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Abstract
Emerging distributed applications recently boost
the development of decentralized machine learn-
ing, especially in IoT and edge computing fields.
In real-world scenarios, the common problems of
non-convexity and data heterogeneity result in in-
efficiency, performance degradation, and develop-
ment stagnation. The bulk of studies concentrates
on one of the issues mentioned above without
having a more general framework that has been
proven optimal. To this end, we propose a unified
paradigm called UMP, which comprises two algo-
rithms D-SUM and GT-DSUM based on the momen-
tum technique with decentralized stochastic gradient
descent (SGD). The former provides a convergence
guarantee for general non-convex objectives, while
the latter is extended by introducing gradient track-
ing, which estimates the global optimization direc-
tion to mitigate data heterogeneity (i.e., distribution
drift). We can cover most momentum-based variants
based on the classical heavy ball or Nesterov’s ac-
celeration with different parameters in UMP. In the-
ory, we rigorously provide the convergence analysis
of these two approaches for non-convex objectives
and conduct extensive experiments, demonstrating
a significant improvement in model accuracy up to
57.6% compared to other methods in practice.

1 Introduction
Distributed machine learning (DML) has emerged as an im-
portant paradigm in large-scale machine learning [Wan et al.,
2022; Zhang et al., 2022; Qu et al., 2022]. In terms of how
to aggregate the model parameters/gradients among workers,
researchers classify the system architecture into two main
classes: parameter server (PS) and decentralized. The former
is generally considered as the centralized paradigm where the
central server acts as a coordinator for convenience, while the
latter allows communication in a peer-to-peer fashion over
an underlying topology, which could guarantee the model
consistency across all workers with better scalability.

Meanwhile, multiple complementary studies [Fang et al.,
2018; Yu et al., 2019; Hsieh et al., 2020] have focused on the
issues of DML mainly based on the following two key aspects.

• The property of non-convex objectives is quite complicated
in deep learning, in particular in distributed scenarios [Karim-
ireddy et al., 2020; Lian et al., 2017]. Although some stan-
dard theoretical results have been obtained for convex mod-
els [Tao et al., 2022; Deng and Gao, 2021; Tao et al., 2021],
much less is applicable in non-convex settings since they may
be lossy and cause serious obstacles (e.g., high computation
complexity and poor generalization) [Ghadimi et al., 2015;
Mai and Johansson, 2020]. • It is well known that hetero-
geneity in the data is one of key challenges in distributed
training, resulting in a slow and unstable convergence as well
as poor model generalization. There still exists a gap be-
tween the disappointing empirical performance and the degree
of data heterogeneity [Shang et al., 2022; Lin et al., 2021;
Esfandiari et al., 2021]. Unfortunately, there are currently no
existing works attempting to improve real-world decentral-
ized training from a comprehensive perspective by taking both
non-convexity and data heterogeneity into account. Thus, it
is non-trivial to handle these challenges, which significantly
hinder the development of real-life applications.

Motivated by the momentum’s effects on optimal con-
vergence complexity and empirical evaluation successes
[Koloskova et al., 2019; Yu et al., 2019; Han and Gao, 2021;
Lin et al., 2021], we propose UMP, a Unified, Momentum-
based Paradigm in the decentralized learning without consid-
ering the communication overhead throughout the paper. It
consists of two algorithms named D-SUM and GT-DSUM. The
former one D-SUM explores the potential of momentum by
maintaining and scaling the momentum buffer to sharpen the
loss landscape significantly and overcomes the restrictions
of non-convexity, leading to better model performance and
faster convergence rate in the non-convex settings. Our latter
algorithm GT-DSUM also aims to mitigate the impact of data
heterogeneity on the discrepancy of local model parameters by
introducing the gradient tracking (GT) technique [Di Lorenzo
and Scutari, 2016]. The core insight is that the variance be-
tween workers is decreasing while the local gradient asymptoti-
cally aligns with the global optimization direction independent
on the heterogeneity of the data. GT-DSUM accelerates decen-
tralized learning achieving better generalization performance
under both non-convex and different degrees of non-IID.

This paper makes the following main contributions:

• We propose a unified momentum-based paradigm UMP
with two algorithms for dealing with non-convex and
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the degree of non-IID simultaneously. Moreover, a vari-
ety of algorithms with the momentum technique could
be obtained by specifying the parameters of our base
algorithms.

• We design the first algorithm D-SUM, which achieves
good model performance, demonstrating its applicability
in terms of efficacy and efficiency. We also provide its
convergence result under the non-convex cases.

• Our second one GT-DSUM, which is robust to the distri-
bution drift problem by applying the GT technique, is
being further developed. We rigorously prove its conver-
gence bound in smooth, non-convex settings.

• We additionally conduct extensive experiments to eval-
uate the performance of UMP on common models,
datasets, and dynamic real-world settings. Experimental
results demonstrate that D-SUM and GT-DSUM improve
the model accuracy by up to 35.8% and 57.6% respec-
tively under different non-IID degrees compared with
the well-known decentralized baselines. GT-DSUM per-
forms better than D-SUM on model generalization across
training tasks suffering from data skewness.

2 The Unified Paradigm: UMP
In this section, we first begin with the notation and revisit two
momentum approaches: the heavy ball (HB) method [Polyak,
1964] and Nesterov’s momentum [Nesterov, 1983]. Inspired
by them, we generalize a unified momentum-based paradigm
with two algorithms D-SUM and GT-DSUM, which could
cover the above two classical methods and other momentum-
based variants, aiming to address issues on non-convexity and
data heterogeneity in real-world decentralized learning appli-
cations. Finally, we provide the convergence result that they
could converge almost to a stationary point for general smooth,
non-convex objectives.

2.1 Notation and Preliminary
To better demonstrate the applicable effect in real-world com-
plex scenarios, we consider a decentralized setting with a
network topology where n workers jointly deal with an opti-
mization problem. Assume that for every worker i, it holds its
own datasets drawn from Di distribution, which corresponds
to data heterogeneity. Let fi : Rd → R be the training datasets
loss function of worker i and can be given in a stochastic form
Eξi∼Di [∇Fi(x, ξi)] = ∇fi(x), where Fi(x, ξi) is the per-
data loss function related with the mini-batch sample ξi ∼ Di.
Then, we formulate the empirical risk minimization with sum-
structure objectives:

f∗ = min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

[fi(x) = Eξi∼DiFi(x, ξi)]

]
.

(1)
Among workers, there is an underlying topology graph

W ∈ Rn×n, which is convenient to encode the communica-
tion between arbitrary two workers, i.e., we let wij = 0 if and
only if worker i and j are not connected.
Definition 1 (Consensus Matrix [Koloskova et al., 2021]).
A matrix with non-negative entries W ∈ [0, 1]

n×n that is

symmetric (W = W>), and doubly stochastic (W1 =
1,1>W = 1), where 1 denotes the all-one vector in Rn.

Throughout the paper, we use the notation x
(t),τ
i to denote

the sequence of model parameters on worker i at the τ -th local
update in epoch t. For any vector ai ∈ Rd, we denote its
model averaging ā = 1

n

∑n
i=1 ai. Let ‖·‖, ‖·‖F denote the l2

vector norm and Frobenius matrix norm, respectively.
For ease of presentation, we apply both vector and matrix

notation whenever it is more convenient. We denote by a
capital letter for the matrix form combining by ai as follows,

A = [a1, · · · ,an] ∈ Rd×n, Ā = [ā, · · · , ā] = A 1
n11

>.
(2)

The introduction of a momentum term is one of the most
common modifications, which is viewed as a critical compo-
nent for training the state-of-the-art deep neural networks [Qu
et al., 2022; Lin et al., 2021]. Corresponding to its empiri-
cal success, momentum attempts to enhance the convergence
rate on non-convex objectives by setting the optimized search-
ing direction as the combination of stochastic gradient and
historical directions.

The HB method (i.e., also known as Polyak’s momentum)
is first proposed for the smooth and convex settings, written
as {

u
(t+1)
i = βu

(t)
i + g

(t)
i

x
(t+1)
i = x

(t)
i − ηu

(t+1)
i ,

(3)

where u
(t)
i , g(t)

i are denoted as the momentum buffer, and
the stochastic gradient of worker i at epoch t, respectively. η
presents the learning rate. The momentum variable β adjusts
the magnitude of updating direction provided by the past in-
formation estimation with the stochastic gradient, indicating
the direction of the steepest descent. Equivalently, (3) can be
also updated below

x
(t+1)
i = x

(t)
i − ηg

(t)
i + β

(
x

(t)
i − x

(t−1)
i

)
, (4)

when t ≥ 1. Holding the past gradient values, this style
of update can have better stability to some extent and en-
ables improvement compared with some vanilla SGD meth-
ods [Cutkosky and Mehta, 2020].

Another kind of technique called Nesterov’s shows that
choosing with suitable parameters, the extrapolation step can
be accelerated from O

(
1
t

)
to O

(
1
t2

)
, which is the optimal

rate for the smooth convex problems. Concretely, its update
step is described as follows

u
(t+1)
i = βu

(t)
i + g

(t)
i

v
(t+1)
i = βu

(t+1)
i + g

(t)
i

x
(t+1)
i = x

(t)
i − ηv

(t+1)
i .

(5)

The model parameters are updated by introducing the momen-
tum vector ui and extra auxiliary vi sequences. Compared
with (3), through decaying the momentum buffer u(t)

i , it ef-
fectively improves the rate of convergence without causing
oscillations. Similarly, the above steps can be written as

x
(t+1)
i = x

(t)
i −ηg

(t)
i +β

(
x

(t)
i − ηg

(t)
i − x

(t−1)
i + ηg

(t−1)
i

)
.

(6)



Algorithm 1: vanilla SGD and D-SUM ; colors in-
dicate the two alternative variants.

Input: ∀i, initialize x
(0),0
i = v

(0),0
i = x0; constant

parameters η, α, and β; ∀i, j, consensus matrix
W with entries wij ; the number of epochs T
and local steps K.

1 for t ∈ {0, · · · , T − 1} at worker i in parallel do
2 Set x(t),0

i = x
(t)
i ,v

(t),0
i = v

(t)
i .

3 for τ ∈ {0, · · · ,K − 1} do
4 Sample ξ(t),τ

i and compute
g

(t),τ
i = ∇Fi(x(t),τ

i , ξ
(t),τ
i ).

5 x(t),τ+1 = x(t),τ − ηg(t),τ
i .

6 Compute local model x(t),τ
i from (7).

7 end
8 Perform gossip averaging via (8).

9 v
(t+1)
i =

∑n
j=1 wijv

(t),K
j .

10 end

Based on (4) and (6), it is not difficult to observe that the
former could evaluate the gradient and add momentum simul-
taneously, while the latter applies momentum after evaluating
gradients, which intuitively causes more computation cost.
Meanwhile, leveraging the idea of HB momentum, Nesterov’s
acceleration brings us closer to the minimum (i.e., x∗) by in-
troducing an additional gradient descent rule by adding the
subtracted gradients η(g

(t−1)
i −g

(t)
i ) for general convex cases.

The above two basic momentum-based approaches are firstly
investigated in convex settings, showing their advantage com-
pared with the vanilla SGD. However, there is still a shortage
of a comprehensive analysis of momentum-based SGD under
non-convex conditions in common real-world scenarios.

2.2 D-SUM Algorithm
In this section, we present UMP and its first algorithm D-SUM,
which is employed in decentralized training under non-convex
cases.

Under each epoch, workers first perform K local updates
using different optimizers (i.e., SGD, Adam [Kingma and Ba,
2015], etc.) with or without momentum. In this paper, we
mainly focus on the momentum-based SGD variants, which
are demonstrated in (3), and (5) for example. From a compre-
hensive view, we apply the key update of the stochastic unified
momentum (SUM) is according to


u

(t),τ+1
i = x

(t),τ
i − ηg(t),τ

i

v
(t),τ+1
i, = x

(t),τ
i − αηg(t),τ

i

x
(t),τ+1
i = u

(t),τ+1
i + β

(
v

(t),τ+1
i − v

(t),τ
i

)
,

(7)

where α ≥ 0, and β ∈ [0, 1). a(t),τ
i (ai could be the instance

for xi, ui, vi, and gi) is denoted as the related variables for
worker i after τ local updates in epoch t. After K local steps,

Algorithm 2: GT-DSUM

Input: ∀i, initialize x
(0),0
i = v

(0),0
i = x0,

y
(0)
i = g

(0),0
i = ∇Fi(x(0),0

i , ξ
(0),0
i ), and

d
(−1)
i = 0p; constant parameters
α ≥ 0, β ∈ [0, 1) , η, λ ∈ [0, 1]; ∀i, j,
consensus matrix W with entries wij ; the
number of epochs T , and local steps K.

1 for t ∈ {0, · · · , T − 1} at worker i in parallel do
2 for τ ∈ {0, · · · ,K − 1} do
3 Sample ξ(t),τ

i , compute
g

(t),τ
i = ∇Fi(x(t),τ

i , ξ
(t),τ
i ).

4 m
(t),τ
i = λg

(t),τ
i + (1− λ)y

(t)
i .

5 Substitute g
(t),τ
i with m

(t),τ
i as the local

gradient estimation, perform (7).
6 end
7 Gossip averaging x

(t+1)
i =

∑n
j=1 wijx

(t),K
j .

8 v
(t+1)
i =

∑n
j=1 wijv

(t),K
i .

9 d
(t)
i =

x
(t)
i −x

(t+1)
i

Kη .
10 Gradient tracking based on

y
(t+1)
i =

∑n
j=1 wij

(
y

(t)
j + d

(t)
j − d

(t−1)
j

)
.

11 end

worker i communicates with its neighbors according to the
communication pattern W for exchanging their local model
parameters. We call this synchronization operation as gossip
averaging which can be compactly written as

x
(t+1)
i =

n∑
j=1

wijx
(t),K
j . (8)

To present the difference between vanilla SGD and stochastic
unified momentum in (7), we summarize the training pro-
cedure in Algorithm 1. The specific algorithm instance is
obtained by tuning the hyperparameters α, β, η, and K. We
cover the basic Heavy Ball method (4) and Nesterov’s momen-
tum (6) when setting α = 0, and α = 1, respectively. Besides,
when K = 1, it reduces to the standard mini-batch SGD with
momentum acceleration. Specially, we update the auxiliary
variable sequences {vi} for any worker i by using the same
gossip synchronization as in (8) interpreted as a restart in the
next training epoch to simplify theoretical analysis.

However, there is no theoretical or empirical analysis to
demonstrate that the momentum gets rid of heterogeneity
which degrades the distributed deep training due to the discrep-
ancies between local activation statistics [Hsieh et al., 2020].
Not only taking non-convex functions into account, but we
also incorporate a technique that is agnostic to data heterogene-
ity, gradient tracking into D-SUM to alleviate the impact of
heterogeneous data in decentralized training for better model
generalization in the following.



2.3 GT-DSUM Algorithm
In this subsection, we go further the fact that heterogeneity
hinders the local momentum acceleration [Lin et al., 2021]
and provides our second algorithm in UMP, termed GT-DSUM,
which aims to generalize the consensus model parameters bet-
ter and alleviate the impact of heterogeneous data by applying
the gradient tracking technique.

Taking the discrepancies between workers’ local data parti-
tion into account, GT introduces an extra worker-sided auxil-
iary variable y

(t)
i ,∀i aiming to asymptotically track the aver-

age of∇fi assuming the local accurate gradients are accessible
at any epoch t. Intuitively, GT is agnostic to the heterogeneity,
while y

(t)
i is approximately equivalent to the global gradient

direction along with the epoch t increases. Inspired by this,
we introduce GT into D-SUM, yields GT-DSUM. Concretely,
we normalize the applied gradient m(t),τ

i using the mini-batch
gradient g(t),τ

i , and the y
(t)
i with the dampening factor λ to

highlight the necessity of local updates. The detailed algo-
rithm is described in Algorithm 2. Within local updates, the
model parameters are updated on line 5 with D-SUM but using
a normalization term m

(t),τ
i . Line 7 and 8 are the same as the

basic D-SUM procedures in Algorithm 1. For GT-DSUM, we
apply the difference of two consecutive synchronized mod-
els shown in line 9 to update the gradient tracker variable
in line 10 using the gossip-liked style [Xin et al., 2021b;
Xin et al., 2021a]. Especially, when K = 1, λ = 1 and β = 0,
the Algorithm 2 can be reduced to the original GT algorithm
[Koloskova et al., 2021] instance.

Since Algorithm 1 and 2 employ multiple consensus steps
from parameters exchanging which significantly increase com-
munication cost, we apply the communication compression
technique GRACE [Xu et al., 2021] to trade off between model
generalization and communication overhead in Section 3.

2.4 Theoretical Analysis
In what follows, we present the convergence analysis of two
algorithms in the UMP for general non-convex settings. The
detailed proof is in Appendix. Firstly, we state our assump-
tions throughout the paper.

Assumption 1 (L-smooth). For each function fi : Rd → R
is differentiable, and there exists a constant L > 0 such that
for each x,x′ ∈ Rd : ‖∇f(x)−∇f(x′)‖ ≤ L ‖x− x′‖.
Assumption 2 (Bounded variances). We assume that there
exists σ > 0 and ζ > 0 for any i,x ∈ Rd
such that Eξi∼Di ‖∇Fi(x, ξi)−∇fi(x)‖2 ≤ σ2, and
1
n

∑n
i=1 ‖∇fi(x)−∇f(x)‖2 ≤ ζ2.

Assumptions 1 and 2 are standard in general non-convex ob-
jective literature [Lin et al., 2021; Yu et al., 2019; Koloskova
et al., 2020] in order to ensure the basis of loss functions
continuous and the limited influence of heterogeneity among
distributed scenarios. Noted that when ζ = 0, we have
∇fi(x) = ∇f(x), i.e., it reduces to the case of IID data dis-
tribution across all participating workers. The third common
assumption is to assume the stochastic gradients are uniformly
bounded which is stated as follows.

Assumption 3 (Bounded stochastic gradient). We assume that
the second moment of stochastic gradients is bounded for any
i,x ∈ Rd,Eξi∼Di ‖∇Fi(x, ξi)‖

2 ≤ G2.
Assumption 4. The mixing matrix is doubly stochastic by
Definition 1. Further, define Z̄ = Z 1

n11
> for any matrix Z ∈

Rd×n. Then, the mixing matrix satisfies EW

∥∥ZW − Z̄
∥∥2

F
≤

(1− ρ)
∥∥Z− Z̄

∥∥2

F
.

In Assumption 4, we assume that ρ := 1 −
max {|λ2(W)| , |λn(W)|}2 > 0, where let λi(W) denote
the i-th largest eigenvalue of the mixing matrix W with
−1 ≤ λn(W) ≤ · · · ≤ λ2(W) ≤ λ1(W) ≤ 1. For ex-
ample, the value of ρ is commonly used when ρ = 1 for the
full-mesh (complete) communication topology.

Convergence Analysis of D-SUM
We now state our convergence result for D-SUM (red highlight)
in Algorithm 1. The detailed proof is presented in Appendix B
Theorem 1. Considering problem (1) under the above men-
tioned assumptions, we denote β0 = max {1 + β, 1 + αβ},
for all T ≥ 1 and K ≥ 1 in Algorithm 1 with learning rate
η ≤ ρ

5L and parameters satisfy 4−ρ
2 < 1

β2
0

, we have

1

KT

T−1∑
t=0

K−1∑
τ=0

E
∥∥∥∇f(x̄(t),τ )

∥∥∥2

≤ 2 (f(x0)− f∗)
η̃KT

+
2β2η̂2L2G2

n(1− β)4
+

2L2C1

n2(1−Q1)

+
L

n

(
σ2 + 2η̃G2 + 3σ2η̃

)
,

where η̃ = η
1−β , η̂ = ((1− β)α− 1) η,

Q1 = 2β2
0(1 − ρ

4 ), and C1 = 24η2β2
0ζ

2/ρ +

4 (1− ρ)
(
1 + 2αβ + 2α2β2

)
η2σ2.

Remark 1. Theorem 1 proposes a non-asymptotic conver-
gence bound of D-SUM for general neural network since the
second term i.e., O

(
L2η̂2

n

)
generates from the core SGD step

in (7). Intuitively, there exists an appropriate α for achiev-
ing the optimal training performance in practice, which has
been observed in the single node case [Yan et al., 2018]. In
Section 3, we perform related experiments to confirm this
speculation.

Convergence Analysis of GT-DSUM
Next theorem is the convergence result of GT-DSUM in Algo-
rithm 2 when K = 1 with a fixed communication topology
among workers for convenience, and the detailed proof is in
Appendix C. Based on the GT is addressed with the issue on
how to apply the mini-batch gradient estimates to track the
global optimization descent direction, we define the following
proposition to clarify this illustration.
Proposition 1 (Gradients averaging tracker [Di Lorenzo and
Scutari, 2016]). We assume a loose constraint that the auxil-
iary variables y(t)

i are considered as the tracker of the average
1
n

∑n
j=1∇fj(x

(t)
i ), which means for any epoch t, we have

E
∥∥∥y(t)

i − 1
n

∑n
j=1∇fj(x

(t)
i )
∥∥∥2

≤ ε2.



Theorem 2. Consider problem (1) under the listed specific
assumptions, we denote β0 = max {1 + αβ, 1 + β}, and set
T ≥ 1 in Algorithm 2 without multiple local steps (i.e.,K = 1)
with learning rate η chosen as

0 ≤ η ≤ min

{
ρ

12λ
,

1− β
2

,
3 + β

2
√

3λ(1 + αβ)
,

1 + β

2
√

3λαβ

}
1

L

and parameters satisfy

(1 + αβ)(1− λ) ≤ 1

2
√

2
,

ρ ≤ 48λ2L2

(1− λ)2
,

4β2
0

(
1− ρ

4

)
< 1,

8(1− ρ)(1 + αβ)2 < 1,

we have

1

T

T−1∑
t=0

E
∥∥∥∇f(x̄(t))

∥∥∥2

≤ 2 (f(x0)− f∗)
η̃T

+
8β2η̂2L2

n(1− β)4

(
σ2 + 3ζ2 + 4G2

)
+

12L2

n

(
Q3

T
+

(2−Q2)Q4

(1−Q2)T
+

Vmax

1−Q2
+

C2

1−Q2

)
+

4λ2σ2 + 16ζ2

n
+ 8(1− λ2)ε2 +

12β2η̂2L2ε2

(1− β)4

where η̃ = η
1−β and η̂ = (α − αβ − 1)η. In ad-

dition, C2 =
β2
0(1− ρ2 )
L2 (σ2 + ζ2)(192λ2L2 + ρ),

Q2 , min
{

4β2
0

(
1− ρ

4

)
, 8(1− ρ)(1 + αβ)2

}
,

Q3 = 6(ζ2 + σ2), Q4 = β2
0

(
1− ρ

2

)
(σ2 +

ζ2)
(
48 + ρ

L2 + 192λ2
)
. Furthermore, we define Vmax ,

max0≤t≤T−1

{
1
n

(
E
∥∥X(t) − X̄(t)

∥∥2

F
+ E

∥∥Y(t) − Ȳ(t)
∥∥2

F

)}
.

Remark 2. The fourth term on the right-hand side of the The-
orem 2, i.e., O

(
1
nT +

β2
0

nT + 1
nβ2

0

)
comes from the the addi-

tional GT step for searching global optimal descent estimation
in line 10, Algorithm 2. However, this term can be dominant
when α scales due to its higher order. Clearly, β0 = 1 + αβ

when α > 1, and it performs the convergence rate O
(
β2
0

nT

)
,

leading to a significant deterioration from convergence per-
spective if α rises. Hence, we will show the impact of α in
Section 3.

3 Evaluation
Our main evaluation results demonstrate that D-SUM out-
performs other methods in terms of model accuracy, and
GT-DSUM achieves a higher performance under different lev-
els of non-IID. All experiments are executed in a CPU/GPU
cluster, equipped with Inter(R) Xeon(R) Gold 6126, 4 GTX
2080Ti cards, and 12 Tesla T4 cards. We used Pytorch and
Ray [Moritz et al., 2018] to implement and train our models.

3.1 Experiment Methodology
Baselines. We consider the following three decentralized
methods with momentum, which are described as follows: •
Local SGD [Stich, 2018] periodically averages model param-
eters among all worker nodes. Compared with the vanilla
SGD, each node independently runs the single-node SGD with
Heavy Ball momentum. • QG-DSGDm [Lin et al., 2021]
mimics the global optimization direction and integrates the
quasi-global momentum into local stochastic gradients without
causing extra communication costs. It empirically mitigates
the impact on data heterogeneity. • SlowMo [Wang et al.,
2020] performs a slow, periodical momentum update through
an All-Reduce pattern (model averaging) after multiple SGD
steps. For simplicity, we use the common mini-batch gradient
as the local update direction.
Datasets and models. We study the decentralized behaviors
on both computer vision (CV) and natural language processing
(NLP) tasks, including MNIST, EMNIST, CIFAR10, and AG
NEWS. For all CV tasks, we train different CNN models. For
NLP, we train an RNN, which includes an embedding layer,
and a dropout layer, followed by a dense layer. The model
description is shown in Appendix D.
Hyperparameters. For all algorithms with different bench-
marks, the setting deploys 10 workers by default. In our
experiments, we set the local mini-batch size as 256 for CI-
FAR10 and 128 for the rest, and the number of local updates
is set as K = 10. To illustrate the challenge of data hetero-
geneity in decentralized deep training, we adopt the Dirichlet
distribution value [Lin et al., 2021] to control different levels
of non-IID degree, for the case with non-IID = 0.1, 1, 10;
the smaller the value is, the more likely the workers hold
samples from only one class of labels (i.e., non-IID = 0.1
can be viewed as an extreme data skewness case). Besides,
we set the scalar α, momentum β, normalized parameter λ
as 2, 0.9, and 0.8 respectively by default. Among choices
of W considered in practice, we pre-construct a dynamic
topology changing sequence varying from full-mesh to ring
by the popular Metropolis-Hastings rule [Koloskova et al.,
2021] i.e., wij = wji = min

{
1

deg(i)+1 ,
1

deg(j)+1

}
for any i, j,

wii = 1−
∑n
j=1 wij . The learning rate η is fine-tuned via a

grid search on the set
{

10−2, 10−1.5, 10−1, 10−0.5
}

for each
algorithm and dataset.
Performance Metrics. We examine the effects of different
momentum variants on decentralized deep learning, including

• Model generalization is measured by the proportion be-
tween the amount of the correct data by the model and
that of all data in the test dataset. We report the averaged
model performance of local models over test samples.

• Effect of different hyperparameters is explored by tun-
ing their values to study the properties of D-SUM and
GT-DSUM.

• Scalability is a crucial property while handling tasks in a
distributed situation.

3.2 Evaluation results
Performance with compared baselines. In Table 1, we can
see that our proposed algorithms outperform all other baselines



Table 1: The testing accuracy with different algorithms on various training benchmarks and different degrees of non-IID.

Datasets Algorithms Testing Accuracy (%)

non-IID = 0.1 non-IID = 1 non-IID = 10

MNIST [LeCun et al., 1998]

Local SGD w/ momentum 95.66± 0.21 97.99± 0.03 98.39± 0.03
QG-DSGDm 96.02± 0.19 97.46± 1.36 98.21± 0.04
SlowMo 97.32± 0.02 97.93± 0.07 98.34± 0.06

D-SUM (ours) 97.89± 0.21 98.77± 0.04 98.94± 0.01
GT-DSUM (ours) 97.51± 0.61 98.70± 0.01 98.82± 0.03

EMNIST [Cohen et al., 2017]

Local SGD w/ momentum 45.90± 1.21 36.77± 0.13 38.29± 0.03
QG-DSGDm 46.03± 0.6 46.02± 0.12 36.72± 0.02
SlowMo 45.52± 0.03 37.11± 0.01 37.50± 0.0

D-SUM (ours) 49.68± 0.43 49.75± 0.05 42.50± 0.01
GT-DSUM (ours) 50.49± 0.82 50.25± 0.07 51.87± 0.02

CIFAR10 [Krizhevsky et al., 2009]

Local SGD w/ momentum 22.94± 1.11 42.93± 0.85 52.82± 0.01
QG-DSGDm 26.34± 1.42 49.12± 038 54.03± 0.24
SlowMo 31.06± 1.27 50.46± 0.04 55.50± 0.10

DSUM (ours) 31.16± 1.27 54.34± 0.11 57.59± 1.05
GT-DSUM (ours) 36.16± 0.74 56.95± 1.56 59.34± 1.55

AG NEWS [Zhang et al., 2015]

Local SGD w/ momentum 75.51± 0.44 77.98± 0.39 80.66± 0.02
QG-DSGDm 78.82± 0.31 79.33± 0.38 82.24± 0.02
SlowMo 82.57± 0.03 83.17± 0.01 83.79± 0.01

DSUM (ours) 84.13± 0.55 85.46± 0.31 87.52± 0.04
GT-DSUM (ours) 84.29± 0.37 87.59± 0.18 89.07± 0.04

across different levels of data skewness. For CIFAR10 and AG
NEWS, the performance of our algorithms and benchmarks:
GT-DSUM > D-SUM > SlowMo > QG-DSGDm > Local
SGD w/ momentum. Our proposed algorithms outperform
other benchmarks on model generalization and demonstrate
that GT technique effectively mitigates the negative impact
caused by data heterogeneity. As the non-IID level increases,
GT-DSUM achieves a higher accuracy than Local SGD w/
momentum up to 57.6% on CIFAR10.
Effect of local update. The number of local updates K is one
of the most important parameters since it influences the final
model generalization and training time. As usual, the number
of K is set less than 20 [Reddi et al., 2020; Qu et al., 2022].
Hence, we present the comparison withK ∈ {1, 5, 10, 15, 20}.
We make two observations from the results in Figure 1. Firstly,
our algorithms have better performance than Local SGD
w/ momentum regardless K. For CIFAR10 and AG NEWS,
shown in Figure 1(c), 1(d), we observe that GT-DSUM always
keep competitive when the number of local updates increases.
Among them, it improves accuracy 53.8% than Local SGD
w/ momentum when K = 5. Secondly, we can find see
that the workers may not guarantee to improve the model
generalization substantially by increasing the number of local
updates K. Besides, all benchmarks perform worst when
K = 1, while when K is too large, performance may be
degraded because workers’ local models drift too far apart in
distributed optimizations [Qu et al., 2022].
Effect of β. The momentum term β is further investigated via
grid search on the set {0, 01, 0.1, 0.5, 0.9, 0.99} as different
strategies for handling algorithms. The third set of simula-
tions evaluates the performance of model accuracy on different
β, which are depicted in Figure 2. We have a key observa-
tion from those results. Regardless of datasets or models,
evaluation results with a greater β (e.g., 0.9, 0.99) trend to
outperform with a smaller one (e.g., 0.01, 0.1). In addition,

it can be observed that the testing accuracy monotonically
increases with β on CIFAR10 and AG NEWS. We note that
GT-DSUM reaches a higher model accuracy compared with
Local SGD w/ momentum when β is increasing. Among
all tasks, it improves test accuracy up to 56.8% than Local
SGD w/ momentum.
Sensitivity of α. One of the most important parameters α is
varying from 0 to 15 to analyze its influence on the conver-
gence performance. Two observations are as follows according
to Table 2. Firstly, we note that different optimal values of α
are always found when D-SUM is evaluated on various datasets
with the same level of data heterogeneity (e.g., non-IID = 1).
It is hard and time-consuming to determine the optimum α due
to different characteristics of datasets and models. Secondly,
as α increases, GT-DSUM makes a significant degradation on
model performance. This phenomenon verifies the analysis
detailed in Remark 2, which indicates that GT-DSUM requires
a stricter constraint on α than D-SUM to ensure model validity.
Empirically, there is still a gap between the vulnerable prop-
erty of α to the momentum-based optimizer and the robustness
endowing with a superior performance.
Scalability. We finally train on different numbers of workers
compared with Local SGD w/ momentum when non-IID
= 1. We evaluate this by extending the scale by adjusting the
number of devices n training on 4, 10, 16, and 32 workers.
Results are shown in Figure 3. When the number of participat-
ing workers increases, the advantage of our schemes is readily
apparent since our method GT-DSUM consistently reaches
a higher model accuracy compared to the Local SGD w/
momentum in this non-IID case.

4 Conclusion
In this paper, we propose a unified momentum-based paradigm
UMP with two algorithms D-SUM and GT-DSUM. The former



Table 2: The impact of α for D-SUM and GT-DSUM on the test accuracy with non-IID = 1. “?” indicates non-convergence.

Datasets Methods The test accuracy (%) evaluated on different α under the non-IID = 1 case

α = 0 α = 0.5 α = 1 α = 2 α = 3 α = 4 α = 5 α = 8 α = 10 α = 15

MNIST D-SUM 98.05 98.40 98.57 98.76 98.85 98.76 98.85 99.09 98.87 92.86
GT-DSUM 98.18 98.50 98.70 98.70 98.80 ? ? ? ? ?

EMNIST D-SUM 37.1 43.58 35.58 49.75 55.32 49.80 43.00 48.47 53.04 ?
GT-DSUM 33.72 46.06 47.10 50.25 39.84 ? ? ? ? ?

CIFAR10 D-SUM 47.10 50.85 51.68 50.32 54.83 51.10 51.53 50.68 ? ?
GT-DSUM 45.98 49.80 50.55 54.77 57.58 54.43 ? ? ? ?

AG NEWS D-SUM 79.16 81.78 83.72 85.46 86.38 86.36 88.20 87.07 88.82 88.56
GT-DSUM 78.90 83.12 85.34 87.59 86.89 77.67 ? ? ? ?

(a) LeNet over MNIST (b) CNN over EMNIST (c) LeNet over CIFAR10 (d) RNN over AG NEWS

Figure 1: Impact on the number of local updates K on the convergence when momentum β = 0.9 under the non-IID = 1 case.

(a) LeNet over MNIST (b) CNN over EMNIST (c) LeNet over CIFAR10 (d) RNN over AG NEWS

Figure 2: Impact on the momentum β on the convergence when the number of local update K = 10 under the non-IID = 1 case.

(a) LeNet over MNIST (b) CNN over EMNIST (c) LeNet over CIFAR10 (d) RNN over AG NEWS

Figure 3: Impact on the momentum world size on the convergence when the number of local update K = 10 under the non-IID = 1 case.

obtains good model generalization, dealing with the validity
under non-convex cases, while the latter is further developed
by applying the GT technique to eliminate the negative impact
of heterogeneous data. By deriving the convergence of general

non-convex settings, these algorithms achieve competitive per-
formance closely related to a critical parameter α. Extensive
experimental results show our UMP leads to at most 57.6%
increase in improvement of accuracy.
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A Prerequisite
For giving the theoretical analysis of the convergence results of all proposed algorithms, we first present some preliminary facts
as follows:

• Fact 1: For any random vector a, it holds for E ‖a‖2 = E ‖a− E [a]‖2 + ‖E [a]‖2.

• Fact 2: For any a > 0, we have ±〈a,b〉 ≤ 1
2a ‖a‖

2
+ a

2 ‖b‖
2.

• Fact 3: 〈a,b〉 = 1
2 ‖a‖

2
+ 1

2 ‖b‖
2 − 1

2 ‖a− b‖2.

• Fact 4: For given two vectors a and b,∀a > 0, we have ‖a + b‖2 ≤ (1 + a) ‖a‖2 + (1 + 1
a ) ‖b‖2.

• Fact 5: For arbitrary set of n vectors {ai}ni=1, we have ‖
∑n
i=1 ai‖

2 ≤ n
∑n
i=1 ‖ai‖

2.

• Fact 6: Suppose {bi}ni=1, and {ai}ni=1 are a set of non-negative scalars and vectors, respectively. We define s =∑n
i=1 bi. Then according to Jensen’s inequality, we have ‖

∑n
i=1 biai‖

2
= s2

∥∥∑n
i=1

bi
s ai
∥∥2 ≤ s2 ·

∑n
i=1

bi
s ‖ai‖

2
=

s ·
∑n
i=1 bi ‖ai‖

2.
The inequalities of Fact 4 also hold for the sum of two matrices A,B in Frobenius norm.
Proposition 2. One step of gossip averaging with the mixing matrix W defined in the Definition 1 preserves the averaging of
the iterates, i.e., XW 11>

n = X11>

n .
Note our schemes have the following observation on the role of momentum, we now state a basic lemma:

Lemma 1. Let introduce an auxiliary variable y
(t),τ
i = β

1−β

(
x

(t),τ
i − v

(t),τ
i

)
, we define z

(t),τ
i , x

(t),τ
i + y

(t),τ
i and c

(t),τ
i ,

1−β
β y

(t),τ
i . Then we have

z
(t),τ+1
i = z

(t),τ
i − η

1− β
g

(t),τ
i (9)

and
c

(t),τ+1
i = βc

(t),τ
i + (α− αβ − 1) ηg

(t),τ
i . (10)

Proof. For (9), starting from the definition of v(t),τ
i in (7),

z
(t),τ+1
i =

1

1− β
x

(t),τ+1
i − β

1− β

(
x

(t),τ
i − αηg(t),τ

i

)
= x

(t),τ
i +

β

1− β

(
x

(t),τ
i − x

(t),τ−1
i + αηg

(t),τ−1
i

)
− η

1− β
g

(t),τ
i

= x
(t),τ
i + y

(t),τ
i − η

1− β
g

(t),τ
i .

Similarly for (10),

c
(t),τ+1
i = x(t),τ − ηg(t),τ

i − x
(t),τ
i + αηg

(t),τ
i + β

(
x(t),τ − αηg(t),τ

i − x(t),τ−1 + αηg
(t),τ−1
i

)
= β

(
x

(t),τ
i − v

(t),τ
i

)
+ (α− αβ − 1) ηg

(t),τ
i .

(11)

B Proof of D-SUM
Since the smoothness of f , it follows that

Et,τf(z̄(t),τ+1)− f(z̄(t),τ ) ≤ − η

1− β

〈
∇f(z̄(t),τ ),Et,τ

[
ḡ(t),τ

]〉
+

η2L

2(1− β)2
Et,τ

∥∥∥ḡ(t),τ
∥∥∥2

, (12)

where Et,τ denotes a conditional expectation over the randomness in the τ -th local updates under epoch t, conditioned on all
past random variables. According to the described factors , on the right hand side for (12):

−
〈
∇f(z̄(t),τ ),Et,τ

[
ḡ(t),τ

]〉
(a)

≤ 1

2a

∥∥∥∇f(z̄(t),τ )−∇f(x̄(t),τ )
∥∥∥2

− 1− a
2

∥∥∥Et,τ [ḡ(t),τ
]∥∥∥2

− 1

2

∥∥∥∇f(x̄(t),τ )
∥∥∥2

+
1

2

∥∥∥∇f(x̄(t),τ )− Et,τ
[
ḡ(t),τ

]∥∥∥2

(b)

≤ L2

2a

∥∥∥z̄(t),τ − x̄(t),τ
∥∥∥2

− 1− a
2

∥∥∥Et,τ [ḡ(t),τ
]∥∥∥2

− 1

2

∥∥∥∇f(x̄(t),τ )
∥∥∥2

+
1

2

∥∥∥∇f(x̄(t),τ )− Et,τ
[
ḡ(t),τ

]∥∥∥2

,

(13)



where (a) follows from the combination of Fact 2 and Fact 3; (b) follows by the smoothness in Assumption 1. Since we assume
that for any i in the initial stage x

(0)
i = v

(0)
i = 0, based on the definition of z(t),τ , and y(t),τ , it can be shown by averaging∥∥∥z̄(t),τ − x̄(t),τ

∥∥∥2

=
β2

(1− β)2
‖x̄(t),τ − v̄(t),τ︸ ︷︷ ︸

c̄(t),τ

‖2. (14)

Applying the recursion of (10) in Lemma 1,∥∥∥z̄(t),τ − x̄(t),τ
∥∥∥2 (a)

=
∥∥z̄l − x̄l

∥∥2

(b)
=

β2η̂2s2

(1− β)2

∥∥∥∥∥∥
l−1∑
j=0

βl−1−j

s
ḡj

∥∥∥∥∥∥
2

(c)

≤ β2η̂2s2

(1− β)2

l−1∑
j=0

βl−1−j

s

∥∥ḡj∥∥2

(d)

≤ β2η̂2

(1− β)3

l−1∑
j=0

βl−1−j ∥∥ḡj∥∥2
,

(15)

where we omit the aspects of epoch (i.e., t), local updates (i.e., τ ) and replace them with a more general term: iteration (i.e., l) in
(a); we define s =

∑l−1
j=0 β

l−1−j in (b); (c) follows by the Fact 6 and Jensen’s inequality; (d) follows because s = 1−βl
1−β < 1

1−β
since β ∈ [0, 1). Substituting (15) into (13), and we set a = 1

2 , which yields

−
〈
∇f(z̄(t),τ ),Et,τ

[
ḡ(t),τ

]〉
≤ 1

2

∥∥∥∇f(x̄(t),τ )− Et,τ
[
ḡ(t),τ

]∥∥∥2

+
β2η̂2L2

(1− β)3

l−1∑
j=0

βl−1−j ∥∥ḡl∥∥2 − 1

2

∥∥∥∇f(x̄(t),τ )
∥∥∥2

− 1

4

∥∥∥Et,τ [ḡ(t),τ
]∥∥∥2

.
(16)

Moreover, for the second term in (12), we apply the identified Fact 1 for any vector and Assumption 2, then

Et,τ
[
‖ḡt,τ‖2

]
≤
∥∥Et,τ [ḡt,τ ]

∥∥2
+
σ2

n
(17)

Then plug (16) and the above inequality into (12),

Et,τf(z̄(t),τ+1)− f(z̄(t),τ ) ≤ η̃2σ2L

2n
+

(
η̃2L

2
− η̃

4

)∥∥∥Et,τ [ḡ(t),τ
]∥∥∥2

− η̃

2

∥∥∥∇f(x̄(t),τ )
∥∥∥2

+
η̃

2

∥∥∥∇f(x̄(t),τ )− Et,τ
[
ḡ(t),τ

]∥∥∥2

+
β2η̂2L2

(1− β)3

l−1∑
j=0

βl−1−j ∥∥ḡj∥∥2
,

(18)

where η̃ = η
1−β . Taking the total expectation, and summing from τ = 0 to K − 1, we have

E
[
f(z̄(t),K)− f(z̄(t),0)

]
= E

[
f(z̄(t+1),0)− f(z̄(t),0)

]
≤ − η̃

2

K−1∑
τ=0

E
∥∥∥∇f(x̄(t),τ )

∥∥∥2
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(
η̃2L

2
− η̃

4

)K−1∑
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E
∥∥∥Et,τ [ḡ(t),τ

]∥∥∥2

+
η̃

2

K−1∑
τ=0

E
∥∥∥∇f(x̄(t),τ )− Et,τ

[
ḡ(t),τ

]∥∥∥2

+
η̃2Kσ2L

2n

+
β2η̂2L2

(1− β)3

K−1∑
τ=0

E

 l−1∑
j=0

βl−1−j ∥∥ḡj∥∥2

 .
(19)



Summing from t = 0 to T − 1 and dividing both side by KT ,

1

KT
E
[
f(z̄(T ),0)− f(z̄(0),0)

]
≤ − η̃

2KT

T−1∑
t=0

K−1∑
τ=0

E
∥∥∥∇f(x̄(t),τ )

∥∥∥2

+
η̃2σ2L

2n

+

(
η̃2L

2KT
− η̃

4KT

) T−1∑
t=0

K−1∑
τ=0

E
∥∥∥Et,τ [ḡ(t),τ

]∥∥∥2

︸ ︷︷ ︸
T1

+
η̃

2KT

T−1∑
t=0

K−1∑
τ=0

E
∥∥∥∇f(x̄(t),τ )− Et,τ

[
ḡ(t),τ

]∥∥∥2

︸ ︷︷ ︸
T2

+
β2η̂2L2

(1− β)3KT

KT−1∑
l=1

E

 l−1∑
j=0

βl−1−j ∥∥ḡj∥∥2


︸ ︷︷ ︸

T3

.

(20)

We now bound the upper bound of T1:

T−1∑
t=0

K−1∑
τ=0

E
∥∥∥Et,τ [ḡ(t),τ

]∥∥∥2

=

T−1∑
t=0

K−1∑
τ=0

E
∥∥∥Et,τ [ḡ(t),τ

]
± ḡ(t),τ

∥∥∥2

(a)

≤ 2

T−1∑
t=0

K−1∑
τ=0

E
∥∥∥Et,τ [ḡ(t),τ

]
− ḡ(t),τ

∥∥∥2

+ 2

T−1∑
t=0

K−1∑
τ=0

E
∥∥∥ḡ(t),τ

∥∥∥2

(b)

≤ 2KTσ2

n
+ 2

T−1∑
t=0

K−1∑
τ=0

E
∥∥∥ḡ(t),τ

∥∥∥2

,

(21)

where (a) follows because of the Fact 4 by setting a = 1; (b) follows from the Assumption 2. Then we estimate the T2:

T−1∑
t=0

K−1∑
τ=0

E
∥∥∥∇f(x̄(t),τ )− Et,τ

[
ḡ(t),τ

]∥∥∥2

=

T−1∑
t=0

K−1∑
τ=0

E

∥∥∥∥∥ 1

n

n∑
i=1

∇f(x̄(t),τ )− 1

n

n∑
i=1

∇fi(x(t),τ
i )

∥∥∥∥∥
2

(a)

≤ 1

n2

T−1∑
t=0

K−1∑
τ=0

n∑
i=1

E
∥∥∥∇f(x̄(t),τ )−∇fi(x(t),τ

i )±∇fi(x̄(t),τ )
∥∥∥2

(b)

≤ 2

n2

T−1∑
t=0

K−1∑
τ=0

n∑
i=1

(
E
∥∥∥∇f(x̄(t),τ )−∇fi(x̄(t),τ )

∥∥∥2

+ E
∥∥∥∇fi(x̄(t),τ )−∇fi(x(t),τ

i )
∥∥∥2
)

(c)

≤ 2KTζ2

n
+

2L2

n2

T−1∑
t=0

K−1∑
τ=0

n∑
i=1

E
∥∥∥x̄(t),τ − x

(t),τ
i

∥∥∥2

,

(22)
where (a) follows from the complexity of ‖·‖2 and Jensen’s inequality; (b) follows by the Fact 4 ; (c) follows by applying
1
n

∑n
i=1 E ‖∇fi(x)−∇f(x)‖2 ≤ ζ2 in Assumption 2. Finally, we bound the term T3:

KT−1∑
l=1

E

 l−1∑
j=0

βl−1−j ∥∥ḡj∥∥2

 ≤ KT−2∑
j=0

E

∥∥ḡj∥∥2
KT−1∑
u=j+1

βu−1−j


(a)

≤ 1

1− β

KT−2∑
j=0

E
∥∥ḡj∥∥2

≤ 1

1− β

KT−1∑
j=0

E
∥∥ḡj∥∥2

,

(23)



where (a) follows by noting that
∑TK−1
u=j+1 β

u−1−j = 1−βTK−1−j

1−β ≤ 1
1−β . Substitute (21), (22), and (23) into (20), which yields

1

KT
E
[
f(z̄(T ),0)− f(z̄(0),0)

]
≤ − η̃

2KT

T−1∑
t=0

K−1∑
τ=0

E
∥∥∥∇f(x̄(t),τ )

∥∥∥2

+
η̃2σ2L

2n
+

(
η̃2L

KT
− η̃

2KT

) T−1∑
t=0

K−1∑
τ=0

E
∥∥∥ḡ(t),τ

∥∥∥2

+
η̃L2

KTn2

T−1∑
t=0

K−1∑
τ=0

n∑
i=1

E
∥∥∥x̄(t),τ − x

(t),τ
i

∥∥∥2

+
β2η̂2L2

(1− β)4KT

KT−1∑
j=0

E
∥∥ḡj∥∥2

+
η̃ζ2

n
+
η̃σ2

2n
(3η̃L− 1) .

(24)
Using that

∑n
i=1 ‖ai‖

2
= ‖A‖2F where A := [a1, · · · ,an], we now try to bound the consensus error between the nodes’

parameters and its averaging. We first reiterate the update scheme of (7) in a matrix form regardless of epoch t and local update
τ and denote l as the index of update iteration:

X(l+1) = X(l) − ηG(l) + β
(
X(l) − αηG(l) −X(l−1) + αηG(l−1)

)
. (25)

For averaged parameters which are performed model averaging across all nodes, we can also simply the updates since W is
doubly stochastic, which is described as follows:

x̄(l+1) = x̄(l) − ηḡ(l) + β
(
x̄(l) − αηḡ(l) − x̄(l−1) + αηḡ(l−1)

)
. (26)

According to the above two equations, we have

1

n
E
∥∥∥X(l+1) − X̄(l+1)

∥∥∥2

F
=

1

n
E
∥∥∥X(l) − ηG(l) + β

(
X(l) − αηG(l) −X(l−1) + αηG(l−1)

)
−
(
X̄(l) − ηḠ(l) + β

(
X̄(l) − αηḠ(l) − X̄(l−1) + αηḠ(l−1)

))∥∥∥2

F

(a)

≤ 1− ρ
n

E
∥∥∥(1 + β)

(
X(l) − X̄(l)

)
− β

(
X(l−1) − X̄(l−1)

)
− (1 + αβ) η

(
G(l) − Ḡ(l)

)
+αβη

(
G(l−1) − Ḡ(l−1)

)∥∥∥2

F

(b)

≤ 1− ρ
n

E
∥∥∥(1 + β)

(
X(l) − X̄(l)

)
− β

(
X(l−1) − X̄(l−1)

)
− (1 + αβ) η

(
E
[
G(l)

]
− E

[
Ḡ(l)

])
+αβη

(
E
[
G(l−1)

]
− E

[
Ḡ(l−1)

])∥∥∥2

F
+ 4 (1− ρ)

(
1 + 2αβ + 2α2β2

)
η2σ2︸ ︷︷ ︸

:=∆

(c)

≤ 2(1− ρ)

n
E
∥∥∥(1 + β)

(
X(l) − X̄(l)

)
− (1 + αβ) η

(
E
[
G(l)

]
− E

[
Ḡ(l)

])∥∥∥2

F

+
2(1− ρ)

n
E
∥∥∥β (X(l−1) − X̄(l−1)

)
− αβη

(
E
[
G(l−1)

]
− E

[
Ḡ(l−1)

])∥∥∥2

F
+ ∆,

(27)
where (a) follows by applying Assumption 4; (b) follows because we add the expectation term of G and Ḡ, so that G− Ḡ =
(G− E [G])−

(
Ḡ− E

[
Ḡ
])

+
(
E [G]− E

[
Ḡ
])

, which satisfies the condition of Assumption 2 generalizing the constant ∆;
(c) follows from the Fact 4 by setting a = 1. Here we use the contractivity of the matrix W and Young’s inequality. We can



further proceed as

1

n
E
∥∥∥X(l+1) − X̄(l+1)

∥∥∥2

F

(a)

≤ 2(1− ρ)(1 + β)2

n

(
1 +

ρ

2

)
E
∥∥∥X(l) − X̄(l)

∥∥∥2

F
+

2(1− ρ)(1 + αβ)2η2

n

(
1 +

2

ρ

)
E
∥∥∥E [G(l)

]
− E

[
Ḡ(l)

]∥∥∥2

F

+
2(1− ρ)β2

n

(
1 +

ρ

2

)
E
∥∥∥X(l−1) − X̄(l−1)

∥∥∥2

F
+

2(1− ρ)

n
α2β2η2

(
1 +

2

ρ

)
E
∥∥∥E [G(l−1)

]
− E

[
Ḡ(l−1)

]∥∥∥2

F
+ ∆

≤ 2(1− ρ)(1 + β)2

n

(
1 +

ρ

2

)
E
∥∥∥X(l) − X̄(l)

∥∥∥2

F
+

2(1− ρ)(1 + αβ)2η2

n

(
1 +

2

ρ

)
E
∥∥∥E [G(l)

]
−∇f(X̄l)

∥∥∥2

F

+
2(1− ρ)β2

n

(
1 +

ρ

2

)
E
∥∥∥X(l−1) − X̄(l−1)

∥∥∥2

F
+

2(1− ρ)

n
α2β2η2

(
1 +

2

ρ

)
E
∥∥∥E [G(l−1)

]
−∇f(X̄l−1)

∥∥∥2

F
+ ∆

=
2(1− ρ)(1 + β)2

n

(
1 +

ρ

2

)
E
∥∥∥X(l) − X̄(l)

∥∥∥2

F
+

2(1− ρ)(1 + αβ)2η2

n

(
1 +

2

ρ

) n∑
i=1

E
∥∥∥∇fi(x(l)

i )±∇fi(x̄(l))−∇f(x̄(l))
∥∥∥2

+ ∆

+
2(1− ρ)β2

n

(
1 +

ρ

2

)
E
∥∥∥X(l−1) − X̄(l−1)

∥∥∥2

F
+

2(1− ρ)

n
α2β2η2

(
1 +

2

ρ

) n∑
i=1

E
∥∥∥∇fi(x(l−1)

i )±∇fi(x̄(l−1))−∇f(x̄(l−1))
∥∥∥2

(b)

≤
2(1− ρ

2 )

n
(1 + β)

2
∥∥∥X(l) − X̄(l)

∥∥∥2

F
+

12η2L2

ρn
(1 + αβ)

2
n∑
i=1

E
∥∥∥x(l)

i − x̄(l)
∥∥∥2

+
12η2(1 + αβ)2ζ2

ρ

+
2(1− ρ

2 )β2

n
E
∥∥∥X(l−1) − X̄(l−1)

∥∥∥2

F
+

12η2L2

ρn
α2β2

n∑
i=1

E
∥∥∥x(l−1)

i − x̄(l−1)
∥∥∥2

+
12η2α2β2ζ2

ρ
+ ∆,

(28)
where (a) follows by applying the Fact 4 and sets a = ρ

2 ; (b) follows because positive ρ ≤ 1, and using Fact 4 as well as

Assumption 2. By choosing the learning rate η ≤ ρ
5L ensures that 6η2L2 ≤ ρ2

4 , we have two cases since a ≥ 0

• Case one: α ∈ [0, 1), we define β̂ = 1 + β, then

1

n
E
∥∥∥X(l+1) − X̄(l+1)

∥∥∥2

F
≤

2β̂2
(
1− ρ

4

)
n

E
∥∥∥X(l) − X̄(l)

∥∥∥2

F
+

2β̂2
(
1− ρ

4

)
n

E
∥∥∥X(l−1) − X̄(l−1)

∥∥∥2

F
+

24η2β̂2ζ2

ρ
+ ∆.

• Case two: α ∈ [1,∞), we define β̃ = 1 + αβ, just replace β̂ term by β̃.

Here we denote β0 , max
{
β̂, β̃

}
. Since x

(0)
i = x̄(0) = x0, we get 1

nE‖X
(0) − X̄(0)‖2F = 0. Furthermore, we can easily

obtain 1
nE‖X

(1)− X̄(1)‖2F = 24η2β2
0ζ

2/ρ+ ∆. We observe that when l ≥ 1, 1
nE‖X

(l)− X̄(l)‖2F ≤
C1l

n(1−Q1) , where we denote
Q1 = 2β2

0(1 − ρ
4 ) ensuring that Q1 < 1, and C1 = 24η2β2

0ζ
2/ρ + ∆. Substituting the above inequality into (24), for any ḡ,

E ‖ḡ‖2 ≤ G2

n by Assumption 3, and z̄(0) = x̄(0) = x0 by definition, rearranging terms yields the Theorem 1.

C Proof of GT-DSUM
Next, we provide a rigorous proof of GT-DSUM under non-convexity. Here we consider a special case where K = 1 with a fixed
consensus matrix. Then we construct the matrix form of Algorithm 2 as follows:

M(t) = λG(t) + (1− λ)Y(t)

X(t+1) = W
(

(1 + β)X(t) − βWX(t−1) − (1 + αβ) ηM(t) + αβηWM(t−1)
)

Y(t+1) = W

(
Y(t) +

2X(t) −X(t+1) −X(t−1)

η

)
.

(29)

Proof sketch. we try to bound the consensus distance (Lemma 2) between the worker’s parameters and its averaging. During
this step, we perform a propagation step which brings the parameters of the workers closer to each other. Moreover, we also
perform additional gradient tracking (Lemma 3) and their accumulation steps (Lemma 4) which move the distance away from
each other. After that, we could immediately apply Lemma 4 into the the single-step update progress in (45).



Lemma 2 (Consensus distance change). Given above assumptions in Section 2, let β0 = max {1 + αβ, 1 + β}, and the update
rule generated by (29) using learning rate satisfy η ≤ ρ

12λL when t ≥ 1,

1

n
E
∥∥∥X(t+1) − X̄(t+1)

∥∥∥2

F
≤

2
(
1− ρ

4

)
β2

0

n
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

2
(
1− ρ

4

)
(β0 − 1)

2

n
E
∥∥∥X(t−1) − X̄(t−1)

∥∥∥2

F

+
ρ
(
1− ρ

2

)
(1 + αβ)

2
(1− λ)

2

12λ2L2n
E
∥∥∥Y(t) − Ȳ(t)

∥∥∥2

F
+
ρ
(
1− ρ

2

)
α2β2 (1− λ)

2

12λ2L2n
E
∥∥∥Y(t−1) − Ȳ(t−1)

∥∥∥2

F

+
ρ
(
1− ρ

2

)
nL2

(1 + αβ)
2 (
σ2 + ζ2

)
.

Proof. Starting from (29) and all consensus matrices satisfy Proposition 2, we have

1

n
E
∥∥∥X(t+1) − X̄(t+1)

∥∥∥2

F

(a)

≤ 1− ρ
n

E
∥∥∥(1 + β)

(
X(t) − X̄(t)

)
− β

(
WX(t−1) − X̄(t−1)

)
− (1 + αβ)η

(
M(t) − M̄(t)

)
+αβη

(
WM(t−1) − M̄(t−1)

)∥∥∥2

F

(b)

≤ 1− ρ
n

(
1 +

ρ

2

)
E
∥∥∥(1 + β)

(
X(t) − X̄(t)

)
− β

(
WX(t−1) − X̄(t−1)

)∥∥∥2

F

+
1− ρ
n

(
1 +

2

ρ

)
E
∥∥∥(1 + αβ)η

(
M(t) − M̄(t)

)
− αβη

(
WX(t−1) − X̄(t−1)

)∥∥∥2

F

(c)

≤ 2(1− ρ)(1 + β)2

n

(
1 +

ρ

2

)
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

2(1− ρ)2β2

n

(
1 +

2

ρ

)
E
∥∥∥X(t−1) − X̄(t−1)

∥∥∥2

F

+
2(1− ρ)(1 + αβ)2η2

n

(
1 +

ρ

2

)
E
∥∥∥M(t) − M̄(t)

∥∥∥2

F

+
2(1− ρ)2α2β2η2

n

(
1 +

2

ρ

)
E
∥∥∥M(t−1) − M̄(t−1)

∥∥∥2

F
,

(30)
where (a) follows by applying Assumption 4; (b), (c) follows by the Fact 4 by choosing ρ/2, and 1 respectively. Then we try to
bound the distance between M(t) and M̄(t),

1

n
E
∥∥∥M(t) − M̄(t)

∥∥∥2

F

(a)
=

1

n
E
∥∥∥λ(G(t) − Ḡ(t)

)
+ (1− λ)

(
Y(t) − Ȳ(t)

)∥∥∥2

F

(b)

≤ 2λ2

n
E
∥∥∥G(t) − Ḡ(t)

∥∥∥2

F
+

2(1− λ)2

n
E
∥∥∥Y(t) − Ȳ(t)

∥∥∥2

F

=
2λ2

n
E
∥∥∥G(t) ± Et

[
G(t)

]
− Ḡ(t) ± Et

[
Ḡ(t)

]∥∥∥2

F
+

2(1− λ)2

n
E
∥∥∥Y(t) − Ȳ(t)

∥∥∥2

F

(c)

≤ 12λ2σ2 +
6λ2

n
E
∥∥∥Et [G(t)

]
− Et

[
Ḡ(t)

]∥∥∥2

F
+

2(1− λ)2

n
E
∥∥∥Y(t) − Ȳ(t)

∥∥∥2

F

≤ 6λ2

n

n∑
i=1

E
∥∥∥∇fi(x(t)

i )±∇fi(x̄(t))−∇f(x̄(t))
∥∥∥2

+ 12λ2σ2 +
2(1− λ)2

n
E
∥∥∥Y(t) − Ȳ(t)

∥∥∥2

F

(d)

≤ 12λ2L2

n

n∑
i=1

E
∥∥∥x(t)

i − x̄(t)
∥∥∥2

+ 12λ2
(
σ2 + ζ2

)
+

2(1− λ)2

n
E
∥∥∥Y(t) − Ȳ(t)

∥∥∥2

F
,

(31)

where (a) follows from (29); (b) follows by applying the Fact 4; (c) follows by Fact 5 with the vector set{
G− E [G] ,E

[
Ḡ
]
− Ḡ,E [G]− E

[
Ḡ
]}

; (d) follows from the Fact 4 and Assumption 2. Since the positive scalar ρ ≤ 1,
substitute (31) into (30) on the condition that η ≤ ρ

12λL ensures that 36λ2L2η2 ≤ ρ2/4, completing the proof.

Lemma 3 (Gradient tracker distance change). Given the assumptions in Section 2, when t ≥ 1, let the learning rate satisfy
η ≤ min

{
3+β

2
√

3λL(1+αβ)
, 1+β

2
√

3λLαβ

}
and follows from the assumption of hyperparameter that (1 + αβ)(1− λ) ≤ 1

2
√

2
, which



yields

1

n
E
∥∥∥Y(t+1) − Ȳ(t+1)

∥∥∥2

F
≤ 16(1− ρ)(3 + β)2

nη2
E
∥∥∥X(t) − X̄(t)

∥∥∥2

F
+

16(1− ρ)(1 + β)2

nη2
E
∥∥∥X(t−1) − X̄(t−1)

∥∥∥2

F

+
4(1− ρ)

n
E
∥∥∥Y(t) − Ȳ(t)

∥∥∥2

F
+

2(1− ρ)

n
E
∥∥∥Y(t−1) − Ȳ(t−1)

∥∥∥2

F

+
192λ2

n
(1− ρ)(1 + αβ)2(σ2 + ζ2).

Proof. According to the update scheme in (29), we can get

X(t) −X(t+1) = (I− (1 + β)W)X(t) + βW2X(t−1) + (1 + αβ) ηWM(t) − αβηW2M(t−1), (32)

and

2X(t) −X(t+1) −X(t−1) = (2I− (1 + β)W)X(t) +
(
βW2 − I

)
X(t−1) + (1 + αβ) ηWM(t) − αβηW2M(t−1). (33)

Then, based on (33) and (29), we have

1

n
E
∥∥∥Y(t+1) − Ȳ(t+1)
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F
,

(34)
The inequality holds for Assumption 4 and Fact 4. Since W ≺ I, −I ≺W as well as the product of two doubly stochastic
matrices is still doubly stochastic, we have 2I− (1 + β)W ≺ (3 + β)I; βW2 − I ≺ (β + 1)W2 ≺ (β + 1)I, we can continue
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n
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F
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(35)

where the inequality follows by applying the basic inequality
∥∥∥∑j

i=1 Ai

∥∥∥2

F
≤ j

∑j
i=1 ‖Ai‖2F for matrices of the same dimension

with j = 4. Plug (31) into(35) under the condition that (i) η ≤ 3+β

2
√

3λL(1+αβ)
; (ii) η ≤ 1+β

2
√

3λLαβ
; (iii) (1 + αβ)(1− λ) ≤ 1

2
√

2

for ease of presentation.

Lemma 4 (Distance step improvement). When t ≥ 1, using learning rate η ≥ max
{

2
√

2(3+β)
β0

, 2
√

2(1+β)
β0−1

}
and ρ ≤ 48λ2L2

(1−λ)2 ,
satisfy
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Proof. Adding the results of Lemma 2 and 3 gives the result following from our assumption of learning rate η and the
hyperparameters ρ, λ, L.

We now state our convergence results for GT-DSUM in Algorithm 2. Similar to proof process of Theorem 1, with the
smoothness of f ,

Ef(z̄(t+1)) ≤ Ef(z̄(t)) + η̃L2E
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(36)



where η̃ = η
1−β . For term T1, we adopt the same derivation process as (15), which is also suitable for the circumstance with no

multiple local updates, indicating that
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3
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where η̂ = ((1− β)α− 1)η. We can further obtain that
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(38)

where (a) follows from (29) by model averaging; we omit the coefficients in (b); (c) follows by applying the Fact 4. For T4,
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where (a) follows the definition of ḡi; (b) follows by the Jensen’s inequality and the Fact 4; and (c) follows because Assumption 2
and 3. Estimate T5,
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where (a) follows because ȳ(t) = 1

n

∑n
i=1 y

(t)
i ; (b) follows by applying the Fact 5; (c) follows by the Proposition 1 and

Assumption 2. Substituting (37), (38), (39), and (40) into the T1 in (36), which yields
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We can omit T2 in (36) on the assumption that η ≤ 1−β
2L ensures that η̃

2L
2 −
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4 < 0. Then we estimate the bound of T3 in (36),

E
∥∥∥∇f(x̄(t))− m̄(t)

∥∥∥2 (a)
= E

∥∥∥λ(∇f(x̄(t))− ḡ(t)
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(42)
where (a) is follows by the definition of m̄(t); (b) follows because of the Fact 4; (c) and (d) follow by applying the Fact 4,
Jensen’s inequality and Assumption 2. For T6, we can estimate as follows
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where (a) follows from the Fact 4; (b) follows because the Assumption 1 for the first term on the right hand of the inequality;
(c) follows by applying the Fact 4 with Jensen’s inequality; (d) follows because the Assumption 2 and Proposition 1. Plugging
(43) into (42) yields
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Plugging (41) and (44) into (36), which yields
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the last inequality holds because
∑t−1
l=0 β

t−1−l ≤ 1
1−β , and we add the non-negative term E
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Proposition 3. Let {Vt}t≥0 be a non-negative sequence and C2 ≥ 0 be some constant such that ∀t ≥ 1, Vt+1 ≤ Q2Vt +

Q2Vt−1 + C2, where Q2 ∈ (0, 1). Then the following inequality holds if T ≥ 1,
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Summing t over from 0 to T − 1,
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where Vmax = max0≤t≤T−1 {Vt}.

Summing (45) over t from 0 to T − 1, then dividing both sides by 2/η̃ and rearranging terms. Finally, applying Lemma 4 to

Proposition 3. Concretely, we consider C2 =
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. The proof is completed.

D Experimental Setup

D.1 Dataset and Model Description

MNIST is a 10-class handwritten digits image classification dataset with 70, 000 28× 28 examples, 60, 000 of which are training
datasets, the remaining 10, 000 are test datasets. Its extended version, EMNIST consists of images of digits and upper and lower
case English characters, which includes 62 total classes. CIFAR10 is labeled subsets of the 80 million images dataset, sharing
the same 60, 000 input images with 10 unique labels. For NLP, AG NEWS is a 4-class classification dataset on categorized news
articles, containing 120, 000 training samples and 7, 600 testing samples. An overall description is given in Table 3.

Table 3: Datasets and Models

Dataset Task Training samples Testing samples Classes Model

MNIST [LeCun et al., 1998] Handwritten character recognition (CV) 60, 000 10, 000 10 LeNet described in Table 4
EMNIST [Cohen et al., 2017] Handwritten character recognition (CV) 731, 668 82, 587 62 CNN described in Table 5

CIFAR10 [Krizhevsky et al., 2009] Image classification (CV) 50, 000 10, 000 10 LeNet described in Table 4
AG NEWS [Zhang et al., 2015] Text classification (NLP) 120, 000 7, 600 4 RNN described in Table 6



Table 4: LeNet model on MNIST and CIFAR10.

Layer Output Shape Hyperparameters Activation

CONV2D (28, 28, 6) kernel size = 5 ReLU
MAXPOOL2D (14, 14, 6) pool size = 2

CON2D (10, 10, 16) kernel size = 5 ReLU
MAXPOOL2D (5, 5, 16) pool size = 2

FLATTEN 400
DENSE 120
DENSE 84

DROPOUT 84 p = 0.5
DENSE 10

Table 5: CNN model on EMNIST.

Layer Output Shape Hyperparameters Activation

CONV2D (26, 26, 32) kernel size = 3, strides = 1
CONV2D (24, 24, 64) kernel size = 3, strides = 1 ReLU

MAXPOOL2D (12, 12, 64) pool size = 2
DROPOUT (12, 12, 64) p = 0.25
FLATTEN 9, 216
DENSE 128

DROPOUT 128 p = 0.5
DENSE 62 softmax

Table 6: RNN model on AG NEWS.

Layer Hyperparameters

EMBEDDINGBAG embeddings = 95, 812, dimension = 64
DENSE in features = 64, out features = 4

DROPOUT p = 0.5



E Addtional Evaluations
E.1 Model Generalization
Figure 4, 5, 6 and 7 present the experimental results on the model training process for different benchmarks. We note that the
superiority of our proposed methods is better reflected in the convergence acceleration. For example, both D-SUM and GT-DSUM
require about 50 epochs to reach convergence for LeNet over MNIST, which reduces the number of training epochs by 40%.
Switching to large datasets, i.e., CIFAR10 and AG NEWS, our proposed algorithms converge faster than other baselines with
respect to the training epochs.

(a) non-IID = 0.1 (b) non-IID = 1 (c) non-IID = 10

Figure 4: Testing accuracy for various tasks training on LeNet over MNIST.

(a) non-IID = 0.1 (b) non-IID = 1 (c) non-IID = 10

Figure 5: Testing accuracy for various tasks training on CNN over EMNIST.



(a) non-IID = 0.1 (b) non-IID = 1 (c) non-IID = 10

Figure 6: Testing accuracy for various tasks training on LeNet over CIFAR10.

(a) non-IID = 0.1 (b) non-IID = 1 (c) non-IID = 10

Figure 7: Testing accuracy for various tasks training on RNN over AG NEWS.
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