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In this letter we summarise our study of Su-Schrieffer-Hegger(SSH) model with a one dimensional
non-orientable manifold as bulk. For this purpose a SSH model with any bulk (SAB) is introduced.
We observe the following: (1) The topology of the SSH model is preserved even with a non-orientable
bulk, (2) The appearance of a doubly degenerate flat band exactly at the Fermi level, (3) At half
filling the band structure is metallic due to the complete overlap of valence and conduction band
but the electrons will be localised because the bands are flat and (4) This system is unique because
it has flat bands and at the same time is topologically non-trivial.

The Su-Schrieffer-Hegger(SSH) model is a model first
introduced for the study of poly-acetylene with alternate
strong and weak bonds [1]. Replacing strong and weak
bonds by intracell and intercell hopping, this became the
most pedagogic toy model for studying one dimensional
topological systems by tuning the intracell and intercell
hopping amplitudes[2, 3]. For the sake of clarity in this
letter we denote this well known SSH model as the con-
ventional SSH (C-SSH) model. The unit cell in the C-
SSH model is two sites placed linearly. There have been
several generalisations of the C-SSH model like the gen-
eralised SSH model[4–6], super SSH model[7–9], Cruetz
ladder[10], with long range hopping[11, 12], with a non-
Hermitian Hamiltonian[13] etc.

However the study of topological systems over non-
orientable manifolds is very scarce[14] and there has
never been an attempt at studying topological systems
with a non-orientable bulk. We introduce a framework
to study such systems in one dimension called the SSH
model with any bulk (SAB), as the prescription of the
normal SSH model is inadequate for such an analysis. We
then present our results for a particular non-orientable
bulk (Note: the word Orientablity needs to be clearly
defined to avoid any possible confusion. In Mathematics,
it refers to the property of space that allows a consistent
definition of a co-ordinate system. Here in the context
of SSH model, the system is orientable if we can define
neighbouring sites as belonging to same or different unit
cells consistently when periodic boundary condition is
applied to the bulk. The manifold that forms the bulk in
our present study is non-orientable by the mathematical
definition and consequently is also not-orientable in the
definition limited to the SSH model. But one should note
that there can be manifolds which are orientable by the
mathematical definition but the chain formed by them is
non-orientable in terms of the SSH model definition).

We introduce here the SAB model briefly but with
enough details required for this letter. The complete in-
troduction of the SAB model along with results of the
bulk replaced by several non-trivial manifolds will be
given in a detailed article later[15]. In the SAB model

there are two more degrees of freedom associated with
each site. One degree of freedom is either left or right
polarisation[16] and each site should have one and only
one left and one right polarisation. Each of this (left
or right) polarisation has any one component from the
other degree of freedom which has three components
(+,−, 0)[17]. Let us define the rules of the SAB model
clearly:

• Hopping amplitudes are non zero only when hop-
ping is from left to left or right to right polarisation
between two sites unless there is a twist. If there is
a twist hopping amplitudes are non zero only if the
hopping is from left to right or from right to left
polarisation.

• Intracell hopping happens only if the two compo-
nents between the two polarisations have the same
components other than 0. If the component is 0,
then are no hopping to and from that polarisation
in that site.

• Intercell hopping happens only if the two compo-
nents between the two polarisations have different
components other than 0. If the component is 0,
then are no hopping to and from that polarisation
in that site.

• Only same cell (denoted by u) and nearest cell hop-
ping (denoted by v) is considered.

• Hopping amplitudes between two sites is the same
for both directions (i.e. the Hamiltonian is Hermi-
tian).

FIG. 1. C-SSH model as a particular case in SAB model.

ar
X

iv
:2

30
3.

00
13

4v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
8 

Fe
b 

20
23



2

The normal SSH model is obtained as a particular case of
the SAB model in fig.1 (there are other similar and differ-
ent varieties that appear in the SAB model[15]). Replac-
ing the bulk with a one dimensional non-orientable man-
ifold requires at least six sites per unit cell and should
have a twist. This is pictorially depicted in fig.2. The

FIG. 2. SAB model with a non-orientable bulk

case of a line being the bulk, when considering periodic
boundary condition (PBC) gives a circle, but it is not
the case for the non-orientable manifold that we are con-
sidering. This is pictorially depicted in fig.3(a). We will
present the results for the non-orientable case when the
bulk is infinite (or equivalently with periodic boundary
condition) and contrast it with the C-SSH model. Firstly,
the Hamiltonian in the real space for the non-orientable
case for an infinite chain is:

H =

∞∑
X=−∞

[2u(c†X,1cX,2 + c†X,2cX,3)

+u(c†X,3cX,4 + c†X,4cX,5 +

c†X,5cX,6 + c†X,6cX,3)

+2v(c†X+1,2cX,1 + c†X+1,2cX,3)

+v(c†X+1,4cX,3 + c†X+1,6cX,3

+c†X+1,4cX,5) + c†X+1,6cX,5] +H.C. (1)

where the operator C†X,n(CX,n) creates (destroys) a par-
ticle at unit cell X and site n.

One can write the above Hamiltonian in momentum
space using Fourier transformation. We express it for
the sake of clarity in the matrix form:

H(k) =


0 2a 0 0 0 0

2a† 0 2a† 0 0 0
0 2a 0 a 0 a
0 0 a† 0 a† 0
0 0 0 a 0 a
0 0 a† 0 a† 0

 (2)

where a = u+ veik and a† = u+ ve−ik. By diagonalising
the above Hamiltonian we can get the dispersion relation
of the six energy eigenvalues as a function of momen-
tum or the band structure. The band structure for the

FIG. 3. (a) Unit cell of SAB model with a non-orientable
bulk with periodic boundary condition , band structures for
the cases (b) u > v(u = 3, v = 1),(c) u = v(u = 1, v = 1), (d)
u < v(u = 1, v = 3).

FIG. 4. (a) Unit cell of C-SSH model with periodic boundary
condition, band structures for the cases (b) u > v(u = 3, v =
1),(c) u = v(u = 1, v = 1), (d) u < v(u = 1, v = 3).

non-orientable case is given in fig.3. This is similar but
different from the band structure of the C-SSH model
shown in fig.4.

The following points are summarised by comparing
both the band structures:

• In the non-orientable bulk case, apart from the four
bands, two of which are above the Fermi energy
and two below the Fermi energy there is doubly
degenerate flat band exactly at the Fermi energy
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FIG. 5. Energy eigenvalues for the open chain of a non-
orientable bulk with 10 unit cells, sorted from low to high
plotted with respect to total no. of states indexed from 1 to
60 for (a) u > v,(b) u = v, (c) u < v (d) energy eigenval-
ues a function of intercell hopping amplitude v with intracell
hopping amplitude u = 1

level.

• This band is completely flat throughout implying a
diverging value for the effective mass of electron in
this band.

• At half filling the band structure is metallic because
of the fact that the conduction and valence band

FIG. 6. Energy eigenvalues for the open chain of a C-SSH
model with 10 unit cells, sorted from low to high plotted with
respect to total no. of states indexed from 1 to 20 for (a)
u > v,(b) u = v, (c) u < v (d) energy eigenvalues a func-
tion of intercell hopping amplitude v with intracell hopping
amplitude u = 1

completely overlap at the Fermi energy. But since
the bands are flat the electronic mass at this band
diverges and the electrons will be localised.

• If u = v, all the bands touch each other at the
Fermi level at k = −π and k = π closing the band
gap and indicating a topological phase transition
between a trivial and topological phase as in the
C-SSH model.



4

FIG. 7. Wavefunctions (Normalised Eigenvectors of the
Hamiltonian with 10 unit cells) corresponding to zero energy
modes in the bulk (5 out of 20, (first 5)) and edge states (last
4).

We also perform the calculations with a finite bulk (or
equivalently with open boundary condition). The energy
eigenvalues for such a system with 10 unit cells is shown
in fig.5. This is compared to the C-SSH model (fig.6) and
the salient points are:

• In the non-orientable bulk case the trivial phase has
2N zero energy modes and the toplogical phase has
2N + 4 zero energy modes.

• It is similar to the C-SSH model because of the
existence of a trivial phase when u > v with no zero
energy edge states and a topological phase when
u < v with four zero energy edge states (two in
case of C-SSH model) .

• It is different from the C-SSH model because both
the trivial and topological phases have 2N zero
energy modes in the bulk whereas there are no
zero energy modes in the bulk for the normal SSH
model. This is evident from the plot of wavefunc-
tions corresponding to various zero energies (Fig.7).
We find that the four zero energy edge states are
localised at the edges. However the states corre-
sponding to other zero eigenvalues (that appear in
both trivial and toplogical phases) are localised in
the bulk.

• If u = v, then the band gaps vanishes indicating
the topological phase transition point.

It has been rigorously proved in literature that for
two dimensional systems, any system can simultaneously
have only two out of the three features among (1) Flat
bands, (2) non-zero Chern number and (3) finite hop-
ping [18, 19]. Since our system has both flat bands and

finite hopping, it would be interesting to look at the pres-
ence(or absence) of the third feature. The Zak phase[20]
is the one dimensional analogue of the Chern number, so
we have calculated the Zak phase corresponding to the
flat bands:

Φn =

∫
BZ

i 〈ukn|∂kukn〉 dk = π, ∀ {u, v} ∈ R (3)

where ukn is the periodic part of Bloch function corre-
sponding to the energy band n, BZ refers to the Brillouin
zone and n = 1, 2 correspond to the flat bands.

From Eq.(3), we find that the Zak phase of the flat
bands is non zero (π) which is very interesting. However
it remains a constant for all values of hopping ampli-
tudes implying that the flat bands in this system do not
undergo topological phase transitions[21].

To summarise we had replaced the bulk in the SSH
model from a linear chain to a one dimensional non-
orientable manifold and investigated its consequences.
Such a replacement is not possible within the framework
of the conventional SSH model. For this we had intro-
duced the SAB model of which a particular case is the
conventional SSH model. We replace the bulk in the
SAB model with a 1D non-orientable manifold. This
system like the C-SSH model exhibits a gapped triv-
ial and topological phase separated by band gap clos-
ing. However in both the phases there exists a dou-
bly degenerate flat band exactly at the Fermi level.
Another feature of this system is the presence of zero
energy modes localised in the bulk, both in the triv-
ial and topological phase along with zero energy edge
states in the topological phase, which is in contrast
to the C-SSH model where only the topological phase
has zero energy modes. At half filling the band struc-
ture is metallic since the conduction and valence band
completely overlap each other at the Fermi level. But
since these bands are flat the electrons in these bands
will be localised because of the diverging effective mass.
It is also worthwhile to mention here that flat bands
have been reported in various systems like the twisted
bilayer Graphene[22] and similar systems[23], Kagome
lattices[24], Lieb lattice[25] etc. Flat bands are associated
with several exotic phases like superconductivity[26],
Wigner crystallisation[27], etc. pointing towards several
potential applications[28, 29]. Here we arrive at a sys-
tem with flat bands in a system with non-trivial topol-
ogy in a completely different approach dealing with the
orientability of the SSH model[30].
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