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Biological tissues transform between solid-like and liquid-like states in many fundamental physiological
events. Recent experimental observations further suggest that in two-dimensional epithelial tissues these solid-
liquid transformations can happen via intermediate states akin to the intermediate hexatic phases observed in
equilibrium two-dimensional melting. The hexatic phase is characterized by quasi-long-range (power-law) ori-
entational order but no translational order, thus endowing some structure to an otherwise structureless fluid.
While it has been shown that hexatic order in tissue models can be induced by motility and thermal fluctuations,
the role of cell division and apoptosis (birth and death) has remained poorly understood, despite its fundamen-
tal biological role. Here we study the effect of cell division and apoptosis on global hexatic order within the
framework of the self-propelled Voronoi model of tissue. Although cell division naively destroys order and
active motility facilitates deformations, we show that their combined action drives a liquid-hexatic-liquid trans-
formation as the motility increases. The hexatic phase is accessed by the delicate balance of dislocation defect
generation from cell division and the active binding of disclination-antidisclination pairs from motility. We for-
mulate a meanfield model to elucidate this competition between cell division and motility and the consequent
development of hexatic order.

Organ surfaces are often covered with 2D confluent mono-
layers of epithelial or endothelial cells, which provide func-
tional separation from the surrounding environment. During
development these cells grow, divide and move, dynamically
reorganizing the entire tissue. Regulated by a complex set of
chemical and mechanical signaling pathways[1–4], tissue fre-
quently undergoes a transition from a structureless fluid-like
state to a state capable of supporting a variety of stresses, most
notably elastic stresses[5–11]. Such transformations have re-
cently been analyzed as a crossover from a liquid to an amor-
phous solid[12, 13]. In two-dimensional (2D) systems in equi-
librium, however, liquids can develop rigidity via two consec-
utive transitions, the first corresponding to the development
of orientational order without translational order and the sec-
ond adding translational order to the existing orientational or-
der[14, 15]. The intermediate phase with (quasi-long-range)
orientational order but translational disorder is known as the
hexatic phase and has been shown to occur in a very wide va-
riety of physical systems[16–29]. The hexatic is a particular
type of structured fluid since it flows like a fluid but has ori-
entational rigidity.

Previous theoretical and computational models of dense tis-
sues have studied the emergence of hexatic order, with focus
on the effects of thermal fluctuations[30–32] and motility[33–
36]. Modeling typically studies the inverse process of disor-
dering by melting from the crystalline state. Realistic tissues,
however, are very rarely crystalline with a few exceptions[37,
38]. Cell division and apoptosis almost always destroy the
crystalline state[39] and yet there has been no direct observa-
tion of the hexatic phase in in vitro biological tissues, includ-
ing those undergoing a solid-liquid transition[5, 6, 8, 40].

Recent in vivo experiments on Drosophila embryos have
uncovered hexatic order during development with cell
division[41, 42], along with the associated increase of orienta-
tional correlations[43]. The mechanism behind the emergence

of this orientational order has remained unclear.

Here we analyze whether biological systems can exhibit
this rather subtle phase by studying numerically and analyti-
cally the self-propelled Voronoi (SPV) model of cellular tissue
including cell division and death[13]. We compare a variety
of structural properties with and without division, including
translational and orientational order parameters, order field
correlation functions in space, order field susceptibility, and
topological defect densities. We find that the interplay of di-
vision/apoptosis and cell motility does indeed give rise to a
hexatic regime. In the absence of cell division, the model un-
dergoes a crystal-hexatic and hexatic-liquid transition. With
both cell division and motility, the model is driven through
distinct liquid-hexatic and hexatic-liquid transitions with a re-
entrant state, or phase, diagram. While cell motility is typi-
cally thought to disorder, we show that the combined effect
of cell division and cell motility allows access to the hexatic
state. A key role in this process is played by topological de-
fects, both disclinations and dislocations.

Model We model a 2D cell layer using the Self-Propelled
Voronoi (SPV)[13] version of the vertex model[40, 44–48].
The cell shapes and the cellular network are determined based
on the Voronoi tesselation[49, 50] of the cell centers {⃗ri}.
Here mechanical interactions in the tissue are controlled by
the energy functional E = ∑

N
i=1[KA(Ai −A0)

2 +KP(Pi −P0)
2].

The first term, quadratic in the cell areas {Ai}, originates
from the incompressibility of cell volume, giving rise to a
2D area elasticity constant KA and preferred area A0[44, 51].
The second term quadratic in the cell perimeters {Pi} arises
from the contractility of the cell cortex, with an elastic con-
stant KP[44]. Here P0 is the target cell perimeter[12], rep-
resenting the interfacial tension set by the competition be-
tween the cortical tension and the adhesion between adjacent
cells[51]. The target shape index p0 = P0/

√
A0 effectively

characterizes the competition between cell-cell adhesion and
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cortical tension, acting as a signature for the solid-liquid phase
transition[12, 47]. Apart from the effective mechanical in-
teraction force Fi = −∇iE, cells are self-propelled. A self-
propulsion force is exerted along the cell polarity direction
n̂i = (cosθi,sinθi), where θi is the polarity angle. The self-
propulsion has a constant magnitude v0/µ, with the inverse of
a frictional drag µ. The equation of motion for each cell is
given by

˙⃗ri = µF⃗i + v0n̂i. (1)

The polarity angle obeys rotational diffusion: dθi/dt = ηi(t),
where ηi(t) is white-noise (⟨ηi(t)η j(t ′)⟩ = 2Drδ(t − t ′)δi j),
with Dr the rotational diffusion rate.

In addition to the polarized self-propulsion, cell division
and apoptosis serve as another source of active forcing in liv-
ing tissues[39, 52–54]. In the SPV model, every cell has an
equal division rate γ0. For each cell division, a daughter cell
is introduced by randomly seeding a point at a distance of
d = 0.1 (in units of the average cell diameter) near the mother
cell. In order to study the density-independent effects of cell-
division, we keep the number density of the tissue constant by
implementing apoptosis at the same rate as division. Apop-
tosis is then performed on randomly chosen cells, which re-
moves the cells from the tissue. This simulation scheme mim-
ics the maintenance of homeostatic balance in a tissue[55, 56].

The model can be nondimensionalized by expressing all
lengths in units of

√
Ā, where Ā is the average cell area in

the tissue and time in units of 1/(µKAĀ). Three independent
parameters remain the cell division/apoptosis rate γ0, the mag-
nitude of motility v0, and the cell shape index p0. Throughout
the simulations, we choose Dr = 1 without loss of generality.

The confluent tissue with N cells is simulated in a square
box with size L =

√
N under periodic boundary conditions.

We numerically simulate the model using the open-source
software cellGPU[57]. The simulations start with a crystalline
initial state in which cell centers form a triangular lattice.
Eq. 1 is numerically integrated for 2×106 steps at a step size
of ∆t = 0.05. For all data presented, the analysis is based
on the steady-state regime of the simulations (final 5× 105

steps). In the supplementary material (Fig.6 ), we also sim-
ulate the model starting from amorphous states and do the
cooling experiment to demonstrate that the results are inde-
pendent of the initial condition and simulation approach. We
set p0 = 3.6 in our simulations. During the melting process,
the tissues undergo a transition from crystalline to hexatic to
liquid as motility increases[33].

Signature for the emergence of hexatic order Transla-
tional and orientational symmetries distinguish the three
phases crystalline, hexatic and liquid. A 2D crystalline phase
has quasi-long-range translational order and long-range orien-
tational order while the liquid phase has no long-range order
of either kind. These two symmetries are related but not con-
comitant. The system in the hexatic phase has no long-range
translational order but retains quasi-long-range orientational
order [14, 15].

Figure 1. (a) The translational order parameter ΨT and (b) the ori-
entational order parameter Ψ6 as a function of the cell motility v0
at various division rates γ0. The errorbar represents the standard de-
viation over the ensemble of random simulations. (c) The snapshot
and structure factors S(q) plotted for various v0 at fixed division rate
γ0 = 2×10−5. Blue represents cells with disclination charge qi = 1,
red represents cells with qi =−1, and dark red represents cells with
qi = −2. The v0 = 0.35 snapshot has dislocation clusters but no
disclinations.

We begin by quantifying translational and orientational or-
der at the tissue level. The translational order is quantified by
ψT (⃗r j) = exp(iG⃗r⃗r j), where G⃗r represents a reciprocal vec-
tor in reciprocal space. The orientational order is quantified
ψ6(⃗r j) =

(
1/∑

z j
i=1 li j

)
∑

z j
i=1 li j exp(i6θ

j
i ), where the sum runs

over the n Voronoi neighbors of the cell and is weighted by
their shared edge length[58–60]. θ

j
i is the angle of the neigh-

boring joint vector (⃗ri − r⃗ j) to a reference axis. In Fig. 1, we
plot the tissue-level order parameters Ψ6 =

1
N ∑

N
j=1 ψ6(⃗r j) and

ΨT = 1
N ∑

N
j=1 ψT (⃗r j) as a function of v0. In the absence of cell

division (black lines), the tissue is a crystal at low v0 where
both ΨT ,Ψ6 are close to 1. The order parameters decrease
monotonically with increasing v0. For 0.35 ≲ v0 ≲ 0.45, the
tissue lacks translational order but retains orientational order,
suggesting the existence of a hexatic phase before melting into
a liquid phase at higher v0. This result is consistent with the
crystal-hexatic-liquid melting scenario in the previous study
using a similar model[33].

When cells divide (color lines in Fig. 1), ΨT is always close
to zero at any value of v0. This clearly illustrates that activity
due to cell cycling (division/death) always destroys the trans-
lational order and therefore forbids the formation of perma-
nently frozen structures[39]. Remarkably, while an actively
dividing tissue lacks translational order, it retains orientational
order for a large range of v0 values. This suggests the emer-
gence of a hexatic phase at intermediate v0 values. A transi-
tion from liquid to hexatic to liquid is visualized by the struc-
ture factor S(q) for various v0 at a fixed division rate.

In order to determine the location of the transitions between
different phases, we next compute the bond-orientational and
translational correlation functions. They are given by gα(r) =
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Figure 2. The (a) translational and (b) bond-orientational correlation
functions at intermediate cell motility v0 = 0.35. The (c) translational
and (d) bond-orientational correlation functions at low cell division
rate γ0 = 2×10−5.

⟨ψ∗
α(r)ψα(0)⟩, with r = |⃗ri− r⃗ j| and α= 6,T corresponding to

orientational order and translational order, respectively. The
peaks of correlations are fitted by a power law decay gα(r)∼
r−ηα (long-range order) and an exponential decay gα(r) ∼
e−r/ξ6 (short-range order). KTHNY theory[14, 15, 61–63]
predicts η6 = 1/4 at the hexatic-liquid transition point and
ηT = 1/3 at the crystal-hexatic transition point[64, 65].

The correlations are drawn and compared with reference
power-laws (ηT = 1/3 or η6 = 1/4) in Fig.2 and Fig.7. Melt-
ing (without cell division) allows quasi-long-range transla-
tional order at low v0, decaying as a power law with ηT ≤ 1/3.
The translational order with cell division decays faster. Cell
division also promotes the decay of bond-orientational corre-
lations, but the low γ0 still allows for quasi-long-range g6(r)
with η6 ≤ 1/4 at intermediate v0 values. A broken transla-
tional symmetry without broken orientational symmetry char-
acterizes the emergence of a hexatic state. Exponential decay
fits the orientational order better in both low- and high-v0 liq-
uid phases.

The fitted exponents η6 and ξ6 at fixed division rate γ0 =
2×10−5 are shown in Fig.3 and in Fig. 8 for the case of no cell
division. These results confirm the emergence of two distinct
liquid-hexatic and hexatic-liquid transitions when there is cell
division. The correlations in the hexatic indeed display quasi-
long-range order, well-fitted by power-law decays, g6(r) ∼
r−η6 , while outside the hexatic region correlations are short-
range and well-fitted by exponential decays g6(r) ∼ e−r/ξ6 .
As the hexatic phase is approached from either side, ξ6 grows
rapidly, consistent with a diverging correlation length.

Despite excellent agreement with the KTHNY model, the
correlation functions and the associated quantities (ξ6,η6)
near the onset of hexatic states suffer from large sample-to-
sample variations as shown in Fig. 3(a,b). We have confirmed
that this is not due to finite-size effects since, even at large sys-
tem sizes, the behavior of g6(r) can range from exponential
decay to a power-law decay (Fig. 9). Consequently, (ξ6, η6)
cannot be used to pinpoint the precise location of the liquid-

Figure 3. (a) The correlation length ξ6 and (b) the power-law decay
exponent η6 of the orientational correlation function are shown as
functions of v0 at constant γ0 = 2×10−5. Circles represent the fitting
exponents for different seeds, and the solid lines average the seeds.
(c) The hexatic order parameter susceptibility χ6. (d) Phase diagram
as a function of cell division rate γ0 and motility v0.

hexatic and hexatic-liquid transitions.
We next take advantage of the large fluctuations that arise

near critical points by using the order parameter susceptibility
to pinpoint the transitions. The susceptibility is given by χα =
N(⟨|Ψα|2⟩−⟨|Ψα|⟩2), which characterizes the fluctuations in
the translational (χT ) and orientational (χ6) order parameters.
Since χα is essentially an integral of the correlation function,
it is expected to be more robust to finite-size or finite-time
effects[20, 31].

In the melting process without cell division (shown in
Fig.10), there is a sharp divergence of χT at v0 = 0.35, in-
dicating a crystal-hexatic transition. On the other hand, χ6 di-
verges at v0 = 0.46±0.01, which corresponds to the hexatic-
liquid transition. By analyzing system sizes from N = 2430 to
38880, we show that these divergences are robust to finite-size
effects (Supplemental Material).

In contrast, χ6 with cell division (at γ0 = 2×10−5/s) gen-
erate two peaks ( Fig.3(c)). The divergence of χ6 deter-
mines two distinct transition points at v0 = 0.25± 0.01 and
at v0 = 0.45±0.01. Whereas the second point is a vestige of
the hexatic-liquid transition in the absence of cell division, the
first transition point arises solely from cell division. Here, a
state that would be crystalline in the absence of cell division
becomes hexatic when cells divide.

Exploring various cell division rates γ0 and active motili-
ties v0 at fixed p0 = 3.6, we plot the v0 − γ0 phase diagram
in Fig.3(d). Color indicates the mean magnitude of the global
orientational order over tens of thousands of frames. Black
dots mark the peaks of χ6 at various division rates. The two
transition points approach each other and disappear as the
division rate increases. The blue dashed lines indicate the
liquid-hexatic and hexatic-crystal transition points in the ab-
sence of cell division. We also investigate the p0 dependence
of the phase diagram in Fig.11 and compare it to previous re-
sults by Pasupalak et al.[33] which do not have cell division.

Disclinations and Dislocations According to KTHNY
theory[14, 15, 61–63], the distinct phases crystalline, hexatic
and liquid are characterized by the distributions of the basic
topological defects known as disclinations and dislocations.
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Figure 4. (a) The volume densities of dislocations and disclinations
are plotted as functions of v0 at constant cell division rate γ0 = 2×
10−5. (b) The same quantities are plotted at a constant v0 = 0.35 and
varying γ0.

Whereas the pure crystalline phase is defect free, or equiva-
lently all defects are tightly bound in defect-antidefect pairs,
the hexatic phase has a non-vanishing density of free disloca-
tions and the liquid phase has a non-vanishing density of free
disclinations.

We can define a charge qi = 6 − zi[66] associated with
disclinations, where zi is the coordination number (number of
neighbors) of the ith cell. Hexagonal cells are thus "neutral",
pentagonal cells have charge +1, heptagonal cells charge -1
and so on. Dislocations, the defects that disrupt translational
order but preserve orientational order, correspond to tightly
bound 5− 7 pairs. They are neutral as disclinations but pos-
sess a net vectorial charge, the Burgers vector. We approxi-
mate the Burgers vector by the displacement vector separating
the 5 and the connected 7. In general there will be clusters of
connected defects and one must measure the associated discli-
nation and dislocation charges of the entire cluster. The den-
sity of disclinations and dislocations are calculated by their
volume fraction averaged over time.

As shown in Fig.4(a), cell division creates dislocations at
a rate dependent on motility. Division tends to disorder, fa-
voring a liquid. What about motility? At low motility, divi-
sion disordering wins. At high motility both processes gen-
erate disorder, leading again to a liquid. But for a significant
range of intermediate motilities, we see that the number den-
sity of free disclinations falls to zero whereas the free dislo-
cation density is finite. How is this possible? In this interme-
diate region we hypothesize that disclinations are able to ex-
plore sufficient configuration space to access local free energy
minima at which all disclinations find their anti-disclinations
and bind into dislocations, thus leading to a hexatic. Fig.4(b)
shows the defect density dependence on cell division rate at a
fixed motility in the hexatic regime, showing that sufficiently
high division rates lead to a non-zero density of free disclina-
tions, thus melting the hexatic to a liquid. The middle snap-
shot in Fig.1(c) is a representative snapshot of a hexatic state
(v0 = 0.35, γ0 = 2× 10−5). Note the presence of dislocation
complexes but no isolated disclinations. Movie. S1shows a
dynamic evolution of states with various values of cell motil-
ity at a fixed division rate. The densities of dislocations and
disclinations are indicated by color as a function of cell divi-
sion rate γ0 and motility v0 at fixed p0 = 3.6 in Fig. 12. Black
dots mark the same data in Fig. 3(d).

Figure 5. A meanfield description for defect dynamics in a tissue.
(a) The energy landscape and transition diagram between states. (b)
The phase diagram of meanfield model as the function of the dimen-
sionless division rate γ0/R and motility (T/∆εX )

1/2. The green(red)
dashed line indicates the liquid-hexatic and hexatic-crystal transition
in the absence of cell division.

Meanfield Model To further understand the emergence of
hexatic order through cell division we develop a simple mean-
field model (MF) (Fig.5) incorporating the competition be-
tween cell division and motility. We simplify the state of a
small cell cluster (∼ 4 cells) using a meanfield approximation
that allows three states: (a) crystalline solid state ("ordered"),
(b) an isolated single dislocation, and (c) an isolated single
disinclination. Transitions between states arise from fluctu-
ations over the energy barriers ∆εi, as illustrated in Fig. 5(a).
Fluctuations arise from both Brownian motility forces and cell
division, leading, in the low temperature/velocity limit, to an
equal density distribution of states rather than only the "or-
dered" state (see Supplementary Text). In the steady-state
limit(Fig.5(b)), the asymmetric boundary of the hexatic region
(determined by the threshold of ρH and ρD) is remarkably
similar to our simulations and the phase diagram shows a re-
entrant liquid-hexatic-liquid transition with changing motil-
ity, as in Fig. 3(d). The MF model predicts unique behav-
ior for ultra-low division rates (γ0/R ≪ 10−10), where tis-
sues undergo a complex temperature-dependent transition se-
quence, following a Liquid-Hexatic-Crystal-Hexatic-Liquid
path at constant γ0/R (Fig.5(b) and also see Supplementary
Text for a detailed discussion). Remarkably, our phase di-
agram closely mirrors that of 2D melting on a random sub-
strate [67]. In both models, temperature drives phase transi-
tions, and in our case, cell division plays a role analogous to
substrate disorder, introducing persistent, random spatial dis-
tortions.

Discussion The subtle balance required to establish hex-
atic order in equilibrium means that it is often confined to a
rather narrow region of the relevant parameter space. Our
findings suggest that cell division provides a new way of
exploring the configuration space of physical systems, as
noted above. In particular, the dynamics of dislocation de-
fects generated by cell-division, both self-propelled and re-
laxational, promote fluctuations over barriers separating the
hexatic phase from crystalline or liquid phases. This phe-
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nomenon, which we may call defect-driven structure devel-
opment, may well have implications beyond biological sys-
tems. In terms of the configuration space explored by the ver-
tex model, cell division and apoptosis correspond to adding
T2 moves (or interstitial insertion/deletion) to the allowed lat-
tice updates – this yields a more efficient exploration of the
space of all Voronoi tesselations and thus better routes to lo-
cal hexatic minima [68–70]. It is remarkable that the early
work of Swope and Andersen[71] found the hexatic phase by
employing a grand canonical ensemble in which particles are
added and removed. The mechanism we find here is very dif-
ferent from that found in colloids[20] and models of active
particles[72], where packing density plays a crucial role.

We have taken cell division to be isotropic. The inclusion
of oriented cell divisions, however, would only enhance hex-
atic order. Recent work[53] has shown that oriented cell divi-
sions can give rise to novel four-fold orientational order in
vivo through active defect climb, where defects introduced
into the nascent lattice by cell divisions are healed by subse-
quent divisions along a well-defined global polarity axis. The
effect of oriented divisions on hexatic order is a subject for the
future.
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T. and D. B.), Alfred P. Sloan Foundation (Y. T. and D. B.)
and The Human Frontier Science Program (Y. T. and D. B.))
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Supplementary Text

Susceptibility of Order Parameters

χ6 is a measure of the fluctuation in tens of thousands of
frames, which come from 50 simulations. Each simulation has
a different seed, controlling the initial velocity direction and
dividing cells. χT is a measure of the fluctuations of the time-
averaged ΨT from the 20 simulations. The ensemble average
plays a key role in the susceptibility calculation.

Tracking Topological Defects

The video (Movie. S1) shows a dynamic evolution of states
with various cell motilities (v0 = 0.15,0.35,0.55) with a fixed
division rate (γ0 = 2 × 10−5). We color the dislocations in
cyan(zi < 6) and magenta(zi > 6) and color the disclinations
in blue(zi < 6) and red(zi > 6). At v0 = 0.15(left), the fluctu-
ations from motility are insufficient to anneal the dislocations
created by cell division. Dislocations eventually unbind into
disclinations. The tissue is in a liquid state. v0 = 0.35(middle)
allows dislocations to reorganize and overcome barriers, lead-
ing to a hexatic. In contrast v0 = 0.55(right) generates the
dislocations and disclinations by itself.

Figure 6. The orientational order parameter is independent of
simulation protocols. (a) The orientational order parameter remains
consistent across different initial conditions. The crystal (solid lines)
and random (dash lines) initial conditions both lead to the same form
for Ψ6(v0). Ψ6 is non-zero at intermediate v0 values and declines for
both higher and lower v0. (b) The orientational order parameter is
unaffected by the approach taken during the simulation process. The
cooling run (green solid line) has the same Ψ6(v0) function as the
direct run (blue dash lines) from crystal initial conditions at constant
division rate γ0 = 4× 10−5. In the cooling run, we start from the
simulation for v0 = 0.60. Subsequently, we use the final state of
v0 = 0.6 as the initial state for v0 = 0.55 and employ the resulting
state of v0 = 0.55 as the starting state for v0 = 0.50, continuing this
sequence until we reach v0 = 0.10.

Meanfield model

The mean-field approximation dynamics of a single small
(∼ 4 cells) cell cluster can be classified into three states: (1)
a fully ordered crystalline state (X), (2) an isolated disloca-
tion corresponding to a hexatic state (H), (3) an isolated single
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Figure 7. The (a) translational and (b) bond-orientational corre-
lation functions in the absence of cell division. The curves evolve
from a power-law decay to an exponential decay as v0 increases. (a)
The reference line gT ∼ r−1/3 indicates the theoretically expected for
the crystal-hexatic transition, while (b) the g6 ∼ r−1/4 fall-off indi-
cates the expected decay for a hexatic-liquid transition. The decay of
g6 lags gT , leaving an intermediate range of v0 without quasi-long-
range translational order but with quasi-long-range orientational or-
der.

Figure 8. The correlation length ξα and exponent ηα (α = 6,T )
as a function of v0 in the absence of cell division. The translational
correlations in the crystal phase are quasi-long-range with a power-
law decay gT (r)∼ r−ηT , and those in the hexatic and liquid range are
short-range with an exponential decay gT (r) ∼ e−r/ξT . The orienta-
tional correlations in the hexatic are quasi-long-range with a power-
law decay g6(r)∼ r−η6 , and those in the liquid are short-range with
an exponential decay g6(r)∼ e−r/ξ6 . ξ6 and η6 grow significantly at
the transition point.

Figure 9. The finite-size effects for the translational and orienta-
tional correlations. Different colors represent various N and differ-
ent lines indicate simulations with distinct seeds. (a) Near the transi-
tion point (v0 = 0.25 and γ0 = 2×10−5), the behavior of g6(r) suffers
large sample-to-sample fluctuations, ranging from exponential decay
to a power-law decay. (b) Deep in the hexatic phase (v0 = 0.35 and
γ0 = 2× 10−5), the finite-size analysis over a large range of N con-
firms quasi-long-range order. The power-law decay is independent
of system size and seeds.

Figure 10. The susceptibility during melting as a function of v0
for various system sizes. (a) All the χT in melting have a sharp peak
at v0 = 0.35, clearly indicating the crystal-hexatic transition. (b) All
the χ6 have a sharp peak at v0 = 0.46± 0.01, clearly indicating the
hexatic-liquid transition.

Figure 11. Depedence of the orientational order parameter Ψ6 on
different choices of p0. (a) The phase diagram as a function of cell
shape index p0 and motility v0 with γ0 = 2× 10−5. The color indi-
cates the magnitude of Ψ6. (b) The orientational order parameter Ψ6
as the function of v0 with various p0 and fixed γ0 = 2× 10−5. The
high Ψ6 values at intermediate v0 levels indicate the appearance of
the hexatic phase. Cell division leads to a liquid-hexatic-liquid tran-
sition sequence across different p0 values. The peak of Ψ6 shrinks
and shifts to smaller v0 as p0 increasingly approaches the p0 ∼ 3.75,
which is in harmony with the no-division case[33].

disinclination corresponding to a liquid state (D). The corre-
sponding volume densities (or probabilities) are given by ρX ,
ρH , and ρD, respectively.

Here, the crystalline (X) state is a global energy minimum,
while the hexatic (H) and liquid (D) states are local energy
minima. The model assumes that one state can transition

Figure 12. The density of (a) disclinations and (b) dislocations as
a function of cell division rate γ0 and motility v0. Color indicates
the magnitude of the density of (a) disclinations and (b) dislocations.
White dots are the hexatic-liquid transition points, obtained from the
divergence of χ6. In the hexatic phase, the density of disclinations is
very low. In the liquid phase, the density of disclinations increases
rapidly at low v0.
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to another due to thermal fluctuations. Taken together, we
model the dynamics as activated hops between energy min-
ima (Fig. 5(a)), where the associated energy barriers are given
by ∆εX , ∆εH , and ∆εD, respectively. Since dislocations and
disclinations are excitations of the crystalline state, we write
∆εH = cH∆εX and ∆εD = cD∆εX with 1 > cH > cD. This is
also well supported by previous work [73] which computed
the energy barriers between four-cell clusters with different
topologies. Here, rather than computing the precise values of
the energy barriers, we make an arbitrary choice of cH = 0.8
and cD = 0.2 without the loss of generality.

In the absence of cell divisions, the meanfield model
recapitulates the two-step melting process

In the absence of cell divisions, the cell motility provides
a source of random fluctuations. In the limit of Dr ≫ 1, it
essentially provides a source of uncorrelated fluctuations that
can be described by an effective temperature given by [13]

T ∝ v2
0, (2)

which provides the thermal-like activation to overcome bar-
riers in the mean-field model. The transition rates between
states are determined by the thermally activated process, i.e.
Re−∆ε/T . Here the attempt frequency R between two states
(assumed to be the same for all states), and the related energy
barriers as illustrated in Fig. 5(a). The states therefore evolve
according to

ρ̇X = Re−∆εH/T
ρH −Re−∆εX/T

ρX ,

ρ̇H = Re−∆εX/T
ρX +Re−∆εD/T

ρD −2Re−∆εH/T
ρH ,

ρ̇D = Re−∆εH/T
ρH −Re−∆εD/T

ρD.

(3)

The steady-state solution gives ρX = Q−1e∆εX/T , ρH =
Q−1e∆εH/T , and ρD = Q−1e∆εD/T , where the normalization
factor is given by Q = e∆εX/T + e∆εH/T + e∆εD/T . Choosing
1/R as the unit of time and ∆εX as the unit of energy, we plot
the fraction of the three states as a function of the effective
temperature in Fig. 13(a). As the temperature increases, the
model exhibits a two-step melting process. The system first
transitions from a crystalline phase to a hexatic phase and then
from hexatic to liquid. We can define each phase by selecting
a threshold value as follows: (1) Crystalline: For values where
ρX > 0.01 and both ρH and ρD are less than 0.01. (2) Hexatic:
When ρH > 0.01 and ρD < 0.01. (3) Liquid: In cases where
ρD > 0.01. It is important to note that the results are indepen-
dent of the precise threshold value chosen.

Cell division/apoptosis alters the melting process

Cell division and apoptosis introduce a new type of active
force. The resulting active cell-shape deformations enhance
the fluctuations over energy barriers by ‘tilting’ the energy
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Figure 13. (a) Plot of ρX , ρH and ρD as a function of temperature
in the absence of cell division as obtained by the meanfield model.
Here, the tissue undergoes a two-step melting process, transitioning
from a crystalline structure to a liquid state through an intermediate
hexatic phase. (b) In the presence of cell divisions (γ0/R= 10−5), the
crystalline state ceases to exist across the entire temperature range,
giving rise to a re-entrant Liquid - Hexatic - Liquid transition.

landscape. The transition rates are modified by adding a γ0
term as shown in Fig. 5(a).The master equations then become

ρ̇X =(Re−∆εH/T + γ0)ρH − (Re−∆εX/T + γ0)ρX

ρ̇H =(Re−∆εX/T + γ0)ρX +(Re−∆εD/T + γ0)ρD −2(Re−∆εH/T + γ0)ρH

ρ̇D =(Re−∆εH/T + γ0)ρH − (Re−∆εD/T + γ0)ρD
(4)

The steady-state solution gives ρX = Q−1(e−∆εX/T + γ0)
−1,

ρH = Q−1(e−∆εH/T + γ0)
−1 and ρD = Q−1(e−∆εD/T + γ0)

−1

with Q = (e−∆εX/T + γ0)
−1 +(e−∆εH/T + γ0)

−1 +(e−∆εD/T +
γ0)

−1. Fig. 13(b) shows ρX , ρH and ρD as a function of tem-
perature at a constant division rate (γ0/R = 10−5). In the limit
of high temperature, the model behaves similarly to the case
of no division. However, the dominance of the division term
in the transition rates dramatically changes the steady-state
solution in the low-temperature limit, driving the tissue from
a crystal phase to a liquid phase.

In Figure 5(b) of the main text, we present the phase di-
agram, plotted in terms of the dimensionless variables γ0/R
and

√
T/∆εX . This diagram is constructed using a uniform

threshold criterion across the three distinct phases. This illus-
trates that mean-field theory effectively replicates the behavior
evident in our numerical simulations, specifically within the
experimentally accessible range of cell division rates(γ0/R >
10−5).

Behavior at ultra-low division rates

Intriguingly, the theory also makes a prediction for ultra-
low division rates (γ0/R ≪ 10−10). Here, tissues would ex-
perience a notably complex transition sequence as a function
of temperature, following a Liquid-Hexatic-Crystal-Hexatic-
Liquid path at constant γ0/R as shown in Fig. 5(b). We also
show one such transition path for γ0/R = 10−15 in Fig. 14.

In order to delve deeper into the behavior as γ0/R → 0,
we examine the state densities as functions of temperature for
γ0/R values smaller than 10−10, as illustrated in Fig. 15(a-c).
Firstly, in the ultra-low regime of γ0/R, there exists a con-
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Figure 14. The behavior of the three state densities as functions of
temperature for a constant, ultra-low choice of division rate γ0/R =
10−15.

Figure 15. The state densities (a) ρX (b) ρH (c) ρD as the func-
tion of dimensionless temperature T/∆εX under the γ0 → 0 limit. As
the division decreases to ultra-low values, the state densities share
the same steady solution with the no-division case in a bigger range
with a lower limit of T/∆εX . However, the tissue is inevitably in
a liquid phase at the zero temperature limit, having equal ρX , ρH ,
and ρD. The possible crystal or hexatic phase can only happen
in the middle-temperature range. The dimensionless division rate
10−4,10−6, ...10−30 are represented by the rainbow color from red
to purple. (d) A re-plot of the phase diagram of the MF model where
the cell division rates are displayed on a “log of log" scale to empha-
size the behavior at extremely slow values.

dition for a crystalline phase at sufficiently low temperatures.
Under this condition, the transition rate from the Crystal phase
to the Hexatic phase exceeds that from the Hexatic phase to
the Crystal phase. Simultaneously, the transition rate from the
Dislocation phase to the Hexatic phase is also higher than the
rate from the Hexatic phase to the Dislocation phase. This
condition is given by

e−∆εH/T + γ0/R
e−∆εX/T + γ0/R

< 1 and
e−∆εH/T + γ0/R
e−∆εX/T + γ0/R

< 1.

As the ratio γ0/R decreases further, the stable crystalline
phase not only emerges at specific temperatures (as shown in
Fig. 14), but also expands its temperature range until it ulti-
mately converges with the crystalline phase present at γ0/R =
0.

Finally, we summarize these behaviors in the phase diagram
(Fig. 15(d)), which is the same as Fig. 5(b), except the γ0/R
here is plotted on a "log-of-log" scale to emphasizes the slow
convergence of the quantity. The phase diagram of the MF
model exhibits a striking resemblance to that of the 2D melt-
ing on a substrate with quenched random disorder in its topog-
raphy, as discussed in work by Sachdev and Nelson [67]. In
both cases, temperature acts as the driving force for the phase
transition. Interestingly, in our model, cell division serves
a role analogous to the degree of quenched disorder in [67].
This correlation is logical since cell division introduces spa-
tially random distortions in the tissue, akin to the disorder in
the substrate, and these effects persist without annealing over
time, forming a quenched random variable.
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