qubit gate

Input: Input state |φ〉.
Output: Output state |ψ〉 = U |φ〉.

1 Right mask: mR = 2n−q1−1 − 1
2 Center mask: mC = 2n−q0−2 − 1−mR

3 Left mask: mL = 2n−2 − 1−mR −mC

for j = 0, 1, . . . , 2n−2 − 1 do

4 aj = (j&mR) + [(j&mC) ≪ 1] + [(j &mL) ≪ 2]
5 bj = aj + 2n−qt−1

if control state = 1 then

6 aj = aj + 2n−qc−1

7 bj = bj + 2n−qc−1

end

8 ψ[aj ] = u0,0φ[aj ] + u0,1φ[bj ]
9 ψ[bj ] = u1,0φ[aj ] + u1,1φ[bj ]

end

2.3 2-qubit gates

The state vector simulation of general 2-qubit gates acting on qubits q0 and q1 breaks down in a
series of 4×4 matvec operations. For the index calculations we can again make use of the bit mask
(17)–(19) and the corresponding algorithm is given in Algorithm 3.
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Algorithm 3: Apply 2-qubit gate

Input: Input state |φ〉.
Output: Output state |ψ〉 = U |φ〉.

1 Right mask: mR = 2n−q1−1 − 1
2 Center mask: mC = 2n−q0−2 − 1−mR

3 Left mask: mL = 2n−2 − 1−mR −mC

for j = 0, 1, . . . , 2n−2 − 1 do

4 aj = (j&mR) + [(j&mC) ≪ 1] + [(j &mL) ≪ 2]
5 bj = aj + 2n−q0−1

6 cj = aj + 2n−q1−1

7 dj = aj + 2n−q0−1 + 2n−q1−1

8 ψ[aj ] = u0,0φ[aj ] + u0,1φ[bj ] + u0,2φ[cj ] + u0,3φ[dj ]
9 ψ[bj ] = u1,0φ[aj ] + u1,1φ[bj ] + u1,2φ[cj ] + u1,3φ[dj ]

10 ψ[cj ] = u2,0φ[aj ] + u2,1φ[bj ] + u2,2φ[cj ] + u2,3φ[dj ]
11 ψ[dj ] = u3,0φ[aj ] + u3,1φ[bj ] + u3,2φ[cj ] + u3,3φ[dj ]

end

A particular and commonly used 2-qubit gate is the SWAP gate

U =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






. (22)

In this case, the 4× 4 operation corresponds to just swapping 2 elements. Hence, Lines 8 to 11 in
Algorithm 3 yield

ψ[aj ] = φ[aj ],

ψ[bj ] = φ[cj ],

ψ[cj ] = φ[bj ],

ψ[dj ] = φ[dj ].

We remark that Algorithm 3 allows to apply arbitrary 2-qubit gates to noncontiguous qubits
as illustrated in Fig. 2(e).

2.4 Multi-qubit gates

The algorithms for state vector simulation of 1- and 2-qubit gates can be generalized to multi-qubit
gates in a straightforward manner. For every additional qubit, we need to define 2 additional bit
masks to efficiently calculate the indices via bit operations.

However, the case of multi-controlled versions of smaller 1- or 2-qubit gates provides the most
opportunity for performance gains. This is due to the fact that every additional control qubit
halves the number of elements in the state vector that need to be updated. For example, as
illustrated in Fig. 5, a doubly-controlled 1-qubit gate only updates 1/4 of the elements in the state
vector. The Toffoli gate, or doubly-controlled NOT gate is the most common multi-qubit gate. Its
implementation can be further optimized by swapping the elements of the state vector it acts on.

8



q0 •

q1 •

q2 U











a0 b0
1
1
1
1
1
1

a0 ⋆ ⋆
b0 ⋆ ⋆











aj = [11 0] → {6}

bj = [11 1] → {7}

Figure 5: Graphical illustration of applying a double controlled 1-qubit gate U .

3 Implementation details

qclab++ is an object-oriented, fully templated C++ package for creating and representing quantum
circuits. qclab++ can be used for rapid prototyping and testing of quantum algorithms, and allows
for fast algorithm development and discovery. qclab++ has no external dependencies and provides
I/O through openQASM making it compatible with quantum hardware.

In order to keep qclab++ light-weighted and with a high degree of portability, all parallelization
(both CPU and GPU) is done through OpenMP. Another advantage of OpenMP GPU offloading is
that the CPU and GPU implementations of the algorithms in Section 2 are exactly the same except
for the OpenMP #pragma statements. This is illustrated in Fig. 6 which shows the CPU and GPU
implementations for applying the Pauli-X gate. Note that both implementations only differ in the
#pragma statement above the for loop and the remaining part of the code is identical.

template <typename T>

void apply(int nbQubits , int qubit , T* x) {

// number of iterations

int jmax = 1 << (nbQubits -1);

// bit masks

int mR = (1 << (nbQubits -qubit -1)) - 1;

int mL = (1 << (nbQubits -1)) - 1 - mR;

// loop over 2x2 matvecs

#pragma omp parallel for

for (int j = 0; j < jmax; j++) {

int aj = (j & mR) + ((j & mL) << 1);

int bj = aj + 1 << (nbQubits -qubit -1);

std :: swap(x[aj], x[bj]);

}

}

template <typename T>

void apply_device(int nbQubits , int qubit , T* x) {

// number of iterations

int jmax = 1 << (nbQubits -1);

// bit masks

int mR = (1 << (nbQubits -qubit -1)) - 1;

int mL = (1 << (nbQubits -1)) - 1 - mR;

// loop over 2x2 matvecs

#pragma omp target teams distribute parallel for

for (int j = 0; j < jmax; j++) {

int aj = (j & mR) + ((j & mL) << 1);

int bj = aj + 1 << (nbQubits -qubit -1);

std :: swap(x[aj], x[bj]);

}

}

Figure 6: CPU (left) versus GPU (right) implementation of the Pauli-X gate in qclab++. Remark
that they only differ in the #pragma statement above the for loop.

4 Numerical experiments

All experiments presented in this section where performed on the NERSC Perlmutter supercom-
puter. Each GPU node in Perlmutter is equipped with 4 NVIDIA A100 40GB GPUs and an AMD
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EPYC 7763 CPU. The nodes are connected through a HPE Slingshot-11 interconnect. A single
GPU has enough memory to store a 31 qubit state vector in complex double precision or a 32 qubit
state vector in complex single precision. We first compare the qclab++ CPU implementation to
its GPU implementation. Next, we benchmark qclab++ to other existing GPU-accelerated state
vector simulation packages, such as cirq-qsim with the cuQuantum backend, and qibo both with
the cupy and cuQuantum backends.

We select two scalable classes of benchmarking circuits to run our experiments on, see Fig. 7.
The first is the QFT circuit, which consists of single qubit Hadamard gates, controlled phase gates
that connect every pair of qubits in the circuit, and ends with a series of SWAP gates. The
second circuit is a Trotter time evolution circuit for a 1D nearest-neighbor TFXY spin chain. This
circuit consist of layers of single qubit rotations interleaved with leayers of CNOT gates acting on
nearest-neighbor qubits.

H Pn Pn−1 · · · P2 · · · ×

· · · • · · · ×
...

...

• · · · · · · H P2 ×

• · · · · · · • H ×

(a) QFT circuit

Rz • Rx • Rz Rz • Rx • Rz

Rz Rz Rz • Rx • Rz Rz Rz • Rx • Rz

Rz • Rx • Rz Rz Rz • Rx • Rz Rz Rz

Rz Rz Rz Rz Rz Rz

(b) Hamiltonian simulation circuit

Figure 7: Overview of the circuits used to benchmark the various quantum circuit simulators.

4.1 qclab++: CPU versus GPU

In a first experiment, we compare the CPU and GPU implementations in qclab++. The timinig
results for the QFT and Hamiltonian simulation circuits are presented in Figs. 8 and 9, respectively.
Both figures show timings and speedup factors for single and double precision.

We observe that the GPU kernels exhibit a perfect linear scaling on the loglog plot for systems
with more than 22 qubits. Every additional qubit doubles the simulation time. The CPU simulation
exhibits less regular scaling in the timings, likely due to memory access effects such as NUMA
domains. Furthermore, the GPU simulation significantly outperforms the CPU implementation
leading to speedup factors of over 40×. Note that the results are qualitatively comparable for both
sets of benchmarking circuits. The main difference is that the Hamiltonian simulation circuit shows
larger GPU speedups in the 19-25 qubit range compared to the QFT circuit.
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Figure 8: qclab++: CPU versus GPU for QFT circuit (Perlmutter).
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Figure 9: qclab++: CPU versus GPU for Hamiltonian simulation circuit (Perlmutter).
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4.2 GPU benchmarking

In our second experiment, we compare the GPU state vector simulator of qclab++ to the cuQuan-
tum backend provided by cirq-qsim and to qibo, where we use both the cupy and cuQuantum
backends. The timings for the single precision simulations are summarized in Fig. 10. The most
notable difference appears in the smaller qubit regime, 16-25 qubits for the QFT circuit and 16-21
qubits for the Hamiltonian simulation circuit, where qclab++ shows a signficant advantage over
the other simulators. The most likely reason for this difference is that qclab++ runs a compiled
C++ code which has a lower overhead compared to the Python interfaces the other simulators use.
At the larger qubit sizes, the cost of the Python overhead becomes negligible and all simulators
deliver a similar performance. We conclude that qclab++ is competitive with other simulators
while offering some distinct advantages.
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Figure 10: GPU benchmarking on Perlmutter (single precision).

Acknowledgements

This research used resources of the National Energy Research Scientific Computing Center, a DOE
Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231 using NERSC award ASCR-ERCAP0024463.

References

[1] V. Bergholm et al. Pennylane: Automatic differentiation of hybrid quantum-classical compu-
tations, 2018. doi:10.48550/arXiv.1811.04968.

[2] D. Camps and R. Van Beeumen. Quantumcomputinglab/qclab: Qclab v0.1.2, Aug. 2021.
doi:10.5281/zenodo.5160555.

[3] D. Camps, R. Van Beeumen, and C. Yang. Quantum fourier transform revisited. Numerical

Linear Algebra with Applications, 28(1):e2331, 2021. doi:10.1002/nla.2331.

12

https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.5281/zenodo.5160555
https://doi.org/10.1002/nla.2331


[4] Cirq Developers. Cirq, Dec. 2022. See full list of authors on Github: https://github .com/quan-
tumlib/Cirq/graphs/contributors. doi:10.5281/zenodo.7465577.

[5] D. Coppersmith. An approximate fourier transform useful in quantum factoring, 1994.

[6] S. Efthymiou, M. Lazzarin, A. Pasquale, and S. Carrazza. Quantum simulation with just-in-
time compilation. Quantum, 6:814, Sept. 2022. doi:10.22331/q-2022-09-22-814.

[7] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, D. Garćıa-Mart́ın,
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