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Abstract

Modelling elastocaloric effect (eCE) is crucial for the design of environmentally friendly and energy-efficient eCE
based solid-state cooling devices. Here, a thermodynamically consistent non-isothermal phase-field model (PFM)
coupling martensitic transformation with mechanics and heat transfer is developed and applied for simulating eCE.
The model is derived from a thermodynamic framework which invokes the microforce theory and Coleman–Noll
procedure. To avoid the numerical issue related to the non-differentiable energy barrier function across the transition
point, the austenite-martensite transition energy barrier in PFM is constructed as a smooth function of temperature.
Both the indirect method using isothermal PFM with Maxwell relations and the direct method using non-isothermal
PFM are applied to calculate the elastocaloric properties. The former is capable of calculating both isothermal entropy
change and adiabatic temperature change (∆Tad), but induces high computation cost. The latter is computationally
efficient, but only yields ∆Tad. In a model Mn-22Cu alloy, the maximum ∆Tad (∆T max

ad ) under a compressive stress
of 100 MPa is calculated as 9.5 and 8.5 K in single crystal (3.5 and 3.8 K in polycrystal) from the indirect and
direct method, respectively. It is found that the discrepancy of ∆T max

ad by indirect and direct method is within 10%
at stress less than 150 MPa, confirming the feasibility of both methods in evaluating eCE at low stress. However, at
higher stress, ∆T max

ad obtained from the indirect method is notably larger than that from the direct one. This is mainly
attributed to that in the non-isothermal PFM simulations, the relatively large temperature increase at high stress could
in turn hamper the austenite-martensite transition and thus finally yield a lower ∆Tad. The results demonstrate the
developed PFM herein, combined with both indirect and direct method for eCE calculations, as a practicable toolkit
for the computational design of elastocaloric devices.

Keywords: Elastocaloric effect, Phase-field model, Shape memory alloys, Martensitic transformation, Adiabatic
temperature change

1. Introduction

The solid-state cooling technology features itself as an environmentally friendly and efficient alternative to the
traditional vapor compression refrigeration, thus helping move towards carbon neutrality. Typical solid-state cooling
by magnetocaloric [1–3], electrocaloric [4, 5], barocaloric [6, 7] and elastocaloric [8–11] effects has been widely
investigated, among which elastocaloric cooling stands out with the large temperature change [9, 12], large working
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temperature window [10], and excellent coefficient of performance [13, 14]. The elastocaloric cooling is realized by
means of elastocaloric effect (eCE), which originates from the latent heat associated with martensitic transformation
(MT) in shape memory alloys (SMAs). Upon loading, the exothermic austenite-martensite transformation (also called
the conventional MT) would cause a temperature increase in the adiabatic process. Upon unloading, the endothermic
martensite-austenite transformation (also called the inverse MT) occurs, and a rapid drop in temperature arises [8].
The eCE can be quantified by the adiabatic temperature change (∆Tad) or the isothermal entropy change (∆S iso).

Modelling eCE plays an important role in the computational design of elastocaloric devices and can be an essential
complement to experiments. In general, phenomenological constitutive models and phase-field model [15, 16] (PFM)
are utilized to calculate the eCE in SMAs. The phenomenological Tanaka-type model [11, 17–21] has advantages
in the description of temperature change and stress-strain behavior. Very good agreement between the measured
and calculated values of ∆Tad is obtained. Analogously, the phase transformation kinetic model [22–24] and crystal
plasticity-based constitutive model [25, 26] are also proposed to predict the eCE. These phenomenological constitutive
models can be used to obtain the macroscopic elastocaloric properties, but have difficulties in simulating the spatial
and temporal evolution of microstructure details during the MT and thus are hardly applicable to the optimization of
eCE by microstructure engineering.

eCE in SMAs is intrinsically ascribed to MT, which is a first-order phase transformation and can be induced by ex-
ternal stress/strain field or by temperature field. The PFM developed from Landau’s theory of phase transformation is
widely used to simulate the stress- and temperature-induced MT [27]. Wang et al. [28] built a three-dimensional PFM
of MT, taking into account the transformation-induced strain, which comprehensively described a generic cubic-to-
tetragonal MT. In the PFM, each of the martensitic variants is described by an order parameter ηI (I = 1, 2, ..., n with n
as the total number of various crystallographically equivalent martensitic variants), and the evolution of each of vari-
ants is governed by the Ginzburg-Landau equations. Several studies also considered hexagonal-to-orthorhombic [29],
cubic-to-tetragonal [30], and tetragonal-to-monoclinic [31] transitions. Over the last decades, the PFM for MT has
been constantly improved to include/study more physical phenomena in SMAs. For example, the martensitic reori-
entation, the temperature-induced transformation, and the stress-induced MT have been of high interests. Levitas
et al. [32–34] constructed a thermodynamically consistent PFM for transformations between austenite and marten-
sitic variants and martensitic reorientation. Since then the phase-field (PF) theory is extended for the cases of surface
stresses [35, 36], large strain [37, 38], and eCE [39–42]. The research that explores eCE by PFM has recently emerged,
owing to the rise of efficient solid-state cooling technology by eCE as well as the PFM’s advantage in simulating the
evolution of microstructure and temperature during the MT process.

In 2015, Levitas et al. [43] proposed a multiphase phase-field theory for temperature- and stress-induced MT,
which allows for a presence of the third phase at the interface between the two other phases. Then, Cui et al. [44]
employed a non-isothermal PFM to study the stress- and temperature-induced MT, as well as the corresponding latent
heat in SMAs. However, the discontinuous piecewise energy barrier between austenite and martensite is adverse
to the calculation of ∆S iso or ∆Tad, which possibly makes the Maxwell relations based eCE analysis problematic
around the transition point. In real materials, the austenite-martensite transition energy barrier varies continuously
and increases with temperature in the whole temperature range. Furthermore, Sun et al. [45, 46] modified this energy
barrier as a continuous piecewise function of temperature in PFM and discussed the effect of grain size, crystal
orientation, and loading rate on ∆Tad. Cissé et al. [40] introduced an exponential function to express the energy
barrier and computed qualitatively the eCE in CuAlBe, including ∆Tad calculated by the direct method, coefficient
of performance and cyclic deformation. Their energy barrier equations are continuous but not differentiable at the
transition point (see Fig. 1 for more details). In addition, Xu et al. [47, 48] constructed a similar PFM by introducing
an extra grain boundary energy to investigate the grain size dependent super-elasticity and eCE using the direct method
in nanocrystalline NiTi SMAs. A mesoscale model [49] based on the Müller-Achenbach-Seelecke theory without
PF order parameters was also developed to describe the evolution of local temperature and strain in SMA films
during elastocaloric cycling. Meanwhile, the latent heat effect [44, 46], size effect [45, 47, 50], plasticity [40, 41] ,
and microstructure design [42, 48] are considered to regulate eCE. Nevertheless, all the above mentioned works are
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focused on the application of PF simulations to directly evaluate ∆Tad during loading and unloading by solving the
heat-transfer equation.

In general, the indirect and direct methods are two basic approaches to calculate the key parameter ∆Tad [51].
Directly measuring the (adiabatic) temperature change distribution by thermography without thermodynamic calcu-
lations is called the direct method. The difficulty of ensuring adiabatic conditions usually leads to the inevitable heat
loss and thus the minor ∆Tad calculated by the direct method. Hence, researchers also adopt the indirect method [52–
54] to calculate ∆S iso and ∆Tad by means of the Maxwell relations (Eq. 1) or Clausius-Clapeyron equation. ∆S iso

and ∆Tad can be calculated from the average stress-strain responses at each temperature or average strain-temperature
responses at each stress. The Maxwell relations for eCE evaluation read as

ρ

(
∂S
∂σ

)
T

=

(
∂ε

∂T

)
σ

or ρ

(
∂S
∂ε

)
T

= −

(
∂σ

∂T

)
ε

. (1)

Using Eq. 1, ∆S iso and ∆Tad between the initial and final stress are expressed as [8]

∆S iso(0→ σ) =

∫ σ

0

1
ρ

(
∂ε

∂T

)
σ

dσ, (2)

∆Tad(0→ σ) = −

∫ σ

0

T
ρc

(
∂ε

∂T

)
σ

dσ (3)

where S is entropy, T temperature, ε strain, σ stress, ρ material’s density, and c specific heat.
The indirect method is initially extensively utilized to calculate the magnetocaloric effect [2, 3]. Bonnot et al. [8]

first introduced the Maxwell relations (Eq. 1) to evaluate ∆S iso associated with the MT in Cu-Zn-Al single crystal
and found that the indirectly calculated ∆S iso agrees well with the directly measured value. This work has brought
about the widespread use of the indirect method for evaluating eCE experimentally. Chen et al. [53] found the directly
measured ∆Tad in nanocrystalline Ti-Ni-Cu SMA is consistent with ∆Tad from the indirect method. However, Pataky
et al. [55] demonstrated that the directly measured ∆Tad is much lower than the temperature change calculated by
the Maxwell or Clausius-Clapeyron relations. Similarly, Qian et al. [56] measured the eCE in CuAlZn and CuAlMn
SMAs under compression, and showed that ∆Tad estimated by the indirect method is nearly three times as large as
the directly measured one. Experimental results indicate the discrepancy in ∆Tad from the indirect and direct method,
resulting in some misunderstandings and disputes about the eCE in the same material, similar observations have been
reported for electrocaloric effect of ferroelectric materials [57]. It implies that if the stress-strain curves across the
transition point is not measured with a sufficiently small incremental step of temperature, the indirect method may
lead to unrealistic ∆S iso and ∆Tad owing to the possibly incorrect estimation of ∂ε/∂T [20, 51]. In short, the literature
review indicates the calculation method and its effectiveness as a key issue for evaluating eCE by PF simulations.
The indirect method has the merit of calculating both ∆S iso and ∆Tad, whereas the direct method only attains ∆Tad.
However, the indirect method based on the Maxwell relations, which is widely adopted in experimental studies of eCE,
is relatively unexplored in terms of PF simulations. Whether the eCE evaluated by the indirect and direct method using
PFM is consistent with each other remains yet unknown.

In this work, we aim to develop a thermodynamically consistent non-isothermal PFM coupling MT with mechanics
and heat transfer to evaluate eCE using indirect and direct method. The model is derived from a thermodynamic
framework which invokes the microforce theory and the Coleman–Noll procedure. In order to account for the possibly
non-sharp transition in real materials and avoid the problematic calculation due to the non-differentiable energy barrier
function across the transformation temperature, the austenite-martensite transition energy barrier in PFM is introduced
as a smooth function of temperature. The PFM details and their derivation accomplished by a systematic use of
thermodynamic principles are presented in Sect. 2 for both improper and proper MT. Sect. 3 gives an application
of non-isothermal PFM to Mn-22Cu alloy. In Sect. 4, the PFM for both single crystal and polycrystal is numerically
implemented by the finite element method. In Sect. 5, benchmark simulations for reproducing the ferroelastic behavior
and elastocaloric cycle are performed to verify the PFM. In addition, the elastocaloric properties in Mn-22Cu SMAs
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are obtained through the indirect and direct method, and the comparison of ∆Tad calculated from these two methods
are discussed. Sect. 6 gives the conclusive summary.

2. Thermodynamically consistent phase-field model

The phase-field method emerges as a powerful tool for modelling microstructure evolution and predicting eCE in
elastocaloric materials. It describes a microstructure using a set of conserved or non-conserved order parameters (OPs)
that are continuous across the smooth interfacial regions [58], which could implicitly track the positions of interfaces.
For deriving the partial differential equations for the non-isothermal PFM, we consider a closed system of volume Ω

in which a pure material undergoes a first-order phase transformation between austenite and martensite. Noticeably,
the MT could be divided into improper and proper MT. The improper MT is characterized by the displacements of
atoms within a unit cell and is described by soft optical displacement modes (e.g., ceramic materials), where strain
is generated as a secondary effect. The proper MT is a homogeneous stress-free (eigen) strain that characterizes a
change in crystal lattice parameters [59, 60], e.g., fcc to bcc MT in Fe alloys. Therefore, the proper and improper
MT in SMAs should be distinguished and modelled by PFM using different OPs. In 1995, Kartha et al [61] proposed
a phase field theory for the proper MT by using the strain tensor, which is based on a straightforward approach that
uses the Helmholtz free energy defined by the OPs of eigen strain ε0

i j. In addition, the non-conserved OPs ηI are also
chosen to distinguish various phases in SMAs regardless of the improper or proper MT [44].

In this work, non-conserved OPs χ is chosen to describe various phases during MT in SMAs. For the improper
MT, χ is ηI which is chosen to distinguish various phases: ηI = 0 represents austenite and ηI = 1 represents the Ith

martensitic variant. For the proper MT, the OPs χ is the eigen strain ε0
i j, which can directly represent the martensitic

variants and austenite. The following subsections present the complete thermodynamic consistent derivation that
involves balance law, Coleman–Noll analysis, constitutive relations and evolution equations, and Helmholtz free
energy.

2.1. Balance law

• Balance of linear momentum

For the body Ω with a boundary ∂Ω, the quasi-static mechanical equilibrium equation is described by

σ ji, j + bi = 0 in Ω , (4)

ui = ûi on ∂Ωu, σ jin j = t̂i on ∂Ωσ (5)

where σ ji is the Cauchy stress tensor and bi is the body force. Here, we assume bi = 0. The Latin indices (i, j)
run over the range of 1–3. ûi is the displacement prescribed on the boundary ∂Ωu, n j is the outward surface unit
vector, and t̂i is the surface traction on the boundary ∂Ωσ [62].

• Balance of angular momentum

The stress tensor is symmetric, i.e.,
σi j = σ ji. (6)

• Balance of microforce associated with OPs χ

Based on the Gurtin’s microforce theory [63], we assume that there exist a set of forces that accounts for the
phase transition dynamics. These forces are called microforces because they are involved with the local trans-
formation of the material, rather than the macroscopic movements. In this work, the microforce is associated
with the non-conserved OPs χ, describing the phase transformation between austenite and martensite. The
relevant microforce definitions are as follows.

4



ξχ: the microstress,
ξχni: the surface microforce with ni as the unit outer normal to ∂Ω,
ζχ: the internal microforce,
ζχex: the external microforce.

The balance of microforce associated with the phase transformation is written as∫
∂Ω

ξχnidA +

∫
Ω

ζχdV +

∫
Ω

ζχexdV = 0. (7)

By means of the Gauss law, we can obtain the equivalent local microforce balance as

ξ
χ
,i + ζχ + ζχex = 0. (8)

Specifically, for the improper MT (χ = ηI) and proper MT (χ = ε0
k j), the microforces can be written as [64]


ξχ = ξ

ηI
i

ζχ = ζηI for χ = ηI

ζχex = ζηI ex

,


ξχ = ξi jk

ζχ = ζ jk for χ = ε0
k j

ζχex = ζex
jk

. (9)

• Balance of energy

The principle of the balance of energy can be stated as: the rate of change specific internal energy density e is
equal to the sum of power due to external forces and the heat input to the system. In solid with negligible inertia,
the thermal heat flux jhi and the heat source per unit volume qh are considered, and the internal microforce does
not contribute to the energy change.

The first law of thermodynamics can be presented in the form of energy balance equation as∫
Ω

ėdV =

∫
∂Ω

(σ jiu̇ j + ξχχ̇ − jhi )nidA +

∫
Ω

(biu̇i + ζχexχ̇ + qh)dV, (10)

where u j is the displacement, and ni is the unit outer normal to ∂Ω. During loading or unloading, the elas-
tocaloric material will release or absorb the latent heat associated with the stress-induced MT. Herein, qh is the
release/absorb rate of internal heat source from MT, which is only assumed to be related to the evolution rate
(χ̇) of phase transformation [41, 65]. For example, the qh for both ηI and ε0

k j in cubic to tetragonal MT can be
written as

qh =

Q
∑I η̇I for χ = ηI

Qe(ε̇0
11 − ε̇

0
22) for χ = ε0

k j

, (11)

where Q and Qe are the latent heat and play a critical role in the temperature change during MT. By Gauss law
which converts the surface integration into volume one, Eq. 10 can be rewritten as∫

Ω

ėdV =

∫
Ω

(σ jiε̇i j + σ ji,iu̇ j + ξ
χ
,i χ̇ + ξχχ̇,i − jhi,i + biu̇i + ζχexχ̇ + qh)dV, (12)

where ε̇i j is the total strain rate with ε̇i j = 1
2 (u̇i, j + u̇ j,i). Then, combining Eqs. 4, 6 and 8, as well as considering

that the equation holds for any arbitrary volume, the energy balance equation in the local form reads

ė = σi jε̇i j + ξχχ̇,i − ζ
χχ̇ − jhi,i + qh. (13)
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2.2. Constitutive relations and evolution equations

• Second law of thermodynamics

For the non-isothermal system, the second law of thermodynamics or entropy inequality, combining the global
entropy balance with the Clausius–Duhem inequality [66] for the volume Ω, is expressed as∫

Ω

ṡ dV +

∫
∂Ω

jhi
T

nidA −
∫

Ω

qh

T
dV ≥ 0 (14)

where s is the specific entropy per unit volume and T is the temperature. Converting the surface integration in
Eq. 14 into volume integration and considering its validity in any volume, we can obtain

ṡ +
( jhi

T

)
,i
−

qh

T
≥ 0. (15)

• Free energy imbalance

Herein, the Helmholtz free energy is chosen as a proper thermodynamic potential in the non-isothermal system.
The Helmholtz free energy density f per unit volume is defined by

f = e − T s (16)

Taking time derivatives at both sides, we get the relation

1
T
∂ f
∂t

=
1
T
∂e
∂t
−

s
T
∂T
∂t
−
∂s
∂t
. (17)

Substituting the internal energy balance equation Eq. 13 and the second law of thermodynamics Eq. 15 into the
above relation Eq. 17, we can get an inequality

1
T
∂ f
∂t
≤

1
T
σi jε̇i j +

1
T

(
ξχχ̇,i − ζ

χχ̇
)
−

s
T
∂T
∂t

+ jhi
( 1
T

)
,i

(18)

the inequality in Eq. 18 is referred as the free energy imbalance. It plays an analogous role to Eq. 15 in placing
restrictions on the constitutive relations.

• Coleman–Noll type analysis

In order to close the model, the constitutive relations for the Cauchy stress, the internal energy density, the
entropy density, the heat flux, and the microforces should be provided. In this part, we derive the explicit form
of the constitutive relations and the kinetic equations in terms of a thermodynamic potential. In this derivation,
the Coleman–Noll argument [67] is applied so that the resulting constitutive relations will be thermodynamically
consistent. Invoking Truesdell’s principle of equipresence [68], it is reasonable to assume that f , s, e, σi j, jhi ,
ξχ and ζχ depend on εi j, χ, χ̇, χ,i, T , T,i. Specifically, the Helmholtz free energy density f can be written as

f = f (εi j, χ, χ̇, χ,i,T,T,i) (19)

The time derivative of f and the chain rule lead to

∂ f
∂t

=
∂ f
∂εi j

∂εi j

∂t
+
∂ f
∂χ

∂χ

∂t
+
∂ f
∂χ̇

∂χ̇

∂t
+
∂ f
∂χ,i

∂χ,i

∂t
+
∂ f
∂T

∂T
∂t

+
∂ f
∂T,i

∂T,i
∂t

. (20)

Now substituting Eq. 20 into the free energy imbalance Eq. 18, and grouping terms together, we can get

1
T

( ∂ f
∂εi j
−σi j

)
ε̇i j +

1
T

(∂ f
∂χ

+ ζχ
)
χ̇ +

1
T
∂ f
∂χ̇

∂χ̇

∂t
+

1
T

( ∂ f
∂χ,i
− ξχ

)
χ̇,i +

1
T

( ∂ f
∂T

+ s
)
Ṫ +

1
T
∂ f
∂T,i

Ṫ,i − jhi
( 1
T

)
,i
≤ 0 (21)
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Here we provide an analysis of Eq. 21 by invoking the arguments made by Coleman and Noll [67], and notice
that Eq. 21 is linear with respect to ε̇i j, ∂χ̇/∂t, χ̇,i, Ṫ , Ṫ,i. Hence, to satisfy Eq. 21 in any admissible ther-
modynamics process, the coefficients of linear terms must vanish and thus these constitutive relations can be
obtained

σi j =
∂ f
∂εi j

, ξχ =
∂ f
∂χ,i

,
∂ f
∂χ̇

= 0, s = −
∂ f
∂T

,
∂ f
∂T,i

= 0. (22)

With the relations in Eq. 22, f is independent of χ̇ and T,i, and so Eq. 19 can be rewritten as f = f (εi j, χ, χ,i,T ).
Then, the left nonlinear terms in Eq. 21 are reduced to

1
T

(∂ f
∂χ

+ ζχ
)
χ̇ − jhi

( 1
T

)
,i
≤ 0. (23)

• Evolution equations

The inequality in Eq. 23 can be satisfied by assuming the following relations

χ̇ = −L
(
∂ f
∂χ

+ ζχ
)

(24)

jhi = κi j

(
1
T

)
, j

(25)

where positive L and positive semi-definite κi j are coefficients with respect to temperature. Further, combining
Eqs. 8, 22 with 24, the evolution equations for non-conserved OPs χ can be written as

χ̇ = −L
∂ f
∂χ
−

(
∂ f
∂χ,i

)
,i
− ζχex

 . (26)

The Eq. 26 coincides with the general Allen–Cahn equation [69]. In addition, the heat flux equation reads as

jhi = −Ki jT, j (27)

where Ki j = κi j/T 2 is a tensor representing the thermal conductivity.

2.3. Helmholtz free energy

In the non-isothermal PFM, Helmholtz free energy density f of the system with microstructure evolution consists
of the chemical free energy density f chem1 + f chem2, the gradient free energy density f grad, and the elastic energy
density f ela, i.e.,

f (εi j, χ, χ,i,T ) = f chem1 + f chem2 + f grad + f ela. (28)

2.3.1. Improper MT
The chemical free energy or Landau free energy f chem1 of a closed system containing austenite and martensite is

determined by the distribution of OPs ηI . The minimum energy states at ηI = 0 and η = 1 represent the austenite
phase and the corresponding martensite variant I, respectively. The associated chemical energy can be constructed as
a Landau polynomial [70], i.e.,

f chem1 = A(T )
I∑
η2

I − B(T )
I∑
η3

I + C(T )
( I∑

η2
I

)2
(29)

where A(T ), B(T ), and C(T ) are temperature-dependent coefficients.
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The gradient energy is often constructed to account for the interface between different phases, which can be
expressed in terms of OPs’ gradient, i.e.,

f grad =
1
2
βη(T )

I∑
ηI,iηI,i (30)

where βη(T ) is the gradient energy coefficient depending on temperature.
The total strain tensor εi j is given as

εi j = εela
i j + εtr

i j + εth
i j (31)

where εela
i j is the elastic strain, εtr

i j is the transformation strain generated by structural transformation, and εth
i j is the

thermal strain caused by temperature change. Therefore, the elastic energy can be expressed as

f ela =
1
2

Ci jklε
ela
i j ε

ela
kl =

1
2

Ci jkl(εi j − ε
tr
i j − ε

th
i j )(εkl − ε

tr
kl − ε

th
kl) (32)

in which Ci jkl =
∑I Φ(ηI)C

ηI
i jkl +

(
1 −

∑I Φ(ηI)
)
CA

i jkl with the interpolation function Φ(ηI) = η3
I (10 − 15ηI + 6η2

I ). CηI
i jkl

and CA
i jkl are the elastic tensors of the Ith martensitic variant and austenite, respectively.

The chemical energy f chem2 represents the main concave term of the free energy and is related to the heat conduc-
tion (e.g., the internal energy density from temperature change). The complete and general form of the f chem2 can be
formulated as

f chem2 = −c1T ln(T + 1) −
1
2

c2T 2 −
1
6

c3T 3 + · · · (33)

where ci =
∑I Φ(ηI)c

ηI
i + (1 −

∑I Φ(ηI))cA
i with cηI

i and cA
i as the ith coefficients for the specific heat (Eq. 34) of

Ith martensitic variant and austenite, respectively. Meanwhile, the specific heat per unit volume is expressed as a
polynomial function of temperature, i.e.,

cv = c1 + c2T + c3T 2 + · · · . (34)

In addition, in order to derive the general kinetic equation for temperature T , combining Eqs. 8, 13, 22 and 27, the
evolution equation of e reads as

ė = σi jε̇i j +

(
∂ f
∂ηI,i

η̇I

)
,i

+ ζηI exη̇I +
(
Ki jT, j

)
,i

+ qh. (35)

Neglecting the first three terms on the right side of Eq. 35, one yields the common governing equation for temper-
ature as

cvṪ =
(
Ki jT, j

)
,i + qh. (36)

2.3.2. Proper MT
As an example here, the OPs of eigen strain ε0

i j is considered to model the proper MT. The corresponding chemical
free energy density f chem1 describing the proper MT can be represented as [71]

f chem1 = Q1e2
1 + Q2(e2

2 + e2
3) − Q3(e3

3 − 3e3e2
2) + Q4(e2

2 + e2
3)2 + Q5(e2

4 + e2
5 + e2

6), (37)

where Q1 and Q5 are bulk and shear modulus, respectively. The coefficients Q2, Q3, and Q4 are Landau constants
determining the transition temperature T0 and the transformation strains in the product phase. ei are the symmetry-
adapted strain defined in term of the transformation strains as

e1 = (ε0
11 + ε0

22 + ε0
33)/
√

3, e4 = ε0
12,

e2 = (ε0
11 − ε

0
22)/
√

2, e5 = ε0
23,

e3 = (2ε0
33 − ε

0
22 − ε

0
11)/
√

6, e6 = ε0
13.

(38)
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In addition, the f chem2 is similar to the case of the improper MT in Eq. 33.
The austenite and martensite can be described by the eigen strain ε0

i j. For instance, ε0
23 = ε0

13 = ε0
12 = 0 is

set for a cubic to tetragonal MT. Further, the austenite (cubic) is represented as (ε0
11 = 0, ε0

22 = 0, ε0
33 = 0), the

three tetragonal martensitic variants are described by tet1 = (−ε0, 1/2ε0, 1/2ε0), tet2 = (1/2ε0, − ε0, 1/2ε0), and
tet3 = (1/2ε0, 1/2ε0, − ε0), where ε0 is the magnitude of the spontaneous strain at a given temperature.

Similarly, the gradient energy density can be written as

f grad =
1
2
βe(T )

3∑
i=1

3∑
j=1

ε0
ii, jε

0
ii, j, (39)

where βe(T ) is the strain gradient coefficient. The elastic strain energy density can be written as

f ela =
1
2

Ci jkl(εi j − ε
0
i j − ε

th
i j )(εkl − ε

0
kl − ε

th
kl). (40)

3. Application of non-isothermal PFM to Mn-22Cu alloy

In this section, we apply the above non-isothermal phase-field framework to a model Mn-22Cu alloy and present
the detailed formulations for the total free energy, constitutive relations, and governing or evolution equations. In Mn-
22Cu SMA, there exist a face-centered cubic high-symmetry austenitic phase at high temperature and three variants
of a face-center tetragonal low-symmetry martensitic phase at low temperature [72, 73].

3.1. Improper MT

The three martensitic variants are energetically equivalent. Herein we choose non-conserved OPs ηI (I = 1, 2, 3)
to represent the improper MT in PFM, and the value of ηI varies from 0 to 1.

3.1.1. Chemical free energy density
The chemical free energy f chem1 represents the chemical driving force of the MT in a stress-free Mn-22Cu alloy,

which can be expressed as a Landau 2-3-4 polynomial

f chem1 = A(T )(η2
1 + η2

2 + η2
3) − B(T )(η3

1 + η3
2 + η3

3) + C(T )(η2
1 + η2

2 + η2
3)2 (41)

where A(T ), B(T ) and C(T ) are positive temperature-dependent coefficients, expressed as A(T ) = 16∆G∗, B(T ) =

A(T ) − 4∆Gm and C(T ) = 0.5A(T ) − 3∆Gm. ∆G∗ is the temperature-dependent energy barrier between austenite and
martensite. ∆Gm is the driving force of MT. The temperature-dependent profile of f chem1 in non-isothermal system
and the different models for austenite-martensite energy barriers are shown in Fig. 1a and b, respectively. ηI = 0 or 1
represents the system stable or metastable from the principle of minimization of the free energy. More explicitly, OPs
ηI = 1 indicates the Ith martensitic variant and ηI = 0 (I = 1, 2, 3) represents austenite.

Since the MT is a first-order diffusionless structural transformation and is not sharp in real materials [74], there
are several ways in the literature [40, 44, 46] to formulate the energy barrier function ∆G∗. For instance, Cui et al. [44]
proposed that

∆G∗ =

0.3Q/32 T ≤ T0

[0.8 + 0.06(T − T0)]Q/32 T > T0
, (42)

Sun et al. [46] proposed that

∆G∗ =

Q/
[
32

(
k1 − k2(T − T0)

)]
T ≤ T0

k3Q(T − T0)/T0 + Q/32k1 T > T0
, (43)
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Fig. 1. (a) Chemical free energy density as a function of order parameter. (b) Energy barrier functions from literature [40, 44, 46] compared with
what we propose in this work.

and Cissé et al. [40] proposed that

∆G∗ =

Qexp
[
a1(T − T0)/T0

]
T ≤ T0

Qexp
[
a2(T − T0)/T0

]
T > T0

(44)

where Q is the specific latent heat and T0 is the chemical equilibrium temperature. It can be seen from Fig. 1b that the
first derivative of all these ∆G∗ functions [40, 44, 46] are discontinuous at T0, leading to the problematic calculation of
driving force and eCE at T0. Herein, we formulate the energy barrier as a smooth function of temperature. Specifically,
we take advantage of the hyperbolic tangent function to modify the piecewise ∆G∗ function, i.e.,

∆G∗ =
0.3Q
64

[
1 − tanh

(T − T0

δT

)]
+

[
0.8 + 0.06(T − T0)

]
Q

64

[
1 + tanh

(T − T0

δT

)]
. (45)

∆Gm is also a continuous function of temperature, i.e.,

∆Gm =
Q(T − T0)

T0
. (46)

It should be noted that δT is a new parameter associating with the energy barrier, which could be adjusted accord-
ing to the transformation temperature window from experimental results. In this work, we assume a moderately sharp
transition and set δT = 2 K. As shown in Fig. 1b, compared to the functions proposed in literature [40, 44, 46], our
modified energy barrier function is continuous and differentiate at T0. This modification could resolve the difficulty
of calculating eCE by indirect and direct method at the transition point.

In addition, the internal energy density from temperature change f chem2 reads

f chem2 = cvT ln(T + 1) (47)

where cv =
∑3

I=1 Φ(ηI)c
ηI
v + (1−

∑3
I=1 Φ(ηI))cA

v is the specific heat per unit volume. cηI
v and cA

v are the specific heat per
unit volume of the Ith martensitic variant and austenite, respectively. The difference between cηI

v and cA
v is insignificant

for Mn-22Cu alloy so that they approximately take the same values.

3.1.2. Gradient energy density
The gradient energy density can be expressed as a function of the OPs’ gradient [60], i.e.,

f grad =
1
2
βη(T )

3∑
I=1

ηI,iηI,i (48)

where βη(T ) is the gradient energy coefficient related to the interfacial energy and interface thickness [75].
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3.1.3. Elastic strain energy density
The elastic strain energy density in Mn-22Cu alloys can be given as

f ela =
1
2

Ci jkl(εi j − ε
tr
i j − ε

th
i j )(εkl − ε

tr
kl − ε

th
kl) (49)

where Ci jkl is the component of the fourth-order elastic tensor. In this work, ci j in Table 1 denotes the Voigt notation
of Ci jkl, i.e., c11 = C1111, c12 = C1122, c44 = C1212.

We incorporate εtr
i j and εth

i j into the PFM. εtr
i j can be expressed as the stress-free eigen strain, which is in general

defined as
εtr

i j = ε00
i j (1)η1 + ε00

i j (2)η2 + ε00
i j (3)η3. (50)

ε00(i) (i = 1, 2, 3) is determined by the orientation relationship and lattice distortion between martensite and austenite
with regard to the FCC-FCT MT. It can be simplified to [60]

[
ε00

i j (1)
]

=


ε3 0 0
0 ε1 0
0 0 ε1

 , [
ε00

i j (2)
]

=


ε1 0 0
0 ε3 0
0 0 ε1

 , [
ε00

i j (3)
]

=


ε1 0 0
0 ε1 0
0 0 ε3

 (51)

where ε1 = (a − ac)/ac and ε3 = (c − ac)/ac. We choose ε1 = 0.01 and ε3 = −0.02 [44] in this work.
In addition, the thermal strain is computed as

εth
i j = αi j(T − T ref) (52)

where αi j =
∑3

I=1 Φ(ηI)αηIδi j +
(
1 −

∑3
I=1 Φ(ηI)

)
αAδi j is a tensor representing thermal expansion, in which αηI and

αA are thermal expansion coefficients for the Ith martensitic variant and austenite, respectively. T ref is the reference
temperature at which there is zero thermal strain. In the PF simulations, T ref is the initial temperature.

3.1.4. Constitutive relations for PFM of Mn-22Cu alloy
Using Eq. 22, the constitutive relations for PFM of Mn-22Cu alloy is given by

σi j =
∂ f
∂εi j

= Ci jkl(εkl − ε
tr
kl − ε

th
kl)

ζ
ηI
i =

∂ f
∂ηI,i

= βη(T )ηI,i

e = f + T s = f − T
∂ f
∂T

jhi = −Ki jT, j

(53)

The internal energy density e for Mn-22Cu alloy can be simplified as

e = cv
T 2

T + 1
+

(
A(T ) − T

∂A(T )
∂T

) 3∑
I=1

η2
I −

(
B(T ) − T

∂B(T )
∂T

) 3∑
I=1

η3
I +

(
C(T ) − T

∂C(T )
∂T

) ( 3∑
I=1

η2
I

)2

+
1
2

Ci jkl

εela
i j − T

∂εela
i j

∂T

 εela
kl +

1
2

(
βη(T ) − T

∂βη(T )
∂T

) 3∑
I=1

ηI,iηI,i .

(54)

3.1.5. Governing equations for PFM of Mn-22Cu alloy
We adopt Eq. 26 to govern the spatial and temporal evolution of ηI , which is analogous to the time-dependent

Ginzburg-Landau (TDGL) kinetic equation [76, 77]. Further, using Eqs. 35 and 54, and assuming quasi-static me-
chanics, the temperature evolution equation in non-isothermal PFM can be obtained. Finally, The governing equations
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are deduced and summarized as

σi j, j = 0

η̇I = −Lη
(
∂ f chem

∂ηI
+
∂ f ela

∂ηI
− βηηI,ii − ζ

ηI ex
)

ė =

βη 3∑
I=1

ηI,iη̇I


,i

+ ζηI exη̇I + Ki j,iT, j + Ki jT,i j + Q
3∑

I=1

η̇I .

(55)

where Lη is the kinetic coefficient characterizing the interfacial migration.

3.2. Proper MT

For the proper MT, the OPs ε0
ii are used to directly describe the austenite and martensite. The corresponding

chemical free energy or Landau free energy density for 2D domain in cubic-tetragonal MT of Mn-22Cu can be
represented as [78]

f chem1 =
1
2

Q1e2
1 +

1
2

Q2(T )e2
2 +

1
2

Q3e2
3 −

1
4

Q4(T )e4
2 +

1
6

Q5(T )e6
2, (56)

where e1 = (ε0
11 + ε0

22)/
√

2, e2 = (ε0
11 − ε

0
22)/
√

2, and e3 = (ε0
12 + ε0

21)/2. These coefficients (Q1 to Q5) in Landau
free energy could be obtained by fitting the experimental results. For cubic to tetragonal MT, the eigen strains for
martensitic variants are

ε00 =

(
−ε0 0

0 ε0

)
for V1, or

(
ε0 0
0 −ε0

)
for V2, (57)

where ε0 = 0.02 is the transformation strain in Mn-22Cu. Here, (e1 = 0, e2 = 0, e3 = 0) represents for austenite, and
(e1 = 0, e2 = 0.04, e3 = 0) represents for martensitic variant 1 (V1), and (e1 = 0, e2 = −0.04, e3 = 0) represents
for martensitic variant 2 (V2). For a first-order transition, the coefficients of Q4 and Q5 is positive and is needed for
stability [79]. Here, we assume that the value of Q2(T ),Q4(T ),Q5(T ) are similar to A(T ), B(T ),C(T ) in this work
owing to the lack of experimental value for Mn-22Cu. Thus, Q2(T ),Q4(T ),Q5(T ) are assumed as

Q2(T ) = A(T )/(2ε0)2

Q4(T ) = B(T )/(2ε0)4

Q5(T ) = C(T )/(2ε0)6.

(58)

Similar to the case of the improper MT, the internal energy density, gradient energy density, and elastic strain
energy density can be written as

f chem2 = cvT ln(T + 1),

f grad =
1
2
βe

[(
ε0

11,1

)2
+

(
ε0

11,2

)2
+

(
ε0

22,1

)2
+

(
ε0

22,2

)2
]
,

f ela =
1
2

Ci jkl(εi j − ε
0
i j − ε

th
i j )(εkl − ε

0
kl − ε

th
kl),

(59)

respectively.
The constitutive relations of proper MT PFM are analogous to Eq. 53, and the governing equations can be written

as

σi j, j = 0

ε̇0
ii = −Le

∂ f chem

∂ε0
ii

+
∂ f ela

∂ε0
ii

− βeεii, j j − ζ
ex
ii


ė =

βe
2∑

i=1

εii, jε̇
0
ii


, j

+ ζex
ii ε̇

0
ii + Ki j,iT, j + Ki jT,i j + Qe(ε̇0

11 − ε̇
0
22).

(60)
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4. Finite-element implementation

Herein, we use finite element method to solve the governing equations in Eqs. 55 and 60, and convert the strong
forms into weak forms by introducing a test function. Note that the degrees of freedom ηI and ε0

ii are replaced by the
generalized degree of freedom χ in the finite-element implementation. Therefore, the degrees of freedom are set as
u1, u2, u3, χ,T . Assuming Ki j is a constant K in Eqs. 55 and 60, the weak forms are formulated as

0 =

∫
Ω

σi jφi, jdv −
∫
∂Ω

σi jn jφids

0 =

∫
Ω

[
ψ
( χ̇

L
+
∂ f chem

∂χ
+
∂ f ela

∂χ
− ζχex

)
+ ψ,iβχ,i

]
dv −

∫
∂Ω

ψβχ,inids

0 =

∫
Ω

[
ϑ
(
ė − qh − ζχexχ̇

)
+ ϑ,i

(
β
∑

χ,iχ̇ + KT,i
)]

dv −
∫
∂Ω

ϑ
(
β
∑

χ,iχ̇ni + KT,ini

)
ds,

(61)

where φi, ψ and ϑ are the test function for ui, χ and T , respectively. Note that the surface terms (σi jn j and T,ini) in
Eq. 61 represent the surface traction and heat flux boundary conditions. ni is the normal vector of the boundary ∂Ω.

By introducing the shape functions for independent variables and test functions, the discretized equations can be
written as

ui = NLuL
i χ = NLχL χ̇ = NLχ̇L

I T = NLT L

Ṫ = NLṪ L φi = NLφL
i ψ = NLψL ϑ = NLϑL (62)

where L denotes the node number. NL is the shape function. Here we assume quasi-static mechanics, and neglect ζχex,
and do not consider the dynamic PFM. After the insertion of Eq. 62 into Eq. 61, the following elemental residuals can
be obtained

RL
ui

=

∫
Ω

σi jNL
, jdv −

∫
∂Ω

NLσi jn jds

RL
χ =

∫
Ω

[
NL

(
1
L
χ̇ +

∂ f ela

∂χ
+
∂ f chem

∂χ

)
+ βχ,iNL

,i

]
dv −

∫
∂Ω

NLβχ,inids

RL
T =

∫
Ω

[
NL

(
ė − qh

)
+ NL

,i

(
β
∑

χ,iχ̇ + KT,i
)]

dv −
∫
∂Ω

NL
(
β
∑

χ,iχ̇ni + KT,ini

)
ds.

(63)

With regard to the time dependence of the residuals, we use the implicit backward Euler method to realize the
time discretization [80]. The residual equation for the current time step tn+1 is

RL
n+1 = RL

dJ
n+1 ,

dJ
n+1 − dJ

n

∆t

 , (64)

where (dJ
n+1 − dJ

n)/∆t = ḋJ
n+1 and ∆t is time step. dJ

n+1 should be solved in this equation. For solving these non-linear
equations, the Newton iteration scheme is performed at each time step. The corresponding iteration matrix is

SLJ = KLJ +
1
∆t

DLJ , (65)

where KLJ is the stiffness matrix and DLJ is the damping matrix. We adopt the open source Multiphysics Object
Oriented Simulation Environment (MOOSE) [81] to implement this PFM.

In order to evaluate the eCE of polycrystalline material, we make use of the rotation matrix to establish the
polycrystalline PFM. The rotation matrices spinning around the x-axis, y-axis and z-axis are given by

Q
x

=


1 0 0
0 cosα sinα
0 −sinα cosα

 , Q
y

=


cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

 , Q
z

=


cosγ sinγ 0
−sinγ cosγ 0

0 0 1

 (66)
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Table 1. Material parameters and simulation parameters of Mn-22Cu for improper and proper MT PFM

parameter name value

c11 elastic constant 76.588 GPa
c12 elastic constant 14.588 GPa
c44 elastic constant 31 GPa
T0 chemical equilibrium temperature 245 K
Q latent heat for improper MT 4.84 × 107 J/m3

Lη kinetic coefficient for improper MT 50 m3/s/J
Le kinetic coefficient for proper MT 1 m3/s/J
βη gradient energy coefficient for improper MT 2.5×10−9 J/m
βe gradient energy coefficient for proper MT 1×10−9 J/m
K thermal conductivity 40 J/m/s/K
ρ density 7500 kg/m3

cv specific heat per unit volume 2.64×106 J/m3/K
α thermal expansion coefficient 10−5 K−1

where α, β, γ are the Euler angles. The three-dimensional rotation matrix Q is given by

Q = Q
z
Q

y
Q

x
(67)

The relationship between the global and the local variables are

u = Q u′

σ = Kσσ
′

ε = Kε ε
′

(68)

in which u, ε and σ are the values in the global coordinate, while u′, ε′ and σ′ are values in the grain local coordinate.
Kσ and Kε are the stress rotation matrix and strain rotation matrix, respectively. The eigen strain (εtr

i j) and elastic
tensor (Ci jkl) should be rotated by Kσ and Kε. It is not difficult to deduce Kε and C′ from Eq. 68 that

Kε = F Kσ F−1

C′ = Kσ C K−1
ε

(69)

where F is a diagonal matrix with diagonal element values (1, 1, 1, 2, 2, 2). The stress rotation matrix (Kσ) is written
in Appendix A.

5. Simulation results and discussions

In this work, we utilize a 2D domain to calculate the eCE for reducing computation cost. The Mn-22Cu material
parameters used for PF simulations are taken from literature [44] and summarized in Table 1. The material parameters
of austenite and martensite in Mn-22Cu are regarded to be the same owing to their negligible differences. The finite
element mesh size should be smaller than the minimum value of interface thickness (δ =

√
β/2∆G∗ ≈ 14.8 nm)

between austenite and martensite or between different austenite variants, thus the mesh size is chosen as ∆l = 10 nm.
In the calculation of eCE by indirect and direct method, the uniaxial compressive stress is applied in the y-direction
(favor the martensitic variant 2 (V2) formation), the left and right boundaries are set mechanically free (inserts in
Fig. 6a and 7a), and adiabatic boundary conditions are specified by assuming zero heat flux.
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Fig. 2. (a) Stress-strain behaviors and (b) temperature change evolution under different temperatures by using the two models. ”OP-η” represents
PFM with OPs η (improper MT) and ”OP-ε” PFM with OPs ε0

ii (proper MT).

5.1. Comparison of two models for improper and proper MT

The MT behavior and eCE in Mn-22Cu are modelled through two models, the ”OP-η” model using OPs ηI for
improper MT and ”OP-ε” model using OPs ε0

ii for proper MT. As shown in Fig. 2, under a 500 MPa uniaxial com-
pressive stress, the stress-strain behavior and the temperature change during MT between these two models show
good agreement. The consistency obviously prove the validity and generality of PF simulation in MT and eCE be-
tween the two models. The distinction in the temperature change during the beginning of loading is caused by the
difference in PF kinetic coefficient L. In addition, the results of stress-strain behavior and microstructure evolution
are consistent between these two models. In fact, Sun et al. [45, 46] have utilized the above two PFMs to simulate
the cubic-tetragonal MT in SMA. Besides, the OPs ηI are utilized in PFM built by Khachaturyan et al. [59, 60, 82]
to model the proper and improper MT. This shows the correctness and validity of using OPs η to model the proper or
improper MT at least in term of phenomenological results.

The main discrepancy between the two models is the choice of OPs. The eigen strain ε0
i j for the two models is

ε00
i j (I)ηI and ε0

ii, respectively. Therefore, the transformation strains in the two models are all 0.02 (ηI = 1 for the
former, and ε0

ii = −0.02 for the latter), when the austenite to martensite transformation completely occurs. For the
cubic-tetragonal MT in Mn-22Cu, the two models are equivalent in PF simulation results. Note that the following
results of MT behavior and eCE in PF simulation are based on the ”OP-η” model.

5.2. Benchmark simulation of ferroelastic behavior

Phase transformation, mainly including stress- and temperature-induced MT, would occur in Mn-22Cu SMAs
under external fields, and leads to extraordinary macroscopic behaviors, e.g., the shape memory effect and superelas-
ticity. In order to validate the model, benchmark simulations including that stress- and temperature-induced MT in
isothermal (see Fig. 3) and non-isothermal PFM (see Fig. 4), and thermodynamic cycle (see Fig. 5) are carried out.
For the single grain case in Fig. 3, austenite (A) with a small portion of V2 martensite embryo is set as the initial
condition (inset of Fig. 3c). Figs. 3a and b show the stress- and temperature-induced MT in isothermal PF simulation,
respectively. In Fig. 3a, a large enough compressive stress, along the easy axis of V2, would transform the initial A
into V2. The mean value of η2 (η2) increases as the stress is imposed and decreases as the stress is released, indicating
the conventional MT during loading and the inverse MT during unloading. In Fig. 3b, upon cooling, high-temperature
austenite would turn into low-temperature martensite, or vice versa. The superelasticity effect during stress-induced
MT is also clearly presented in Fig. 3c. Upon stress loading, the small martensitic embryo (red stripes) grows to be a
large martensitic domain owing to the stress-induced MT. Upon unloading, the austenitic embryo (blue stripes) grows
and the original state restores.
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Fig. 4. (a) The stress-strain response of polycrystal under T = 245 K and σ = 300 MPa. Blue and red colors represent A and V2, respectively. (b)
Temporal evolution of temperature and ηI .

Simulating, the superelasticity effect also can be used as a benchmark for validating the non-isothermal PFM
for polycrystalline, as shown in Fig. 4. The polycrystalline model size is 1000 nm × 1000 nm and has nine grains
with random orientations. The maximum compressive stress (along the easy axis of V2) is 300 MPa and the initial
temperature is 245 K. During the loading, the strain increases linearly with the stress at first, corresponding to the
elastic response of the austenite. In this regime, there is no MT and temperature and η2 change a little. As the
stress increases to 230 MPa, the stress-induced MT occurs, V2 bands start to grow, and temperatures apparently
changes (inset of Fig. 4a). As shown in Fig. 4b, the temperature and η2 rapidly rise and then recover to the initial
values upon unloading. The temperature is increased from 245 to 255 K, resulting in ∆Tad = 10 K. The temperature
distribution is almost homogeneous because of the high thermal conductivity and no thermal barrier in the domain
wall. The temperature is found to be approximately proportional to order parameters, which is consistent with the
results reported in [44].

The refrigeration cycle of eCE is schematically shown in the insert of Fig. 5. When a SMA in the austenitic
(cubic) phase is axially stressed or strained, an exothermic austenitic-martensitic transformation occurs, which under
adiabatic conditions makes the material heated up (¬ in Fig. 5). This heated material then releases heat to the sur-
roundings and cools down to the ambient temperature ( in Fig. 5). When the stress is removed, the crystal structure
transforms back to the austenitic phase (® in Fig. 5). Finally, the material cools down and is now able to absorb heat
from the surroundings (¯ in Fig. 5). The simulated temperature vs time profile under loading and unloading is also
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shown in Fig. 5, showing good agreement with the above process from ¬ to ¯. These simulation results of MT and
thermodynamic cycle indicate that eCE can be soundly handled by the isothermal and non-isothermal PFM.

5.3. Indirect method

The indirect method is usually based on the data of superelastic response, such as the stress-strain curves at various
temperatures or strain-temperature curves at various stresses. According to the Eqs. 2 and 3, indirect method is used
to calculate the isothermal entropy change ∆S iso and adiabatic temperature change ∆Tad by means of the isothermal
PFM. We investigate the eCE under 50, 100, 150, 200, 250, and 300 MPa compressive stress, which is lower than the
maximum stress that Mn-22Cu alloy can endure.

5.3.1. eCE of single crystal
The single crystal model size is 300 nm × 500 nm. The typical stress-strain curves at different temperatures

from 215 to 275 K are shown in Fig. 6a, which clearly indicates three stages involving elastic stage in austenite,
transformation stage, and elastic stage in martensite. A minimum critical transformation stress is found at T = 245 K,
because the energy barrier between austenite and martensite vanishes there. Fig. 6b shows the strain-temperature
curves at different compressive stresses from 50 to 300 MPa. During the loading of 100 MPa stress, the strain firstly
notably increases and then significantly decreases, indicating that both the inverse and conventional MT occur. By
means of the Eqs. 2 and 3, ∆S iso and ∆Tad can be calculated, as summarized in Figs. 6c and d, respectively. Large
∆S iso and ∆Tad observably appear near the transformation temperature (245 K). This is caused by the first-order phase
transformation which releases or absorbs lots of heat at the transformation temperature.

The values of ∆S max (J/kg/K) and ∆Tmax (K) at varied stresses are: ∆S max = −3.3 and ∆Tmax = 2.3 for σ =

50 MPa, ∆S max = −13.5 and ∆Tmax = 9.5 for σ = 100 MPa, ∆S max = −27.8 and ∆Tmax = 19.5 for σ = 150 MPa. The
maximum ∆Tad 9.5 K at 100 MPa is consistent with the experimentally measured value of 11.6 K [56]. It is found
that ∆S max and ∆Tmax do not increase further for the stress beyond 150 MPa, because of the already complete MT
under 150 MPa stress. However, the operating temperature window is effectively broadened if the stress increases.
In addition, there exists an inverse/negative eCE, i.e., positive ∆S iso or negative ∆Tad under an external stress. This
is a consequence of the inverse MT occurring in the case of co-existed austenite and martensite when the ambient
temperature is below T0 [8, 83, 84]. The further explanation in terms of microstructure for the negative eCE will also
be discussed in Fig. 7e.
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Fig. 6. (a) Stress-strain responses of single crystal under 500 MPa compressive stress at various temperatures. (b) Strain-temperature curves under
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5.3.2. eCE of polycrystal
Fig. 7 shows the simulation results for eCE of polycrystal. ∆Tad = 3.5 K for σ = 100 MPa is close to the

measured 3.9 K under 4.0% strain [56]. In general, ∆S iso and ∆Tad in polycrystalline are lower than that in single
crystal. The internal interaction caused by the grain boundary, grains with adverse orientations, and the large negative
eCE together contribute to the low ∆S iso and ∆Tad in polycrystal. Besides, the large negative ∆Tad of polycrystal
(-13 K for 200 MPa) in Fig. 7d results from the inverse MT and the local large compressive stress due to the grain
boundary, as shown the microstructure evolution in Figs. 7e and f. Below 245 K, the initial phase is martensite, and
the inverse MT would occur under a large enough compressive stress. In the case of 150 MPa and 241 K (Fig. 7e), V1
is changed into A at first, and then into V2. This inverse MT absorbs an amount of heat, resulting in the large inverse
eCE. At 248 K (Fig. 7f), the initial austenite phase is transformed into V2 accompanied with a small portion of V1.

5.4. Direct method

In experiment or numerical simulation, the straightforward way to assess eCE is the direct method, which directly
measures the ∆Tad during loading and unloading. Cissé et al. [40] and Sun et al. [46] used the non-isothermal PFM to
directly calculate ∆Tad in CuAl11Be2 and FePd SMAs, respectively. Here we use the modified non-isothermal PFM
to evaluate eCE in Mn-22Cu alloys based the direct method. The applied compressive stress is 100 MPa, the loading
rate is 0.2 MPa/ns, and other conditions are consistent with the indirect method for a comparison.
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5.4.1. eCE of single crystal
For single crystal, the strain-stress response and the adiabatic temperature change calculated by the direct method

are shown in Fig. 8. It can be found in Fig. 8a that the sample almost stays at the linear elastic regime at 250 K greater
than the equilibrium temperature. As the initial temperature decreases to 245 K, the critical transformation stress
decreases and the area with MT increases, leading to in a larger ∆Tad (Fig. 8b). The transformation strain is 0.8% at
245 K under 100 MPa compressive stress and the corresponding ∆Tad is around 8.5 K. ∆Tad in Fig. 8b shows a strong
temperature dependence. In other words, controlling the ambient temperature to obtain high transformation strain is
a feasible neat idea to improve the eCE of SMAs.
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5.4.2. eCE of polycrystal
The settings of polycrystalline model are consistent with those in the indirect method. Fig. 9a and b show the

stress-strain response and ∆Tad at different temperatures, respectively. Under the same stress, the maximum transfor-
mation strain and ∆Tad occurs at T= 245 K and the corresponding ∆Tad is around 3.8 K. Polycrystal is more closer to
the microstructure of experimental samples and thus its maximum ∆Tad of 3.8 K by the direct method and 3.5 K by
the indirect method is more closer to the experimental data (3.9 K) [56]. Compared to the maximum ∆Tad of 8.5 K in
single crystal, the smaller ∆Tad in polycrystal is probably a consequence of domain wall and adverse orientation grain
in the polycrystalline model. The grain misorientation may hinder the martensitic nucleation and growth, as shown in
Fig. 4a. In addition, comparing Fig. 8a with Fig. 9a, it is obvious that a smaller hysteresis exists in polycrystal.

5.5. Indirect vs direct method

In order to compare the indirect and direct method which are based on PFM, in Fig. 10 we present the ∆Tad-
T curves calculated by both methods under 100 MPa compressive stress. It is clear that the overall trend of ∆Tad

varying with T is consistent for both methods. For single crystal in Fig. 10a, ∆Tad calculated by the two methods at
different ambient temperatures is close. Under 100 MPa, the maximum ∆Tad (∆T max

ad ) calculated by indirect and direct
method is 9.5 and 8.5 K (3.5 and 3.8 K) for single crystal (polycrystal), respectively. This indicates the consistency
between indirect and direct method and the reliability of calculating eCE by PF simulations. However, the peak
temperature corresponding to ∆T max

ad calculated by the two methods is slightly different. For the direct method, the
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The insets show the ∆T max

ad as a function of compressive stress.

peak temperature is around 245 K (the chemical equilibrium temperature), which is lower than the indirect method
(247 K for single crystal and 248 K for polycrystal).

The insets in Fig. 10 present the ∆T max
ad as a function of the applied compressive stress. It can be seen that eCE can

be significantly tuned by the uniaxial compressive stress. Results from the direct method is essentially in agreement
with those from the indirect method when the stress is less than 150 MPa, with a discrepancy of ∆T max

ad within 10%.
At higher compressive stress (above 150 MPa), ∆T max

ad calculated by the indirect method is apparently larger than that
form the direct one. This could be attributed to the temperature-induced MT in the non-isothermal PFM simulation,
i.e., the relatively large temperature increase at high stress could in turn remarkably hinder the austenite-martensite
transition and thus lower the temperature [85]. Cheng et al. [86] also report the similar phenomena in electrocaloric
effect. In addition, ∆Tad/σmax is usually utilized as a parameter to evaluate the field normalized caloric effect, also
known as the specific adiabatic temperature [87]. It is found that ∆Tad/σmax is 0.131 and 0.091 K/MPa for single
crystal (0.054 and 0.037 K/MPa for polycrystal) by the indirect and direct method, respectively. A large ∆Tad/σmax

would be beneficial to enhance the overall performance and efficiency of the elastocaloric refrigerator.
The agreement between the calculated and experimental results is satisfactory, implying that the direct method

based on the non-isothermal PFM and the direct method based on isothermal PFM are reliable for the calculation
and evaluation of eCE in SMAs. Nevertheless, the computational cost and the available information on eCE are also
critical factors to be considered. The great advantage of the indirect method is that all the ∆S iso, ∆Tad, and refrigerating
capacity can be readily obtained. But the indirect method depends on the temperature dependent strain-stress curves
with small temperature intervals for an accurate integration, leading to heavy computation. If one is only interested in
∆Tad, the direct method is the best choice since it doe not require the overall stress-strain-temperature data and thus is
computationally efficient.

6. Conclusion

In summary, we have developed a thermodynamically consistent non-isothermal PFM for the simulation of eCE.
The PFM couples MT with mechanics and heat transfer to evaluate eCE by using the indirect and direct method. The
model considering both improper and proper MT is derived from a thermodynamic framework which invokes the
microforce theory accommodating non-local effects, thermodynamic laws, and the Coleman–Noll procedure. In order
to avoid the problematic calculation due to the non-differentiable energy barrier function across the transformation
temperature and consider the possibly non-sharp transition in real materials, the austenite-martensite transition energy
barrier in PFM is introduced as a smooth function of temperature by using the hyperbolic tangent function. On one
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hand, all constitutive relations are represented in terms of a thermodynamic potential. Therefore, the PF modelling
work is reduced to the design of a proper form of the thermodynamic potential. On the the hand, the framework
automatically satisfies the first, second, and third laws of thermodynamics.

After being numerically implemented by the finite element method, the developed PFM is demonstrated to be
capable of recapturing the microstructure response and calculating eCE via both indirect and direct method in a model
material (i.e., Mn-22Cu SMA) under an external loading. Under a compressive stress of 100 MPa, ∆T max

ad calculated
by the indirect and direct method is 9.5 and 8.5 K for single crystal (3.5 and 3.8 K for polycrystal), respectively. A
large ∆Tad exists in single crystal, but the working temperature window is narrow and can be improved by increasing
the compressive stress. Besides, negative eCE caused by the inverse MT is found, especially for polycrystal, which
reduces ∆T max

ad . Overall, the direct method based on the non-isothermal PFM and the direct method based on isother-
mal PFM are reliable for the calculation and evaluation of eCE in SMAs. But there are still some differences between
these two methods. ∆Tad calculated by the indirect and direct method shows tiny discrepancy (within 10%) under
a low stress (≤150 MPa). At higher stress, ∆T max

ad from the indirect method is apparently larger than that from the
direct one, mainly owing to the fact that the relatively large temperature increase at high stress in the non-isothermal
PFM could in turn remarkably hinder the austenite-martensite transition and thus lower the temperature. The indirect
method is computational expensive, but can yield all the ∆S iso, ∆Tad, and refrigerating capacity. The direct method is
computationally efficient, but only yields ∆Tad. The developed non-isothermal PFM along with the indirect and direct
method could be a computational toolkit to unveil strategies for designing high-performance elastocaloric devices.

CRediT authorship contribution statement

Wei Tang: Formal analysis, Investigation, Visualization, Data curation, Writing – original draft. Qihua Gong:
Conceptualization, Resources, Supervision, Investigation, Data curation, Writing – original draft & review & editing.
Min Yi: Conceptualization, Resources, Supervision, Project administration, Funding acquisition, Writing – original
draft & review & editing. Bai-Xiang Xu: Conceptualization, Supervision, Writing – original draft & review. Long-
Qing Chen: Conceptualization, Supervision, Writing – original draft & review.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgements

The authors acknowledge the support from National Natural Science Foundation of China (NSFC 12272173,
11902150), 15th Thousand Youth Talents Program of China, Fundamental Research Funds for the Central Universi-
ties (1001-XAC21021), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Struc-
tures (MCMS-I-0419G01), and a project Funded by the Priority Academic Program Development of Jiangsu Higher
Education Institutions.

References

[1] H. Wada, Y. Tanabe, Giant magnetocaloric effect of MnAs1−xSbx, Applied Physics Letters 79 (20) (2001) 3302–3304. doi:10.1063/1.

1419048.
[2] M.-H. Phan, S.-C. Yu, Review of the magnetocaloric effect in manganite materials, Journal of Magnetism and Magnetic Materials 308 (2)

(2007) 325–340. doi:10.1016/j.jmmm.2006.07.025.
[3] K. A. GschneidnerJr, V. Pecharsky, A. Tsokol, Recent developments in magnetocaloric materials, Reports on Progress in Physics 68 (6)

(2005) 14–79. doi:10.1088/0034-4885/68/6/R04.

22

https://doi.org/10.1063/1.1419048
https://doi.org/10.1063/1.1419048
https://doi.org/10.1016/j.jmmm.2006.07.025
https://doi.org/10.1088/0034-4885/68/6/R04


[4] A. Mischenko, Q. Zhang, J. Scott, R. Whatmore, N. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3, Science 311 (57) (2006)
1270–1271. doi:10.1126/science.1123811.

[5] J. Scott, Electrocaloric materials, Annual Review of Materials Research 41 (2011) 229–240. doi:10.1146/

annurev-matsci-062910-100341.
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[42] C. Cissé, M. Asle Zaeem, Design of NiTi-based shape memory microcomposites with enhanced elastocaloric performance by a fully ther-

momechanical coupled phase-field model, Materials & Design 207 (2021) 109898. doi:https://doi.org/10.1016/j.matdes.2021.
109898.

[43] V. I. Levitas, A. M. Roy, Multiphase phase field theory for temperature-and stress-induced phase transformations, Physical Review B 91 (17)
(2015) 174109. doi:10.1103/PhysRevB.91.174109.

[44] S. Cui, J. Wan, X. Zuo, N. Chen, J. Zhang, Y. Rong, Three-dimensional, non-isothermal phase-field modeling of thermally and stress-induced
martensitic transformations in shape memory alloys, International Journal of Solids and Structures 109 (2017) 1–11. doi:10.1016/j.

ijsolstr.2017.01.001.
[45] Y. Sun, J. Luo, J. Zhu, Phase field study of the microstructure evolution and thermomechanical properties of polycrystalline shape memory

alloys: Grain size effect and rate effect, Computational Materials Science 145 (2018) 252–262. doi:10.1016/j.commatsci.2018.01.

014.
[46] Y. Sun, J. Luo, J. Zhu, K. Zhou, A non-isothermal phase field study of the shape memory effect and pseudoelasticity of polycrystalline shape

memory alloys, Computational Materials Science 167 (2019) 65–76. doi:10.1016/j.commatsci.2019.05.036.
[47] B. Xu, G. Kang, C. Yu, Q. Kan, Phase field simulation on the grain size dependent super-elasticity and shape memory effect of nanocrystalline

NiTi shape memory alloys, International Journal of Engineering Science 156 (2020) 103373. doi:10.1016/j.ijengsci.2020.103373.
[48] B. Xu, G. Kang, Phase field simulation on the super-elasticity, elastocaloric and shape memory effect of geometrically graded nano-

polycrystalline NiTi shape memory alloys, International Journal of Mechanical Sciences 201 (2021) 106462. doi:10.1016/j.ijmecsci.
2021.106462.

[49] F. Wendler, H. Ossmer, C. Chluba, E. Quandt, M. Kohl, Mesoscale simulation of elastocaloric cooling in SMA films, Acta Materialia 136
(2017) 105–117. doi:10.1016/j.actamat.2017.06.044.

[50] X. Hou, X. Li, J. Zhang, S. P. Bag, H. Li, J. Wang, Effect of grain size on the electrocaloric properties of polycrystalline ferroelectrics,
Physical Review Applied 15 (5) (2021) 054019. doi:10.1103/PhysRevApplied.15.054019.

[51] X. Moya, N. Mathur, Caloric materials for cooling and heating, Science 370 (6518) (2020) 797–803. doi:10.1126/science.abb0973.
[52] B. Yuan, X. Zhu, X. Zhang, M. Qian, Elastocaloric effect with small hysteresis in bamboo-grained Cu–Al–Mn microwires, Journal of

Materials Science 54 (13) (2019) 9613–9621. doi:10.1007/s10853-019-03592-8.
[53] H. Chen, F. Xiao, X. Liang, Z. Li, Z. Li, X. Jin, T. Fukuda, Giant elastocaloric effect with wide temperature window in an al-doped nanocrys-

talline Ti–Ni–Cu shape memory alloy, Acta Materialia 177 (2019) 169–177. doi:10.1016/j.actamat.2019.07.033.
[54] H. Hou, P. Finkel, M. Staruch, J. Cui, I. Takeuchi, Ultra-low-field magneto-elastocaloric cooling in a multiferroic composite device, Nature

communications 9 (1) (2018) 1–8. doi:10.1038/s41467-018-06626-y.
[55] G. J. Pataky, E. Ertekin, H. Sehitoglu, Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl, Acta Materialia 96 (2015) 420–427.

doi:10.1016/j.actamat.2015.06.011.
[56] S. Qian, Y. Geng, Y. Wang, T. E. Pillsbury, Y. Hada, Y. Yamaguchi, K. Fujimoto, Y. Hwang, R. Radermacher, J. Cui, et al., Elastocaloric

effect in CuAlZn and CuAlMn shape memory alloys under compression, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 374 (2074) (2016) 20150309. doi:10.1098/rsta.2015.0309.
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[74] L. Mañosa, A. Planes, Materials with giant mechanocaloric effects: cooling by strength, Advanced Materials 29 (11) (2017) 1603607.
doi:10.1002/adma.201603607.

[75] H. K. Yeddu, A. Malik, J. Agren, G. Amberg, A. Borgenstam, Three-dimensional phase-field modeling of martensitic microstructure evolution
in steels, Acta Materialia 60 (4) (2012) 1538–1547. doi:10.1016/j.actamat.2011.11.039.

[76] C. S. De Melo, M. Randeria, J. R. Engelbrecht, Crossover from BCS to Bose superconductivity: Transition temperature and time-dependent
Ginzburg-Landau theory, Physical Review Letters 71 (19) (1993) 3202. doi:10.1103/physrevlett.71.3202.

[77] J. Man, J. Zhang, Y. Rong, Microstructural evolution of Mn-rich antiferromagnetic Mn–Cu alloy under temperature field, Applied Physics
Letters 96 (13) (2010) 131904. doi:10.1063/1.3378810.

[78] R. P. Dhote, R. V. Melnik, J. Zu, Dynamic thermo-mechanical coupling and size effects in finite shape memory alloy nanostructures, Compu-
tational Materials Science 63 (2012) 105–117. doi:10.1016/j.commatsci.2012.05.060.

[79] A. Jacobs, S. Curnoe, R. Desai, Simulations of cubic-tetragonal ferroelastics, Physical Review B 68 (22) (2003) 224104.
[80] M. Yi, B.-X. Xu, A constraint-free phase field model for ferromagnetic domain evolution, Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences 470 (2171) (2014) 20140517. doi:10.1098/rspa.2014.0517.
[81] M. R. Tonks, D. Gaston, P. C. Millett, D. Andrs, P. Talbot, An object-oriented finite element framework for multiphysics phase field simula-

tions, Computational Materials Science 51 (1) (2012) 20–29. doi:10.1016/j.commatsci.2011.07.028.
[82] A. Artemev, A. G. Khachaturyan, Phase field model and computer simulation of martensitic transformation under applied stresses, Materials

Science Forum 327 (2000) 347–350.
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Appendix A. Rotation matrix

Kσ =



Q2
11 Q2

12 Q2
13 2Q11Q12 2Q12Q13 2Q11Q13

Q2
21 Q2

22 Q2
23 2Q21Q22 2Q22Q23 2Q21Q23

Q2
31 Q2

32 Q2
33 2Q31Q32 2Q33Q32 2Q31Q33

Q11Q21 Q12Q22 Q13Q23 Q11Q22 + Q12Q21 Q12Q23 + Q13Q22 Q11Q23 + Q13Q21

Q21Q31 Q22Q32 Q23Q33 Q21Q32 + Q22Q31 Q22Q33 + Q23Q32 Q21Q33 + Q23Q31

Q31Q11 Q12Q32 Q13Q33 Q31Q12 + Q32Q11 Q32Q13 + Q33Q12 Q31Q13 + Q11Q33


(A.1)
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