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Abstract 
Microscopic formula to describe the entropy of biomolecular solutions are derived based 
on the Gibbs formula of entropy, and the generalized Langevin theory combined with the 
RISM/3D-RISM theory. Two formula are derived: one is concerned with the 
conformational fluctuation of a biomolecule, and the other with the density fluctuation of 
solvent around a solute. The formula derived for the entropy associated with the 
conformational fluctuation is  

                      

where N is the number of atoms in the solute, and A is the determinant of the inverse of 
the variance-covariance matrix of conformational fluctuation.  
   The formula for the entropy of solvent at a pair of positions around a solute is also 
derived to be, 

                   

where n is the number of atoms in a solvent molecule, and B is essentially the determinant 
of the matrix of the density-pair-correlation functions. The entropy at a local position r 
may be obtained by integrating the expression by over the entire volume of the system.  
   The feasibility of the calculation to find the entropies is discussed.   
 
I. Introduction 
   Entropy, a thermodynamic variable, has been attracting increasing attention from 
various fields of bioscience and technology. [1-8] One of those phenomena in which 
entropy plays a crucial role is the conformational stability of a biomolecule in solution. It 
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is well documented that the denatured state of protein is dominated by entropy.[1,2,9-11] 
Another phenomenon, that is concerned with entropy, is the binding affinity of a ligand 
molecule at the active site of a protein molecule. [3,5~8] In that case, the binding affinity 
is determined not only by the interaction between side-chains in the active-site and the 
ligand molecule, but also by gain or loss of the entropy related to the protein and solvent 
molecules. Although it is of great importance to evaluate the quantity by means of 
computational science, actual calculation is not so straightforward. It is because the 
quantity reflects fluctuation of mechanical as well as thermodynamic variables, which is 
a stochastic process.   
   The entropy relevant to biomolecules in solution is classified into two categories, 
depending on whether it is related to the interaction among molecules or not. [12, 13] 
Those which are not relevant to the intermolecular interactions include the ideal and 
mixing entropies. The ideal entropy is originated from the kinetic motion of individual 
molecules in the system, which can be calculated readily from the classical mechanics of 
a single molecule as a function of single-molecular properties such as the mass, moment 
of inertia, and force constant. [14] The mixing entropy is just a function of the 

concentration of the system, the calculation of which is also trivial as , 

where  denotes the concentration (mol fraction) of species i in the solution.[12, 13] 

So, it is the entropy related to the interaction among atoms and molecules that has not 
been fully explored yet. Let us refer to the entropy as excess entropy. 
   There are two types of the excess entropy that is intimately related to the biomolecular 
processes in solution, such as protein folding and the binding of a substrate molecule to 
an enzyme. The first one of those is the structural or conformational entropy which is 
intimately related to the temporal fluctuation of the structure of biomolecules in solution. 
Since the fluctuation from an equilibrium structure takes place against the free energy 
slope in a stochastic process, it is the main concern to find the probability distribution of 
a conformational fluctuation. The other type of the excess entropy is concerned with the 
density fluctuation of solvent around a biomolecule. For examples, the density of solvent 
molecules inside a cavity of an enzyme is in temporal fluctuation, conjugated with the 
conformational fluctuation of side-chains conforming the cavity. Such fluctuation of 
solvent density around a biomolecule will make contribution to the entropy change upon 
binding of a substrate to the active site of an enzyme.  
   The first serious attempt to realize the conformational entropy of a biomolecule in the 
statistical-mechanical framework has been made by Go, Go, and Scheraga. [15-17] They 
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have assumed the probability distribution of the atomic displacement around the dihedral 
angles as Gaussian, and calculated the conformational entropy of protein using the 
Boltzmann formula. Unfortunately, the entropy formula they have derived was not so 
realistic, since the force-constant matrix they have used is concerned with a protein in 
vacuum. There are two problems to be pointed out concerning protein in vacuum to 
evaluate the conformational entropy of protein. Firstly, the equilibrium structure of 
protein in vacuum is entirely different from that in aqueous solution. Secondly, the 
conformational fluctuation, or the variance-covariance matrix, may also be largely 
different from the real system. It should be noted also that the Gaussian character of the 
conformational distribution has its origin in the truncation of the interaction potential 
energy at the second order of the Taylor expansion with respect to the displacement of 
atoms from the equilibrium structure.  
   Kusick and Karplus put the calculation of the conformational entropy of protein on 
the foundation of the molecular-dynamics simulation. [18] They have analyzed the 
variance-covariance matrix of a protein over the MD trajectory to find the conformational 
entropy, which reflects the structural fluctuations of protein. The entropy so obtained 
certainly includes the contribution from multiple conformations within a limit of the 
length of the trajectory sampled by the simulation.  
   Recently, Chong and Ham have proposed a new computational method to estimate 
the conformational entropy of protein in water based on the RISM/3D-RISM theory 
combined with the MD simulation. [1,2] They have carried out the cumulant-expansion 
of the free energy of solute, the structure of which is fluctuating with certain probability. 
When the probability distribution is Gaussian, the expansion can be truncated by the 
second order of the fluctuation to produce an expression for the conformational entropy 
of a protein as 

                                         (1) 

In Eq. (1), F is the free energy of solute, defined by , where E and  
denote the interatomic potential-energy of protein and the solvation free energy, 
respectively, and <F> is the average of F over the fluctuation. The authors have calculated 
E and along the trajectory of the MD simulation of protein in aqueous solution. In 
order to calculate , they have employed the RISM/3D-RISM theory. An important 
observation made by the authors is that the probability distribution of the free-energy 
fluctuation is Gaussian, that rationalizes the use of Eq. (1) to calculate entropy. The 
observation is in harmony with the theoretical characterization of the conformational 
fluctuation of protein in solution, made by Kim and Hirata.[19] Based on the generalized 
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Langevin equations, derived for the conformational fluctuation of protein, Kim and Hirata 
have identified that the fluctuation is taking place on the free energy surface which is 
quadratic with respect to the displacement of atoms from their equilibrium structure. The 
identification is equivalent to assert the conformational fluctuation being Gaussian.      
   In the present paper, we develop a theory to calculate the entropy of a system 
consisting of a biomolecule and solvent, based on the Kim-Hirata theory. Here, we are 
interested in two type of entropies which are associated with the conformational 
fluctuation of solute and the density fluctuation of solvent around the solute.  
   In order to formulate the entropies, we employ the Gibbs entropy formula. [20] 

Suppose we have an event x which is fluctuating around its average value . Then, the 

Gibbs entropy of the event may be written as     

               ,                      (2) 

where  represents the fluctuation of the event x from its average value, 

, and  denotes the probability dsitribution of the event to take a value . So, 

it is crucial in our case to find the probability distribution of the two types of fluctuation, 
the conformational fluctuation of a solute and the density fluctuation of solvent around 
the solute.       
   The excess entropy associated with a protein in solution is originated from two types 
of fluctuations: the conformational fluctuation of protein in solution and the density 
fluctuation of solvent around the solute.  

                                              (3) 

where  and  denote the entropies associated with the conformational 

fluctuation and the density fluctuation, respectively. It should be noted that includes 

a contribution from solvent around solute. However, the contribution should not be 

confused with .  is the entropy associated with the density fluctuation of 

solvent around solute with a fixed conformation. On the other hand, the contribution from 

solvent included in is concerned with the density fluctuation of solvent conjugated 
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with the conformational fluctuation of the solute. So, it is a cross term of the 
conformational fluctuation of solute and density fluctuation of solvent. 
   It is the purpose of the paper to derive formula to calculate the entropies based on the 
Kim-Hirata theory of the conformational fluctuation of a biomolecule and density 
fluctuation of solvent around the solute in solution.[19]  
    
II. Theory   
II-1. Brief review of Kim-Hirata theory  
 Generalized Langevin Theory: The generalized Langevin theory for a biomolecule in 
water, developed by Kim and Hirata, is briefly reviewed for the purpose of clarifying 
physical meanings of the variables employed in the derivation of entropy formula. [19, 
21, 22] 
   The generalized Langevin equations (GLE) describes the time evolution of dynamic 
variables A(t) in the phase space, which is governed by the Liouville operator iL.  

                                                    (4) 

The dynamic variables represent a set of few mechanical variables which are essential to 
describe the physics of interest. It is the whole idea of GLE to project all variables in the 
phase space onto the dynamic variables by means of the projection-operator method. 
[21,22] 
   In the Kim-Hirata theory, the following set of variables in the phase space was chosen 
for the dynamical variables.  

                ,                               (5) 

where  and  are the displacement or fluctuation of an atom  from its 

equilibrium position in a biomolecule, and its conjugated momentum, defined 
respectively by  

             and .            (6) 

where  and  denote the equilibrium position of the atom  and its mass, 
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position r, defined by, 

          ,                            (7) 

where  defines the average density of solvent atom a.  is the momentum 

density, or the current, of solvent atom a, defined by         

           .                                  (8) 

   Applying the projection operator method to the Liouville equation, Eq. (4), Kim and 
Hirata have derived two GLEs, one for the biomolecule, and the other for solvent. 
    
GLE of a biomolecule in solution: The conformational fluctuation of a biomolecule in 
solution is described by 

 ,      (9)    

where  is the  element of the inverese of the variance-covariance matrix 

defined by,  

                  .                                 (10) 

Let us express by,              

                                                (11) 

   The first term in the right-hand side of Eq. (9) is concerned with the restoring force 
which is proportional to the displacement of atoms from an equilibrium structure. Second 
and third terms are the frictional and random forces, which are related to each other by 
the fluctuation-dissipation theorem.[23] The physics of the equation is clear: the 

conformational fluctuation of atom  is induced by the thermal motion, or the 

random force , and it relaxes to the equilibrium structure  due to the 

restoring force, or the first term.  
   If one ignores the second and third terms, Eq. (9) becomes identical to the equation 
describing a harmonic oscillator as, 
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               ,                     (12) 

where the factor  plays a role of the force constant or Hessian. An important ansatz 

made by the authors is to identify as the second derivative of the free energy surface 

of a biomolecule, consisting of the interatomic potential energy (U) and the solvation free 
energy ( ), with respect to the atomic coordinates of the biomolecule, that is, 

                                              (13) 

where  

                .                 (14) 

In the equation,  represents a set of atomic displacements due to the 

conformational fluctuation. The identification implies that the free energy surface is 
quadrature with respect to the displacement of atoms, and that the the probability 

distribution of finding the conformational fluctuation of biomolecule in  is 

“Gaussian”, or 

                   (15) 

where A is the determinant of the matrix .   

GLE for the density fluctuation of solvent around a biomolecule: The temporal density 
fluctuation of atoms of water molecules at position r around a biomolecule is described 
by  
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where  is defined by, 

                          (17) 

In the equation, is the kinetic contribution of molecules to the density fluctuation, 

expressed by, 

             ,                       (18) 

where and denote the velocity of atoms a and b in the same molecule i, and  

is the intramolecular correlation-function defined by 

                    (19) 

where  and  denote the Kronecker and Dirac delta-functions, respectively, 

 is the distance, or “bond”, between atoms a and b in a same molecule. So, the 

structure of a solvent molecule is defined by giving for all pairs of atoms in the 

molecule.  is the density pair correlation function defined by, 

                                           (20)            

The first term in the right-hand side in Eq. (16) represents the restoring force to recover 
the equilibrium density of solvent atom a at the position r, which is proportional to the 

density fluctuation  at the position . The second and third terms are the 

frictional and random forces, which are related each other by the fluctuation-dissipation 
theorem.    
 
   Since we are interested in the entropy associated with the temporal density-fluctuation 
at a fixed position, we just focus on the first term of the right-hand-side in Eq. (16). That 
leads,  
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                             (21) 

The equation can be interpreted as follows. The density fluctuation of atom a, induced at 
position r, is restored to the equilibrium density by the force which is exerted from the 
density fluctuation of atom b located at r’, and the force constant of the restoring force is  

.  

   In order to complete the mathematical isomorphism with a harmonic oscillator, we 
define the free energy of solvent by, 

                                          (22) 

where the local free energy at a pair of positions r and r’ is defined by                    

                        (23) 

Then,  is identified as the second derivative of the free energy with 

respect to the density fluctuation at fixed positions r and r’, 

                 .                       (24) 

The identification is similar to the density-functional theory of liquids, except for the 
kinetic factor defined by Eq. (18). [19] The kinetic factor is included there, because the 
momentum density or flux also contributes to change of the free energy.  
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           (25) 

where B is the normalization constant, and it is the determinant of the matrix 

. The expression is apparently a Gaussian distribution with respect to the 

density fluctuations at the fixed position r and r’, the variance of which is . 

 
II-2. Entropy associated with conformational fluctuation of a solute molecule 
The entropy associated with the conformational fluctuation, defined in terms of the Gibbs 
formula (Eq. (1)) is,     

                       (26) 

where  represents the positional fluctuation of atom in protein, 

and  is the probability distribution of the conformational fluctuation defined by 

Eq. (15). Substituting Eq. (15) into Eq. (26) leads, 
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where A is the determinant of the matrix that is the inverse of the variance-
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(28) 

 The Gaussian integral of the first term can be readily carried out to give  

                (29) 

In order to carry out the integral in the second term of Eq. (28), we introduce a parameter 
x. 
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                .                      (34) 

In the equation, A is the determinant of the matrix { }, the element of which is the 

second derivative of the free energy, defined by Eq. (14), with respect to the coordinates 
of atom  and . It is in turn the inverse of the determinant of the variance-covariance 
matrix as is defined by Eqs. (10) and (11). So, the expression is in accord with our intution, 
that is, greater the variance, larger the conformational entropy. The second derivative of 
the free energy may be obtained from the RISM/3D-RISM theory in the route of solving 
the equation iteratively. [29] 
 
II-3. Entropy associated with solvent fluctuation around a biomolecule in solution 

We define a quantity referred to as the local solvent entropy  at a pair of 

positions,  and , as 

       ,      (35) 

where is defined by Eq. (25).  
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system is defined, respectively, as 
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                                                                (38) 

where  and  are defined as, 

  (39) 

The integrals are readily carried out as follows, since they are just a gaussian integral. 
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                                      (42) 

              
III. Discussions 

Here, we discuss feasibility of calculating  and  expressed by Eq. (34) 

and Eq. (42), respectively. The calculation is in fact feasible by means of the statistical 
mechanics of molecular liquid, or the RISM/3D-RISM theory.[21]   

Feasibility of calculating : The expression for  involves the second 

derivative of the free-energy surface with respect to the atomic coordinates of solute, 
which is defined by Eqs. (13) and (14). The free-energy surface consists of two 

contributions, the interaction among atoms in the solute, , and the solvation free 

energy, . The second derivative of  has been calculated rather 

routinely by means of a molecular mechanics, in the study of the normal mode analysis 
(NMA) of a biomolecule in vacuum.[25] 

   On the other hand, it is relatively recent that the second derivative of  has 

been calculated by means of the RISM/3D-RISM method. There are two steps in the 
computation. The first step is to obtain the first derivative, or the force. The method to 
calculate the force has been proposed by Yoshida and Hirata, which leads, 

             ,                        (43) 

where , , and  denote the density of solvent, the interaction between 

the solute molecule and solvent atom , and the spatial distribution function of solvent 
atom at the position r around the solute, respectively. [26] The method was applied to 
the molecular-dynamics simulation by Miyata and Hirata to perform the dynamics of a 
solute molecule on the free energy surface.[27] The method was further improved by 
Omelyan and Kovalenko to bring a long simulation such as protein folding into a scope 
of the science. [28] In order to obtain the second derivative, it is necessary to calculate 
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the first derivative of . The calculation can be performed by applying the 

procedure originated earlier by Yu and Karplus, in which the second derivative itself is 
regarded as a variable in the iterative process to find the answer of the RISM/3D-RISM 
equation. [29,30] 

Feasibility of calcualting : The calculation is concerned with the matrix 

defined by Eq. (24), the element of which involves two factors:  and 

. The calculation of  has been already worked out by Chong and 

Hirata. [31] On the other hand, the calculation of  is a non-trivial problem, 

since it is a pair correlation-function of solvent, subject to an inhomogeneous field exerted 
by a biomolecule. We propose the following superposition-approximation to calculate 

, 

                  .                       (44) 

In the equation,  and  are, respectively, the density distribution 

functions of atoms c and b of solvent molecules at the position r and r’ around the solute 
molecule. The quantity can be readily calculated based on the RISM/3D-RISM 
theory.[32] 
 
IV. Concluding Remarks and Perspective 
   Microscopic formula to describe the entropy of a biomolecule in solution are derived 
based on the Gibbs formula of entropy, and the generalized Langevin theory combined 
with the RISM/3D-RISM theory. Two types of entropy formula were derived: the 
conformational entropy and the entropy of solvent around a solute.  
   The formula of the conformational entropy is closely related to the inverse of the force 
constant of the structural fluctuation of a biomolecule in solution, which is the second 
derivative of the free energy including the potential energy of the solute and the solvation 
free energy, with respect to the atomic coordinates of the biomolecule. Since the force 
constant is an inverse of the variance-covariance matrix of the structural fluctuation, the 
physics implied by the derived formula is in harmony with our intuition; larger the 

gγ
uv (r)

ssolv (r, ′r )

κ ab
solv{ } Jac(r, ′′r )

χcb
(2) ( ′′r , ′r ) Jac(r, ′′r )
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(2) ( ′′r , ′r )

χcb
(2) ( ′′r , ′r )

χcb
(2) (r, ′r ) ≈ ρc(r) ρb( ′r )

ρc(r) ρb( ′r )
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variance, greater the entropy. A method to calculate the force constant matrix has been 
already proposed by us, based on the RISM/3D-RISM theory.   
   The entropy of solvent around a solute molecule is concerned with the inverse of the 
force constant, or the second-derivative, of the free energy of solvent with respect to the 
density fluctuation of solvent at a pair of positions. The force constant is essentially the 
inverse of the density pair-correlation function which is a measure of the variance of the 
density fluctuation. Therefore, the physics is again transparent: greater the variance of 
the density fluctuation, larger the entropy. An approximation to calculate the the density 
pair-correlation functions in an inhomogeneous environment around a biomolecule is 
suggested. 
    In the present paper, we just focused our attention on the entropy of a single solute- 
molecule in solvent. So, the method as is may not be applied to a problem concerning the 
binding of a ligand molecule by protein. It is because a large change in so-called external 
entropies is expected due to a reduction of the degrees of freedom upon making a complex 
of the molecules. However, the method developed here may be applied to such a problem 
by employing the same tactics taken by Chong and Ham in their paper concerning binding 
of two protein molecules.[3,8] The tactics is to evaluate the external entropy of the bound 
state by regarding the protein-ligand complex as a “single molecule”. The change in the 
external entropy upon the ligand binding may be calculated by subtracting the 
independent contributions by host and guest molecules to the external entropy from that 
by the host-guest complex. 
   There is another point which was not addressed in the present paper. That is the 
contribution form multiple conformations of a biomolecule to entropy. The problem may 
be solved by adapting the same strategy employed in Ref. (29). In the study, the authors 
have carried out a 3D-RISM/MD simulation of a dipeptide in water to sample the 
conformational space in order to evaluate the wave-number spectrum of the molecule. 
They have calculated the Hessian, or the inverse variance-covariance matrix, of the 
molecule at every few steps and averaged over the trajectory.   
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