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Photonic structures have an inherent advantage to realize PT-phase transition through modulat-
ing the refractive index or gain-loss. However, quantum PT properties of these photonic systems
have not been comprehensively studied yet. Here, in a bi-photonic structure with loss and gain
simultaneously existing, we analytically obtained the quantum PT-phase diagram under the steady
state condition. To characterize the PT-symmetry or -broken phase, we define an Hermitian ex-
change operator expressing the exchange between quadrature variables of two modes. If inputting
several-photon Fock states into a PT-broken bi-waveguide splitting system, most photons will con-
centrate in the dominant waveguide with some state distributions. Quantum PT-phase diagram
paves the way to the quantum state engineering, quantum interferences, and logic operations in
non-Hermitian photonic systems.

Introduction. Open quantum system generally ex-
changes the energy with the external environment, i.e., it
is non-Hermitian. With varying some specific parameters
in non-Hermitian parity-time (PT) system, there exist
exceptional points (EPs) from PT-symmetry to broken,
where the eigenvalues and corresponding eigenvectors
simultaneously coalesce [1]. Various theoretical works
related to PT-symmetry are proposed [2–4], exhibiting
some interesting phenomena, such as optical solitons and
Bloch oscillations in periodical potentials [5, 6], edge-gain
effect and gain-loss-induced skin modes in topological
systems [7, 8]. Simultaneously, PT-symmetry and bro-
ken behaviors are experimentally realized in atomic and
trapped ion systems [9, 10], acoustic medium [11], elec-
tronic circuit [12], photonic lattice [13], quantum optical
systems [14–16].

In addition to above mentioned systems, photonic
structures are good candidate to realize PT-symmetry
or broken through modulating the refractive index or
gain-loss [17, 18]. Owing to the similarity between the
Schrodinger equation and the paraxial optical equation
[19], photonic structures have an inherent advantage for
realizing PT-symmetry. Both optical waveguides [20, 21]
and whispering gallery microcavities [22, 23] can con-
struct PT-symmetric system by two-mode coupling with
gain and loss. Besides, PT-symmetry has been observed
in metasurface [24] and periodically modulated refractive
index material [25, 26]. Because of the non-reciprocal
property in PT-broken and enhanced sensitivity at EPs,

PT-symmetric optics can be applied in optical isolation
devices [22], sensing [27], laser [28, 29], and chiral optics
[30].

However, previous studies on PT-symmetric photonic
structures are almost limited to classical optics, where
loss and gain in the same mode can cancel each other
and be considered as an average effect. While in quan-
tum PT system, the role of loss and gain is different:
the gain while generating photons will bring some noise,
but the loss while annihilating photons can not lower
any noise and even cause vacuum noise. These two ir-
reversible processes inevitably produce different kinds of
quantum jumping, leading to some interesting quantum
behaviors. With the consideration of quantum jumping,
people studied the saturation effects on the noise and en-
tanglement [31, 32], the positions and characteristic of
EPs [33, 34], and the switching between PT and anti-PT
systems [35] in non-Hermitian gain-loss coupled cavities.
Until now, there is no panoptic study on the PT-broken
behavior of full gain-loss parameter space, i.e., quantum
PT-phase diagram. Once this phase diagram is obtained,
people can use photonic structures to engineer the quan-
tum state and to realize the quantum logic operation,
especially when PT-symmetry is broken.

In this Letter, we analytically obtain the quantum
phase diagram of PT-symmetry or broken in bi-photonic
cavities with both gain and loss simultaneously existing
[Fig. 1(a)]. For the consideration of reality, the steady
state regime under the weak gain is identified. To charac-
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FIG. 1. PT-phase diagram of two quantum photonic cavities. (a) Schematic diagram of bi-photonic structures with the
coupling coefficient µ and the loss rate γj , gain rate βj for j = 1, 2. Here we let ω1 = ω2. (b) PT-phase diagram with the
steady state regime. EPs satisfying (β1 − γ1)/µ− (β2 − γ2)/µ = ±2 are shown as red lines. The regime between two EP lines
is PT-symmetry while outside of EP lines is PT-broken. The yellow part is the regime in which the steady state exists. Yellow
star: PT-symmetry; Grey star: EP; Red star: PT-broken. (c) Real parts of eigenvalues of Liouvillian L(µ) with the EP at
µ = µ0. Here γ1 = 3.1µ0, β1 = 0.1µ0, γ2 = 1.1µ0, and β2 = 0.1µ0, respectively.

terize the transition from PT-symmetry to broken, we de-
fine the exchange operator with exchanging the quadra-
ture variables between two modes. Then, based on PT-
symmetry or broken regime in the above phase diagram,
we explore the quantum splitting behaviors with the dis-
crete variable of several photons. If inputting Fock states
into a PT-broken bi-waveguide splitting system, most
photons concentrate in the dominant waveguide with
some state distributions; while in the PT-symmetry situ-
ation, photons are alternately distributed in two waveg-
uides with the variation of time. The phase diagram with
full parameter space will give us an in-depth understand-
ing in quantum PT-symmetric system. It is also the basis
to study the quantum state fabrication, quantum inter-
ferences, and logic operations in non-Hermitian quantum
photonic systems.

Quantum PT-phase diagram with steady state regime.
Consider bi-photonic cavities with loss and gain simulta-
neously existing [Fig. 1(a)], when we let ω1 = ω2 = ω,
whose Hamiltonian is

Ĥ = ℏωâ†1â1 + ℏωâ†2â2 + ℏµ(â†1â2 + â†2â1) (1)

where âj and â†j (j = 1, 2) are the boson annihilation
and creation operator, respectively, and µ is the coupling
strength between two cavities. With the weak gain and
weak incident light, the gain saturation effect can be ne-
glected [36]. Then the non-Hermitian system is governed
by Lindblad master equation [37],

dρ̂

dt
= − i

ℏ
[Ĥ, ρ̂] +

∑
j=1,2

γj(2âj ρ̂â
†
j − ρ̂â†j âj − â†j âj ρ̂)

+
∑
j=1,2

βj(2â
†
j ρ̂âj − ρ̂âj â

†
j − âj â

†
j ρ̂)

(2)

where γj (βj) is the loss (gain) coefficient of the jth cav-

ity. The effect of quantum jumping term γj(2âj ρ̂â
†
j) com-

ing from loss and βj(2â
†
j ρ̂âj) from gain on the quantum

behavior is totally different [38]. While in classical PT-
symmetry or -broken systems [21], these two effects are
looked as an average one, where active materials with a
loss (such as the scattering and absorption) can be com-
pensated by a gain.

To construct the quantum PT-phase diagram, based
on Eq. (2), we derive the evolution of ⟨â1⟩ and ⟨â2⟩ with
varying t [39],

i
d

dt

(
⟨â1⟩
⟨â2⟩

)
= Heff

(
⟨â1⟩
⟨â2⟩

)
(3)

where

Heff =

(
ω − iγ1 + iβ1 µ

µ ω − iγ2 + iβ2

)
. (4)

The eigenvalues of Heff are

ω± = ω − i

2
(γ1 − β1 + γ2 − β2)

± 1

2

√
4µ2 − [(γ1 − β1)− (γ2 − β2)]2.

(5)

The degeneracy parts of eigenvalues ω±, which satisfy
(γ1 − β1)/µ − (γ2 − β2)/µ = ±2, are called EP lines,
shown as two red lines in PT-phase diagram [Fig. 1(b)].
The area between two red lines is PT-symmetric while the
areas outside these two lines are PT-broken. PT-phase
diagram in quantum system is different from that in the
classical system [40], where the effect of gain and loss is
averaged by (γj − βj). In the quantum phase diagram,
each single point corresponds to countless options of γj
and βj but with a fixed value of (γj − βj).

On the other hand, Eq. (2) can be written as dρ̂
dt = Lρ̂

with the Liouvillian operator L. Given a set of complete
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FIG. 2. Characterizing the transmission from PT-symmetry to PT-broken phase through the exchange factor ⟨η̂⟩. (a) The

evolution of ⟨η̂⟩ with varying γ1 (normalized by µ0). The exchange between ⟨X̂1⟩ and ⟨Ŷ2⟩ (inset: ⟨X̂2⟩ and ⟨Ŷ1⟩ ) (b) in
PT-symmetry with γ1 = 1.1µ0 (yellow star in Fig. 1(b)) and (c) in PT-broken with γ1 = 3.1µ0 (red star in Fig. 1(b)). The
initial state is coherent state |0, α = 1 + i⟩ and other parameters are β1 = 0.1µ0, γ2 = 0.1µ0, β2 = 0.1µ0, and µ = µ0.

quantum state basis vectors, L can be expressed as a
high dimension matrix. Fig. 1(c) shows the real parts
of eigenvalues of Liouvillian L(µ) with γ1 = 3.1µ0, β1 =
0.1µ0, γ2 = 1.1µ0, and β2 = 0.1µ0, respectively. One can
see that the splitting point locating at µ = µ0 is identical
to the gray star in the phase diagram [Fig. 1(b)]. More
details about L are shown in Ref. [39].

Furthermore, the evolution of the mean photon num-
ber ⟨n̂1⟩ = ⟨â†1â1⟩, ⟨n̂2⟩ = ⟨â†2â2⟩ of two modes, and an

exchange factor ⟨η̂⟩ = ⟨i(â†2â1 − â†1â2)⟩ can be written as
[39],

d

dt
⟨n̂1⟩ =2 (β1 − γ1) ⟨n̂1⟩+ µ⟨η̂⟩+ 2β1

d

dt
⟨n̂2⟩ =2 (β2 − γ2) ⟨n̂2⟩ − µ⟨η̂⟩+ 2β2

d

dt
⟨η̂⟩ =2µ⟨n̂2⟩ − 2µ⟨n̂1⟩

+ (β1 + β2 − γ1 − γ2) ⟨η̂⟩

(6)

whose solutions satisfy the steady state conditions that
both γ1 + γ2 −β1 −β2 > 0 and (γ1 −β1)(γ2 −β2)+µ2 >
0, shown as the yellow area of phase diagram in Fig.
1(b). Under the steady state conditions, the final values
of mean photon number of two modes as well as ⟨η̂⟩ can
be written as [39],

⟨n̂1⟩ss =
∆1 − β1

(
∆2 + 2β2γ2 − γ22

)
∆3

⟨n̂2⟩ss =
∆1 − β2

(
∆2 + 2β1γ1 − γ21

)
∆3

⟨η̂⟩ss =
2µ (β2γ1 − β1γ2)

∆3

(7)

with ∆1 = (β1+β2)(β1β2+µ
2), ∆2 = β1γ2+β2γ1−γ1γ2,

and ∆3 = (γ1 + γ2 − β1 − β2)[(γ1 − β1)(γ2 − β2) + µ2].
Here, the parameters in the steady state region should
be satisfied with the condition of weak gain. From Eq.
(7), one can see that, for one steady state point, there
are infinite sets of parameters γ1, β1, γ2, and β2 corre-
sponding to infinite steady state values. But owing to

the decoherence effects of loss and gain, the steady state
will finally become a thermal state without any quantum
feature [39]. Our following discussions are limited within
the steady state regime.

Exchange operator to characterize PT-phase. To char-
acterize the PT-symmetry or -broken, we rewrite the ex-
change operator η̂ as

η̂ = 2(X̂1Ŷ2 − X̂2Ŷ1) (8)

with X̂1,2 = (â1,2+ â
†
1,2)/2 and Ŷ1,2 = (â1,2− â†1,2)/2i. η̂,

as an Hermitian operator, expresses the exchanging be-
tween quadrature variables X̂1,2 and Ŷ2,1. Its expectation
value ⟨η̂⟩ is a real number, called exchange factor. Fig.
2(a) gives the evolution of ⟨η̂⟩ with varying the loss rate
γ1. Here, β1 = 0.1µ0, γ2 = 0.1µ0, β2 = 0.1µ0, µ = µ0,
where µ0 = 1 × 10−10 Hz, and the initial state is a
coherent state |0, α = 1 + i⟩. From Fig. 2(a), ⟨η̂⟩
experiences the phase transition from PT-symmetry at
γ1 = 1.1µ0, via the EP point at γ1 = 2.1µ0, to PT-
broken at γ1 = 3.1µ0, corresponding to the yellow, gray,
and red stars in Fig. 1(b), respectively. It is seen that,
when PT-symmetry is unbroken, ⟨η̂⟩ oscillates with t. In
contrast, when PT-symmetry is broken, ⟨η̂⟩ monotoni-
cally decreases after a rise and then comes to the steady
state. It is noted that whenever for any value of γ1, ⟨η̂⟩
is approaching to the same value when t → ∞. This is
not a general case, but an accident just for the condition
of γ2 = β2.

Correspondingly, we explore the exchanging processing
between quadrature amplitudes ⟨X̂1,2⟩ and ⟨Ŷ2,1⟩. For
the PT-symmetry, there is a periodical exchanging pro-
cess between ⟨X̂1,2⟩ and ⟨Ŷ2,1⟩, as shown in Fig. 2(b)
with γ1 = 1.1µ0. In contrast, when PT is broken, they
decay exponential with ⟨X̂1⟩ < ⟨Ŷ2⟩ and ⟨Ŷ1⟩ < ⟨X̂2⟩, as
shown in Fig. 2(c) with γ1 = 3.1µ0. If now, we input
the Fock state |m,n⟩ as an initial state, ⟨X̂1,2⟩ and ⟨Ŷ2,1⟩
will be 0 for all the time [39]. The reason is that the
average values of ⟨X̂1,2⟩ and ⟨Ŷ2,1⟩ in the Fock states are
always zero. So if only inputting Fock states, one can
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FIG. 3. Quantum state engineering based on PT-symmetry or PT-broken. Schematics of coupled waveguides with input Fock
states (a) |2, 4⟩ for (c, d) and (b) |4, 2⟩ for (e, f). Probability distributions of output states for (c, e) PT-symmetry at L = 0.6
cm and (d, f) PT-broken at L = 0.4 cm. Other parameters are the same as those in Figs. 2(b, c).

not use the exchange of quadrature amplitudes to distin-
guish the PT-symmetry or -broken. While, whatever for
Fock states or coherent states, one can clearly distinguish
them through the exchange factor ⟨η̂⟩ [39]. Therefore, ex-
change operator η̂ can fully characterize the properties of
PT-symmetry or broken in quantum photonic system.

Engineering quantum state with PT-broken. The above
theory can be applied to any two-mode coupling pho-
tonic structures. If existing the loss and gain in the pho-
tonic structure, it can be equivalent to a non-Hermitian
beam splitter [41]. Non-Hermitian beam splitters have
some unique properties and applications, such as quan-
tum coherent perfect absorption [42], anti-bunching of
bosons [43], preparation of squeezed states [44], and fab-
rication of multi-bit quantum gates [45]. Now, let’s take
coupled waveguide system as an example to study the
quantum state engineering. Shown as Figs. 3(a, b),
two gain-loss waveguides with coupled distance L can
be looked as a non-Hermitian beam splitter. If L is
too short, the interaction between two modes is not
enough. In contrast, if L is too long, any input quan-
tum state will become a thermal state. Thus there ex-
ists an optimal interval of L, in which the interaction
between two modes is enough while quantum coherence
and PT-symmetry come into the effect together. When
γ1 = 1.1µ0 ∼ 3.1µ0, β1 = 0.1µ0, γ2 = 0.1µ0, β2 = 0.1µ0,
and µ = µ0, where µ0 = 1 cm−1[21, 46], the optimal value
of L is 0.4 ∼ 1.5 cm. With the above parameters, in the
following discussions, we will focus on the quantum state
distribution of two outputs for both PT-symmetry and
PT-broken cases.

We first consider the situation of single photon input,
i.e., |ψ⟩in = |0, 1⟩ and |1, 0⟩ [39]. In the case of PT-

TABLE I. Probability distributions and mean photon num-
bers of output state in the non-Hermitian beam splitters.

(a) PT-symmetry

Input L/cm |0, 1⟩ |1, 0⟩ |0, 2⟩ |1, 1⟩ |2, 0⟩ |0, 3⟩ ... ⟨n̂1⟩ ⟨n̂2⟩
|0, 1⟩ 1.2 0.21 0.21 0.06 0.06 0.04 0.01 ... 0.41 0.51
|1, 0⟩ 1.2 0.25 0.06 0.07 0.02 0.01 0.02 ... 0.11 0.51
|0, 2⟩ 0.75 0.2 0.08 0.23 0.17 0.04 0.08 ... 0.54 1.4
|1, 1⟩ 0.75 0.24 0.18 0.19 0.04 0.05 0.06 ... 0.41 1.0
|2, 0⟩ 0.75 0.25 0.13 0.08 0.05 0.02 0.02 ... 0.28 0.6

(b)PT-broken

Input L/cm |0, 1⟩ |1, 0⟩ |0, 2⟩ |1, 1⟩ |2, 0⟩ |0, 3⟩ ... ⟨n̂1⟩ ⟨n̂2⟩
|0, 1⟩ 0.7 0.52 0.06 0.12 0.03 0 0.02 ... 0.11 0.89
|1, 0⟩ 0.7 0.14 0.03 0.02 0.01 0 0 ... 0.04 0.21
|0, 2⟩ 0.5 0.21 0.02 0.47 0.08 0 0.12 ... 0.16 1.79
|1, 1⟩ 0.5 0.53 0.07 0.16 0.03 0.01 0.03 ... 0.13 1.01
|2, 0⟩ 0.5 0.15 0.07 0.02 0.01 0 0 ... 0.09 0.22

symmetry, corresponding to the yellow star in Fig. 1(b),
at L = 1.2 cm, probability distributions and mean pho-
ton numbers of output states are shown in Tab. I(a). It
is seen that the photons tend to symmetrically distribute
in the two waveguides. While in the PT-broken case, the
red star in Fig. 1(b), output states at L = 0.7 cm are
shown in Tab. I(b). In this case, whatever inputting
one photon from which waveguide, the photons are likely
to output from the dominant waveguide. The result of
PT-broken is in agreement with the classical optical ex-
periments where most of the energy is locating in the
dominant mode [21].
Then the situation of two-photon input is explored,
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i.e., |ψ⟩in = |0, 2⟩, |1, 1⟩, and |2, 0⟩ [39]. For the PT-
symmetry, two output states at L = 0.75 cm are shown
in Tab. I(a), while for the PT-broken, two output states
at L = 0.5 cm are shown in Tab. I(b). For both cases, the
probabilities of output state |1, 1⟩ are very small, shown
as a dip in the probability distributions of photons with
the distance L [39], i.e., the photons are inclined to to-
gether output from one of the waveguides, appearing the
results of HOM [46, 47]. Once again, from probability
distributions and mean photon numbers of output states
with both PT-symmetry and PT-broken, the quantum
results are in accord with the corresponding classical ones
[21].

The above two examples imply that the beam splitter
with the PT-symmetry is different from previous studied
non-Hermitian one. After EP, most of photons (or the
output states with large probability) are concentrating on
the dominant waveguide due to the joint effect of quan-
tum interference and PT-broken. Also, because of the ex-
istence of gain, the quantum state |P ⟩ with P > (M+N)
appears when |ψ⟩in = |M,N⟩. So, the beam splitter with
this kind of PT-broken can be used to prepare the high
number Fock state. Now, we take the input states of
|ψ⟩in = |2, 4⟩ and |4, 2⟩ as examples. As shown in Figs.
3(c, e), in the case of PT-symmetry (yellow star in Fig.
1(b)), the photon number distribution at L = 0.6 cm
is dispersed due to periodically exchanging between two
waveguides. The mean photon numbers are ⟨n̂1⟩ = 1.2
and ⟨n̂2⟩ = 3.3 (input |2, 4⟩), ⟨n̂1⟩ = 1.1 and ⟨n̂2⟩ = 2.3
(input |4, 2⟩). While in the PT broken (red star in Fig.
1(b)), at L = 0.4 cm, most photons are gathered in the
dominant waveguide with large probability distributions
of high number Fock state [Figs. 3(d, f)], corresponding
to ⟨n̂1⟩ = 0.4 and ⟨n̂2⟩ = 2.0 (input |2, 4⟩), ⟨n̂1⟩ = 0.3 and
⟨n̂2⟩ = 3.7 (input |4, 2⟩). We have checked other cases
that input Fock state is |M,N⟩ with the total number of
photonsM+N < 10 and the same conclusion is obtained
[39]. Moreover, by adjusting the loss and gain parameters
of two waveguides, more optimized results about output
states will appear.

Summary. We have analytically obtained the quantum
PT-phase diagram with the steady state regime in non-
Hermitian photonic structures. We have defined an ex-
change operator to characterize the PT-symmetry phase
and PT-broken phase. Based on this phase diagram,
we have engineered the multi-photon quantum state in
the coupled waveguide structure. The present work has
constructed the basic theory of quantum PT-symmetry
in photonic structure as well as its application to quan-
tum state engineering. The established theory can be ex-
tended to study many related quantum behaviors, such
as gain saturation effect, quantum entanglement, and
continuous variable states, and may have potential ap-
plications in quantum state preparation, quantum inter-
ferences, and logic operations in non-Hermitian photonic
systems.
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[43] B. Vest, M.-C. Dheur, É. Devaux, et al., Anti-coalescence
of bosons on a lossy beam splitter, Science 356, 1373
(2017).
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