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Abstract. We study the steady-state distribution function of a run-and-tumble par-
ticle evolving around a repulsive hard spherical obstacle. We show that the well-
documented activity-induced attraction translates into a delta peak accumulation at
the surface of the obstacle accompanied with an algebraic divergence of the density
profile close to the obstacle. We obtain the full form of the distribution function in
the regime where the typical distance run by the particle between two consecutive
tumbles is much larger than the size of the obstacle. This provides an expression for
the low-density pair distribution function of a fluid of highly persistent hard-core run-
and-tumble particle. This also provides an expression for the steady-state probability
distribution of highly-ballistic active Brownian particles and active Ornstein-Ulhenbeck
particles around hard spherical obstacles.
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1. Introduction

Such spectacular collective physical phenomena as collective alignment [1–3] or motility-
induced phase separation [4–7] are trademarks of interacting active, self-propelled,
particles. However, the individual behavior of an active particle interacting with an
external potential displays equally puzzling features. To name but a few: a steeper decay
of density for sedimenting run-and-tumble particles (RTP) under a constant gravity
field [8], a depleted probability at the bottom of a harmonic well for RTPs [8–11] or
active Brownian particles (ABP), and more prominently perhaps, a tendency to be
attracted to otherwise repulsive obstacles. This phenomenon was for instance explored
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in two-dimensional channels for RTPs [12] or ABPs [13], and more generally for particles
confined within walls [14, 15]. Physically more complex systems have been considered,
such as a needle-like particle interacting with a spherical obstacle [16] in the presence
of a surrounding fluid, which adds hydrodynamic interactions to an already nontrivial
problem. The understanding of the one-particle problem is also instrumental in breaking
down the mechanisms at work in many-body collective phenomena into elementary ones.
In systems of particles interacting via pairwise forces considered in the dilute limit one
can, as in the virial approach familiar in equilibrium systems, focus on a single pair of
particles. For that pair of particles, the associated reduced particle [17] evolves in an
effective external potential. However, the statistics of the active self-propulsion force felt
by the reduced particle need not –and will in general not– be identical to that exerted
on each individual particle.

From a purely analytical standpoint, instances in which the stationary distribution
can be found exactly are scarce. A single RTP in one space dimension, in an arbitrary
external potential or with spatially varying tumble rate and speed [18–22] is a notable
exception. This problem was also solved on a one-dimensional lattice and in the
continuum for a RTP in between two hard walls [23, 24]. For the more realistic case of
two hard-disk RTPs, an approximate treatment was recently put forward [25]. The goal
of the present work is to address the case of a RTP in contact with a hard spherical
obstacle in space dimension d with a particular emphasis on the highly ballistic limit
where the persistence length ℓp of the RTP is much larger than the obstacle size σ. The
persistence length, which reads ℓp = v0τ with τ the correlation of the self-propulsion
velocity and v0 its amplitude, is the mean distance run by the free particle between
two consecutive tumbles. In the highly-ballistic regime, the particle thus almost never
tumbles when in the vicinity of the obstacle. Incidentally, the highly ballistic limit
turns out to be relevant for studying collective phenomena such as the motility-induced
phase separation [6]. This regime has also been studied for its connections with sheared
granular systems [26,27].

Our main results are as follows. For all η = σ/ℓp, the stationary distribution
function is shown to exhibit a delta peak accumulation at contact and a density profile
away from the obstacle (in the bulk of the system) that diverges at r = σ. The structure
of this divergence is elucidated. We furthermore prove that the bulk distribution
function in the position and self-propulsion space exhibits a delta peak accumulation
along typical trajectories of the stochastic dynamics that we characterize. The steady-
state distribution is then fully characterized in d ≥ 2 as η → 0. Corrections to this
limiting behavior to next order in η are also investigated and we show that the amplitude
of the delta peak accumulation decreases as the persistence length is reduced. We lastly
show that in the highly ballistic limit η → 0, far-field hydrodynamic interactions, as
captured by the Oseen tensor, reduce the amplitude of the delta peak accumulation.

We begin, in Sec. 2, by introducing the particle model we consider and show obtain
coupled equations for the bulk and surface contributions to the steady-state distribution.
In Sec. 3, we then show that, in steady-state, the marginal density in position space
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is the solution to an integral equation. This equation is solved in the vicinity of the
obstacle in Sec. 4 and in the highly ballistic regime in Sec. 5. The effect of hydrodynamic
interactions in the highly ballistic regime is investigated in Sec. 6. Our conclusion in
Sec. 7 gathers possible paths deserving further exploration.

2. The steady-state distribution: bulk and surface contributions

In this section, we derive the equations satisfied by the steady-state probability
distribution of a run-and-tumble particle evolving in the presence of a hard spherical
obstacle in arbitrary space dimension d > 1. We show that the latter splits into a bulk
contribution and a surface contribution localized at the surface of the obstacle. We
obtain coupled equations relating these two contributions. Later sections are devoted
to reformulating these equations in terms of an integral equation for the density field
and which we solve in some limiting cases.

To achieve this, we start with the equation of motion of an RTP evolving in a
smooth spherically symmetric repulsive potential. The hard-sphere limit is carefully
taken at a later stage. The position of the RTP evolves according to

dr
dt

= v0u(t) − ∇V (r) , (1)

where u(t) is a unit vector that is uniformly reoriented on the unit sphere with rate τ−1.
The potential is assumed to depend only on the distance r = ||r|| so that V (r) = V (r).
A cartoon depicting the interaction between an incoming particle and a hard obstacle is
shown in Fig. 1. Note that in Fig. 1, both the particle and the obstacle have the same
size. In practice, the results only depend on the exclusion radius of the hard-sphere
potential, meaning the radius of the obstacle plus the radius of the particle. Figure 1
further illustrates the key difference with the physics of one-dimensional systems (or
higher-dimensional ones in the presence of an extended flat wall). Here, the particle can
leave the vicinity of the obstacle even in the absence of tumbling event. The stationary
state distribution function P (r,u) solves the master equation,

−v0u · ∇rP (r,u) + ∇r (P (r,u)∇rV (r)) + 1
τ

(∫ du′

Ωd

P (r,u′) − P (r,u)
)

= 0 . (2)

We take advantage of the rotational symmetry to write P (r,u) = P (r, w) where
w = r · u/r = cos θ with θ the polar angle measured with respect to u. After writing
Eq. (2) using these spherical coordinates, we obtain

0 = −v0

(
w∂rP (r, w) + 1 − w2

r
∂wP (r, w)

)
+ 1

rd−1 ∂r

(
rd−1P (r, w)∂rV (r)

)
+1

τ

(∫ 1

−1

dw′

2Wd−2

(
1 − w′2

) d−3
2 P (r, w′) − P (r, w)

)
. (3)

Here, the normalization constant Wn is the nth Wallis integral,

Wn = 1
2

∫ 1

−1
dw′

(
1 − w′2

)n−1
2 . (4)
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Figure 1. A collision of an active hard-sphere (black, rightmost) with diameter σ

and impact parameter b = r sin θ < σ (with cos θ < 0) onto a pinned (black, leftmost)
one. In the following we introduce the notation w = cos θ. The incoming particle with
direction u hits the target sphere (at the magenta position) and then skids around, as
in the green position. In the absence of tumbling, it eventually takes off at the blue
position when its orientation u becomes tangent to the target sphere. In the highly
ballistic limit, no tumble can occur over the typical skidding distances.

The equations of motion written in terms of the variables r, w are discussed in Appendix
A. One of the ways of ultimately implementing a hard-sphere potential with exclusion
diameter σ is to begin with a smoothly repulsive potential V (r) of the form

V (r) = V0 e− r−σ
ϵσ , (5)

and to take the hard sphere limit ϵ → 0+ by following the program explained in [28]
and further detailed in what follows. For any fixed r > σ, we first define the bulk
distribution function f(r, w) by

f(r, w) = lim
ϵ→0+

P (r, w) . (6)

It follows from Eq. (3) that

0 = −v0

(
w∂rf(r, w) + 1 − w2

r
∂wf(r, w)

)

+1
τ

(∫ 1

−1

dw′

2Wd−2

(
1 − w′2

) d−3
2 f(r, w′) − f(r, w)

)
, (7)

which expresses the flux balance between the free streaming of the particle for r > σ

under the action of the active self-propulsion and the random reorientation of the latter.
We now turn to the behavior of the distribution function close to r = σ and show that
it develops a delta singularity when ϵ → 0+. From the equation of motion Eq. (1),
we know that ∀ϵ > 0, P (r, w) = 0 for r ≤ r∗ with r∗ defined by V ′(r∗) = −v0. Here
r∗ − σ = ϵσ ln (ϵv0/V0) goes to 0 as ϵ → 0+. To identify the singularity, we define the
surface distribution function as

Γ(w) = σ−1 lim
r→σ

lim
ϵ→0+

∫ r

r∗
dr′P (r′, w) . (8)

We then multiply Eq. (3) by rd−1 and integrate it between r∗ and some fixed r > r∗.
After integration by part and using the boundary condition P (r∗, w) = 0, we obtain

0 = −v0wrd−1P (r, w) + v0(d − 1)w
∫ r

r∗
dr′r′d−2P (r′, w)
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+ rd−1P (r, w)V ′(r) − v0(1 − w2)∂w

∫ r

r∗
dr′r′d−2P (r′, w)

+ 1
τ

∫ r

r∗
dr′r′d−1

(∫ 1

−1

dw′

2Wd−2

(
1 − w′2

) d−3
2 P (r′, w′) − P (r′, w)

)
, (9)

At fixed r, we take the limit ϵ → 0+ in which the term proportional to V ′(r) vanishes.
We then take the r → σ limit, yielding

0 = −wf(σ, w) + (d − 1)wΓ(w) − (1 − w2)Γ′(w)

+ σ

v0τ

(∫ 1

−1

dw′

2Wd−2

(
1 − w′2

) d−3
2 Γ(w′) − Γ(w)

)
, (10)

The flux of particles with radial self-propulsion w arriving on the surface of the obstacle
from the bulk is proportional to wf(σ, w) and is accounted for in the first term of
Eq. (10). A non-zero flux from the bulk implies a non-vanishing surface distribution
function Γ(w) as seen in Eq. (10). It is clear from Eq. (7) that f(σ, w) cannot be zero
for all w since such a boundary condition would imply a vanishing bulk distribution for
all r > σ. Thus the probability distribution function develops in the hard sphere limit
a singular part at contact in the form of a delta peak at r = σ.

To summarize, denoting z = r/σ, the stationary distribution function takes the
following form

P (r,u) = f(z, w) + Γ(w)δ(z − 1) . (11)

We have obtained two coupled integro-differential equations satisfied by f(z, w) and
Γ(w). They depend on a single dimensionless parameter η = σ

ℓp
comparing the obstacle

size to the persistence length ℓp = v0τ . First, the bulk distribution function obeys for
z > 1,

w∂zf + 1 − w2

z
∂wf + ηf = ηρ(z) . (12)

with

ρ(z) =
∫ 1

−1

dw

2Wd−2
(1 − w2)

d−3
2 f(z, w) , (13)

the bulk density. Second, the surface distribution function follows from

Γ′(w) − w

1 − w2 (d − 1)Γ(w) + η

1 − w2 Γ(w) = − w

1 − w2 f(1, w) + η

1 − w2 Γ̂ , (14)

with

Γ̂ =
∫ 1

−1

dw

2Wd−2
(1 − w2) d−3

2 Γ(w) , (15)

the surface density. We lastly show that the flux balance equation at the surface of the
obstacle in Eq. (14) implicitly contains a boundary condition for the bulk distribution
function. We can indeed show that Γ(w > 0) = 0 which expresses the fact that particles
whose self-propulsion points away from the obstacle do not accumulate at its surface.
Hence, Eq. (14) thus yields the boundary condition

f(1, w > 0) = ηΓ̂
w

. (16)
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As mentioned before, the flux of particles going from the surface of the obstacle to the
bulk with orientation w > 0 is proportional to wf(1, w). Equation (16) shows that this
flux is independent of the orientation w. This is expected since this flux is uniquely
generated by isotropic tumbling events. Indeed, in the absence of tumbling, the particle
leaves the obstacle only when w = 0, see Fig. 1.

To show that indeed Γ(w > 0) = 0, we start by regularizing the product
P (r, w)V ′(r) in the hard sphere limit. For that, we integrate once more Eq. (9) over
r ∈ [r∗, r′] thus yielding,

0 = −v0w
∫ r′

r∗
dr rd−1P (r, w) +

∫ r′

r∗
dr rd−1P (r, w)V ′(r)

+
∫ r′

r∗
dr
∫ r

r∗
dr′′ r′′d−2

[
v0(d − 1)wP (r′′, w) − v0(1 − w2)∂wP (r′′, w)

+ r

τ

(∫ 1

−1

dw′

2Wd−2

(
1 − w′2

) d−3
2 P (r′′, w′) − P (r′′, w)

)]
. (17)

We then take the ϵ → 0+ limit at fixed r′ and afterwards we take the r′ → σ limit. The
double integral term vanishes and we are left with

lim
r′→σ

lim
ϵ→0+

∫ r′

r∗
drP (r, w)V ′(r) = v0w lim

r→σ
lim

ϵ→0+

∫ r′

r∗
drP (r, w) = v0σwΓ(w) (18)

proving that Γ(w > 0) = 0 as V ′(r) < 0 for all r.

3. An integral equation over the density field

We have derived in the hard-sphere limit the two coupled equations satisfied by the bulk
and the surface distribution functions, respectively f(z, w) and Γ(w). In this section,
we take advantage of the fact that Eq. (12) satisfied by f(z, w) is first order in the
partial derivatives ∂z and ∂w and use the methods of characteristics to recast it into
an integral equation for the spatial density field ρ(z) only. We furthermore prove that
the bulk distribution function f(z, w) exhibits a delta peak accumulation along typical
trajectories of the stochastic dynamics that we characterize.

The characteristics of Eq. (12) are parametric lines (z(s), w(s)) such that for any
function g(z, w) we have

dg (z(s), w(s))
ds

= w(s)∂zg (z(s), w(s)) + 1 − w(s)2

z(s) ∂wg (z(s), w(s)) . (19)

They obey 
z′(s) = w(s) ,

w′(s) = 1 − w2(s)
z(s) ,

(20)

and are thus lines such that z
√

1 − w2 = b = cst with b the impact parameter
(as indicated in Fig. 1). They correspond to purely ballistic trajectories and are
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w

z

Figure 2. Parametric representation of the characteristics of Eq. (12) satisfied by
the bulk distribution function. The dashed blue lines correspond to regions of the
plane where boundary conditions are specified, see Eq. (16) and Eq. (21). We group
the characteristics depending on which boundary condition they intersect and on
whether or not they intersect the line z = 1 representing the surface of the obstacle.
(Green) Characteristics that are connected to the boundary condition at z = 1. They
correspond to domain 1 of the main text. (Blue) Characteristics that are connected
to the boundary condition at radial position z = L and intersect the line at z = 1.
(Orange) Characteristics that are connected to the boundary condition at radial
position z = L and do not intersect the line at z = 1. In the main text, domain
2 is comprised of all the characteristics restricted to w < 0 (both blue and orange) and
domain 3 is comprised of the orange characteristics restricted to w > 0. (Red) The
only characteristic that originates from (z = 1, w = 0) restricted to w > 0. After each
collision, the particle leaves the obstacle exactly along this line (except when it has
flipped in course of skidding), see Fig. 1. We show that the bulk distribution function
develops a singularity along this line which correspond to domain 4 of the main text.

parametrically depicted in Fig. 2 as the fictitious time s is increased. Equation (12)
is furthermore supplemented with the boundary condition

f(L, w < 0) = 1 , (21)

that implements an homogeneous reservoir of incoming particles at distance L from the
obstacle, and where L is sent to infinity at the end of the calculation. As L → ∞, the
actual form of the boundary condition at z = L is irrelevant.

We now analyze the behavior of the bulk distribution f(z, w) by dividing the (w, z)
plane into four domains as explained in Fig. 2.

3.1. Domain 1: w > 0 and z
√

1 − w2 < 1

By definition, along a characteristic, the bulk equation reads

f ′(s) + ηf(s) = ηK(s) with K(s) = ρ(z(s)) , (22)

and hence it can be integrated into

f(s, b) = f(s = 0, b)e−ηs + ηe−ηs
∫ s

0
ds′K(s′)eηs′

. (23)
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A boundary condition must then be implemented to express f(s = 0, b) and the
(s, b) variables that parametrize the characteristic must be replaced with their (z, w)
counterparts. We first solve the equation on the domain w > 0 and z

√
1 − w2 < 1. This

domain is generated by characteristics corresponding to trajectories leaving the obstacle
after a collision. These are depicted in green in Fig. 2. Along each characteristic we
have

z
√

1 − w2 = b < 1 ,

⇒ w(s) =

√√√√1 − b2

z(s)2 . (24)

Thus

z′(s) =

√√√√1 − b2

z(s)2 ,

⇒ z(s)

√√√√1 − b2

z(s)2 = s +
√

1 − b2 , (25)

as we choose to parametrize the characteristics such that z(s = 0) = 1. This leads to
z(s, b) =

√
s2 + 2s

√
1 − b2 + 1 ,

w(s, b) = s +
√

1 − b2

s2 + 2s
√

1 − b2 + 1
,

(26)

which can be inverted so as to get b = z
√

1 − w2 ,

s = zw −
√

1 − z2(1 − w2) .
(27)

Lastly, from Eq. (16) and Eq. (26), the boundary condition becomes

f(s = 0, b) = ηΓ̂√
1 − b2

. (28)

This finally leads to

f(z, w) = ηΓ̂√
1 − z2(1 − w2)

e−η(zw−
√

1−z2(1−w2))

+ηe−ηzw
∫ z

1
dz′ρ(z′) z′√

z′2 − z2(1 − w2)
eη

√
z′2−z2(1−w2) . (29)

3.2. Domain 2: w < 0

This domain is generated by all characteristics that are connected to the boundary
condition at z = L restricted to w < 0. These are depicted in blue and orange in Fig. 2.
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Following the same route as above, we obtain along a characteristic

z(s, b) =

√√√√√b2 +
s − L

√
1 − b2

L2

2

,

w(s, b) =
−L

√
1 − b2

L2 + s√
b2 + (s − L

√
1 − b2

L2 )2
,

(30)

with z(s = 0, b) = L. These equations can be inverted to yield
b = z

√
1 − w2 ,

s = zw + L

√
1 − z2(1 − w2)

L2 .
(31)

Hence,

f(z, w) = ηe−ηzw
∫ L

z
dz′ρ(z′) exp

−ηz′

√
1 − z2(1 − w2)

z′2

 1√
1 − z2(1−w2)

z′2

+e
−η

(
zw+L

√
1− z2(1−w2)

L2

)
,

=
L→∞

ηe−ηzw
∫ +∞

z
dz′ρ(z′) exp

{
−η
√

z′2 − z2(1 − w2)
}

z′√
z′2 − z2(1 − w2)

. (32)

The above equation shows, as expected, the irrelevance of the boundary condition at
z = L as L is sent to infinity.

3.3. Domain 3: w > 0 and z
√

1 − w2 > 1

This domain is generated by the continuation of the orange characteristics of Fig. 2
studied in the previous paragraph into the w > 0 half-plane. In this region of the plane
we use the continuity requirement at w = 0 inferred from Eq. (32) as an initial condition
at s = 0. The characteristics are parametrized by

w(s, b) = s√
b2 + s2

,

z(s, b) =
√

b2 + s2 ,
(33)

as w(s = 0, b) = 0. These equations can be inverted to yield b = z
√

1 − w2 ,

s = zw .
(34)

Furthermore, continuity imposes that

f(s = 0, b) = η
∫ +∞

b
dz′ρ(z′) exp

−ηz′

√
1 − b2

z′2

 1√
1 − b2

z′2

, (35)
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and hence

f(z, w) = ηe−ηzw
∫ +∞

z
√

1−w2
dz′ρ(z′) exp

{
−η
√

z′2 − z2(1 − w2)
}

z′√
z′2 − z2(1 − w2)

+ ηe−ηzw
∫ z

z
√

1−w2
dz′ρ(z′) exp

{
η
√

z′2 − z2(1 − w2)
}

z′√
z′2 − z2(1 − w2)

. (36)

3.4. Domain 4: w > 0 and z
√

1 − w2 = 1

The line defined by z
√

1 − w2 = 1 with w > 0 which is depicted in red in Fig. 2 plays
a special role. Indeed, after each collision, the particle leaves the obstacle exactly along
this line (except when it has flipped in the course of skidding) and it further keeps
traveling along it until its self-propulsion tumbles. This strongly suggests that the bulk
distribution function f(z, w) displays a delta peak contribution along this characteristic
line. To check this, we write

f(z, w) = f0(z, w) + ϕ(z)δ(z
√

1 − w2 − 1)Θ(w) , (37)

with f0(z, w) a piece-wise continuous function (as f0 might not be continuous when
crossing the characteristic line z

√
1 − w2 = 1 at w > 0). By inserting the above

expression in Eq. (12), we get for z > 1√1 − 1
z2 ϕ′(z) + ηϕ(z)

 δ(z
√

1 − w2 − 1) + w∂zf0 + 1 − w2

z
∂wf0 + η(f0 − ρ) = 0 , (38)

which in particular yields

ϕ(z) = ϕ(1)e−η
√

z2−1 . (39)

This shows that the existence of a singularity is equivalent to a non-vanishing ϕ(1).
Remarkably, the value of ϕ(1) can be obtained from the flux-balance equation at the
surface of the obstacle, Eq. (14). By integrating it between w = 0− and w = 0+ and
using Γ(w > 0) = 0, we indeed obtain

Γ(0−) = lim
ϵ→0

∫ +ϵ

−ϵ
dw wf(1, w) . (40)

Hence

f(1, w) = Γ(0−)
w

δ(w) + ... = Γ(0−)δ(
√

1 − w2 − 1) + ... , (41)

where the ... stands for something more regular than δ(w)/w. We therefore get
ϕ(1) = Γ(0−) and thus

ϕ(z) = Γ(0−)e−η
√

z2−1 . (42)

We note that Γ(0−) is proportional to the rate of particles entering the red characteristics
of Fig. 2 from the obstacle and its presence in Eq. (42) is therefore expected. The
existence of a Dirac delta singularity in the distribution function, not only at the surface
of the obstacle but also in the bulk of the (w, z) plane, is a remarkable feature of this
problem that, as far as we are aware, has not been pointed out in the literature. We
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believe this accumulation effect, that a soft-potential would smoothen out, is a generic
feature of run-and-tumble particles around convex rigid obstacles. We furthermore
expect that a continuous diffusive motion of the self-propulsion force (instead of a
Poisson process as considered here), as is the case in other models of self-propelled
particles like active Brownian particles [10] and active Ornstein-Ulhenbeck ones [29],
leads to a broadening of this singularity.

3.5. The self-consistency condition

The bulk density ρ(z) satisfies an integral equation that we obtain from Eq. (13) by
integrating Eqs. (29)-(32)-(36)-(42) over the angular variable w. It takes the form of a
linear integral equation involving a nonlocal kernel L

ρ(z) = ρ0(z) + ηL[ρ](z) , (43)

where

ρ0(z) = ηΓ̂
∫ 1

√
z2−1
z

dw

2Wd−2
(1 − w2)

d−3
2

exp
{
−η

(
zw −

√
1 − z2(1 − w2)

)}
√

1 − z2(1 − w2)

+ Γ(0−)
2Wd−2

e−η
√

z2−1
√

z2 − 1
z2−d , (44)

and where the linear operator L is split into three nonlocal kernels

L[ρ](z) = L1[ρ](z) + L2[ρ](z) + L3[ρ](z) , (45)

with

L1[ρ](z) =
∫ z

1
dz′z′ρ(z′)

∫ 1
√

z2−1
z

dw

2Wd−2
(1 − w2)

d−3
2

e−ηzw exp
(
η
√

z′2 − z2(1 − w2)
)

√
z′2 − z2(1 − w2)

, (46)

and

L2[ρ](z) = 2
∫ z

1
dz′z′ρ (z′)

∫ √
z2−1
z

√
z2−z′2

z

dw

2Wd−2

(
1 − w2

) d−3
2

e−ηzw cosh
(
η
√

z′2 − z2(1 − w2)
)

√
z′2 − z2(1 − w2)

,

(47)

and finally

L3[ρ](z) =
∫ +∞

z
dz′z′ρ (z′)

∫ √
z2−1
z

−1

dw

2Wd−2

(
1 − w2

) d−3
2

e−ηzw exp
(
−η
√

z′2 − z2(1 − w2)
)

√
z′2 − z2(1 − w2)

.

(48)

To the best of our knowledge, Eq. (43) can in general only be solved formally,

ρ(z) =
+∞∑
n=0

ηnLn[ρ0](z) . (49)

Progress can nevertheless be made in some limiting cases. The first one that we study is
the near obstacle regime z − 1 ≪ 1 (equivalently r − σ ≪ σ) at fixed η = σ/ℓp. We then
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determine ρ(z) in the highly ballistic limit η ≪ 1 where the size of the obstacle is much
smaller than the persistence length of the self-propelled particle and in a regime such
that ηz ≪ 1 (equivalently r ≪ ℓp). Another case of interest are the corrections to the
η → ∞ equilibrium limit in which the persistence length is much smaller than the size of
the obstacle. The first 1/η correction is equivalent to the case of one particle against a
hard wall which was previously studied (in a two-dimensional geometry) in [12]. There
the authors notably proved the existence of a delta-peak accumulation at the surface
of the wall whose amplitude (Γ̂ in our language) is proportional to η−1. The situation
is however very different from the generic η result since in this limit particles have
to tumble to leave the surface of the obstacle. In our language, this corresponds to
Γ(0−) = 0 (an equality that breaks down at finite values of η, see the numerical results
in Fig. 3) and thus to the absence of a singularity in the bulk of the distribution function.
In the ballistic regime, we prove in Sec. 5 that both Γ(0−) and Γ̂ have a finite non-zero
limit that depends only on the dimension d.

4. Behavior close to the obstacle: activity-induced attraction

In this section, we show that the bulk density ρ(z) diverges close to the obstacle and
relate exactly its diverging part to properties of the surface distribution function Γ(w).
In the following, we denote h = z − 1 and assume that h ≪ 1. We recall the integral
equation in Eq. (43) satisfied by the bulk density,

ρ(z) = ρ0(z) + ηL[ρ](z) , (50)

with the linear operator L given in Eqs. (45)-(48). As a first step, we investigate the
small distance properties of the function ρ0(z). We find,

ρ0(1 + h) = Γ(0−)
2Wd−2

1√
2h

− ηΓ̂
4Wd−2

ln h + O(1) . (51)

Indeed, the integral term of Eq. (44) reads in the small h limit,

ηΓ̂
∫ 1

√
z2−1
z

dw

2Wd−2
(1 − w2) d−3

2
exp

{
−η

(
zw −

√
1 − z2(1 − w2)

)}
√

1 − z2(1 − w2)

= ηΓ̂
4Wd−2zd−2

∫ 1

0
ds (1 − s)

d−3
2

exp
(
η
(√

s −
√

z2 − 1 + s
))

√
s
√

z2 − 1 + s
,

= − ηΓ̂
4Wd−2

ln h + O(1) . (52)

We find that Eq. (51) gives the leading order behavior of the actual density field, i.e.

ρ(1 + h) = Γ(0−)
2Wd−2

1√
2h

− ηΓ̂
4Wd−2

ln h + O(1) . (53)

Remarkably, the structure of the near-field density identified in Eq. (53) is independent
of the dimension d for d ≥ 2. It connects (without any free parameters) the divergences
of the bulk distribution function on the obstacle to properties of the surface distribution
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function. We have simulated the dynamics Eq. (1) in dimension d = 2 and numerically
measured Γ(w) and ρ(z). The simulation is performed in a spherical box of radius
L = 100v0τ . The boundary condition is such that when the particle hits the outer
boundary it is reflected with a random (inward) orientation. In Fig. 3, we plot the
function Γ(w) at η = 1 and infer the corresponding value of Γ(0−) from it. We then
show that the measured ρ(z) indeed exhibits the square root divergence predicted by
Eq. (53).

To show the validity of Eq. (53), our argument is the following. We first prove that
L[ρ̃](1) is finite for any function ρ̃(z) such that ρ̃(1 + h) ln(h) is integrable at h = 0.
We then prove that ρ(1 + h) ln(h) is integrable at h = 0. This finally implies Eq. (53)
from Eq. (50). We study the operators L1,2,3 separately. We start by noting that upon
a change of variables we have

L1[ρ̃](1 + h) = (1 + h)h
4Wd−2

∫ 1

0
du (1 + uh) ρ̃ (1 + uh) g1 (1 + uh, 1 + h) , (54)

with

g1(z′, z) =
∫ 1

0
ds

(1 − s)
d−3

2
√

z2 − 1 + s

exp
(
−η

√
z2 − 1 + s + η

√
z′2 − 1 + z2s

)
z2

√
z′2 − 1 + s

. (55)

For h ≪ 1, we obtain

g1 (1 + uh, 1 + h) ≃
∫ 1

0
ds

1√
s (s + 2h(1 + u))

,

≃ − ln h . (56)

Therefore,

L1[ρ̃](1 + h) ≃ − 1
4Wd−2

h ln h
∫ 1

0
du ρ̃ (1 + uh) →

h→0
0 , (57)

as the function ρ̃ (1 + h) is assumed to be integrable at h = 0. We proceed accordingly
for L2. We have,

L2[ρ̃](1 + h) = 2h
∫ 1

0
du (1 + uh) ρ̃ (1 + uh) g2 (1 + uh, 1 + h) , (58)

with

g2(z′, z) =
∫ √

z2−1
z

√
z2−z′2

z

dw

2Wd−2

(
1 − w2

) d−3
2 exp (−ηzw)√

z′2 − z2(1 − w2)
cosh

(
η
√

z′2 − z2(1 − w2)
)

.(59)

For h ≪ 1, we obtain

g2 (1 + uh, 1 + h) ≃
∫ √

2h

√
2h(1−u)

dw

2Wd−2

1√
2h(u − 1) + w2

, (60)

≃ arctanh
(√

u
)

. (61)

Hence we get,

L2[ρ̃](1 + h) ≃ 2h
∫ 1

0
du ρ̃ (1 + uh) arctanh

(√
u
)

→
h→0

0 , (62)
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w

Γ(
w

)

z2 − 1

ρ
(z

)

Figure 3. Steady-state distribution of Eq. (1) for the hard sphere case at η = 1
in dimension d = 2. (Left) Numerically measured surface distribution Γ(w). It is
non-vanishing for w < 0 only and yields Γ(0−) ≃ 0.57. (Right) Log-log plot of the
bulk space density ρ(z) as a function of z2 − 1 in the vicinity of the obstacle. The
dashed blue line is the theoretical prediction of Eq. (53) with 2W0 = π and using the
measured value of Γ(0−) from the left panel. The orange dots correspond to numerical
simulations. Parameters: v = 1, τ = 1, σ = 1, L = 100, T = 1010 with T the total
physical time.

by integrability of ρ̃. Lastly, we show that if ρ̃(1 + h) ln(h) is integrable at h = 0 then
L3[ρ̃](1) is finite. From Eq. (48), the latter yields a finite result if

ρ̃ (z′)
∫ 0

−1

dw

2Wd−2

(
1 − w2

) d−3
2

exp
(
ηw − η

√
z′2 − 1 + w2)

)
√

z′2 − 1 + w2
, (63)

is integrable at z′ = 1. Furthermore, for h′ =
√

z′2 − 1 ≪ 1, we have,∫ 0

−1

dw

2Wd−2

(
1 − w2

) d−3
2

exp
(
ηw − η

√
z′2 − 1 + w2

)
√

z′2 − 1 + w2
≃ −1

4Wd−2
ln h′ . (64)

Therefore, L3[ρ̃](1) is indeed finite if ρ̃ (1 + h) ln(h) is integrable at h = 0.
Then, if ρ (1 + h) ln(h) is integrable, L[ρ](1) is finite and we recover Eq. (53) from

Eq. (50). We now assume that ρ (1 + h) ln(h) is not integrable at h = 0 only to prove
that it is not possible at the end. If that is the case, we must have close to h = 0

ρ(1 + h) ∼ L[ρ](1 + h) , (65)

since ρ0(1+h) ln(h) is integrable at h = 0. By virtue of Eqs. (57)-(62) and Eqs. (63)-(64),
Eq.(65) becomes

ρ(1 + h) ∼ L3[ρ](1 + h) ∼
∫

h
dh′ρ(1 + h′) ln(h′) . (66)

However, as we show in Appendix B, since ρ(1 + h) is integrable at h = 0, the integral
term in the right-hand side of Eq.(66) grows at most as ln h close to h = 0, thus
contradicting the initial assumption that ρ(1 + h) ln(h) is not integrable at h = 0.
Therefore, ρ(1 + h) ln(h) is integrable at h = 0 which in turns implies Eq. (53).
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5. Going highly ballistic

5.1. Steady-state distribution at η = 0

We now study the solution of Eq. (43) in the highly ballistic limit η = σ/ℓp → 0 and we
begin by stating our results. When η = 0, the surface distribution function is uniform
over w ∈ [−1, 0],

Γ(w) = 1
d − 1Θ(−w) , (67)

and the amplitude of the delta peak accumulation therefore reads

Γ̂ = 1
2(d − 1) . (68)

Furthermore, for any z fixed (hence for r ≪ ℓp), the particle density is given by

ρ(z) = Θ(z − 1)
[

1
2 +

√
z2 − 1

2Wd−2z
2F1

(
1
2 ,

3 − d

2 ,
3
2; 1 − 1

z2

)
+ 1

2Wd−2(d − 1)
z2−d

√
z2 − 1

]

+ 1
2(d − 1)δ(z − 1) , (69)

where we recall that the boundary conditions are such that ρ(∞) = 1. We introduce
the density offset created by the obstacle defined by K(z) = ρ(z) − 1. Away from the
obstacle, we find the power-law decay

K(z) ∼ 1
2Wd−2(d2 − 1)

1
zd+1 , (70)

which holds as long as ηz ≪ 1 (equivalently r ≪ ℓp) after which the density modulations
are exponentially suppressed. Importantly, the above expression is integrable at z → ∞
for any d ≥ 2. From there we obtain the stationary distribution in the (z, w) plane. In
domain 1 defined by w > 0 and z

√
1 − w2 < 1, Eq. (29) reduces to

f(z, w) = 0 . (71)

as η → 0. In domain 2 defined by w < 0, Eq. (32) is given in this limit by

f(z, w) = 1 + ηe−ηzw
∫ +∞

z
dz′K(z′) exp

{
−η
√

z′2 − z2(1 − w2)
}

z′√
z′2 − z2(1 − w2)

, (72)

= 1 . (73)

Finally, in domain 3 defined by w > 0 and z
√

1 − w2 > 1 we obtain accordingly from
Eq. (36),

f(z, w) = 1 . (74)

Therefore, the full bulk distribution reads

f(z, w) = Θ(−w) + Θ(w)
[
Θ(z

√
1 − w2 − 1) + 1

d − 1δ(z
√

1 − w2 − 1)
]

. (75)

In Fig. 4, we show a heatmap of the bulk distribution function f(z, w) at η = 0.1. It
exhibits two regions of nearly homogeneous densities, one at higher density for w < 0
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Figure 4. Heatmap of the bulk distribution function f(z, w). It shows two regions
of nearly homogeneous densities, one at higher density for w < 0 and w > 0 with
z
√

1 − w2 ≥ 1 and one at lower density for w > 0 with z
√

1 − w2 < 1. The two
domains are separated by a line of high density. Parameters: v = 1, τ = 1, L = 10,
η = 0.1 and T = 107 with T the total physical time.

and w > 0 with z
√

1 − w2 ≥ 1 and one at lower density for w > 0 with z
√

1 − w2 < 1.
The two domains are separated by a line of high density located at the locus of the delta
peak singularity of Eq. (75).

We now prove Eqs. (67)-(69) and then we give the expressions of the next-to-leading
order O(η) corrections to the amplitude of the delta peak showing that the latter is a
decreasing function of η. Tumbling thus reduces the fraction of time spent in contact
with the obstacle. It follows from Eq. (43) that, for z > 1, K(z) is a solution of the
integral equation

K(z) = K0(z) + ηL[K](z) , (76)
with L defined in Eqs. (45)-(48) and where

K0(z) = ρ0(z) −
∫ 1

√
z2−1
z

dw

2Wd−2

(
1 − w2

) d−3
2 exp

(
−ηzw + η

√
1 − z2(1 − w2)

)
. (77)

So far, ρ0(z), which is defined in Eq. (44), explicitly depends on Γ(0−) and Γ̂. In order
to obtain Eq. (67) and a closed equation for K(z) we start by defining Kη=0(z) =
limη→0 K(z) and, consistently with Eq. (70), we assume that Kη=0(z) is integrable as
z → ∞. Under this assumption, in the η → 0 limit, Eq. (32) can thus be rewritten as

f(1, w < 0) = 1 + ηe−ηw
∫ +∞

1
dz′ exp

{
−η
√

z′2 − (1 − w2)
}

K(z′)z′√
z′2 − (1 − w2)

,

= 1 + η
∫ +∞

1
dz′ Kη=0(z′)z′√

z′2 − (1 − w2)
+ o(η) . (78)

Together with Eq. (14), the above equation therefore yields Eq. (67),

Γ(w) = 1
d − 1Θ(−w) + ηΓ1(w) + o(η) , (79)

where the correcting term Γ1(w) is, for w < 0, a solution of

Γ′
1(w) − w

1 − w2 (d − 1)Γ1(w) = − w

1 − w2

∫ +∞

1
dz′ Kη=0(z′)z′√

z′2 − (1 − w2)
− 1

2(d − 1)(1 − w2) .
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(80)
We defer to Sec. 5.2 the study of the small η corrections but we note that Eq. (67)
follows from Eq. (79) obtained under the sole assumption that Kη=0(z) is integrable as
z → ∞. To leading order in η, we thus obtain from Eq. (77),

lim
η→0

K0(z) =
[
−1

2 +
√

z2 − 1
2Wd−2r

2F1

(
1
2 ,

3 − d

2 ,
3
2; 1 − 1

z2

)
+ 1

2Wd−2(d − 1)
z2−d

√
z2 − 1

]
, (81)

which is integrable for z → ∞. The rest of the proof follows from the fact that if Kη=0(z)
is integrable at z → ∞ then limη→0 L[K](z) exists. We first notice that

lim
η→0

L1[K](z) =
∫ z

1
dz′ z′ Kη=0 (z′)

∫ 1
√

z2−1
z

dw

2Wd−2

(1 − w2)
d−3

2√
z′2 − z2 (1 − w2)

. (82)

The above integral is indeed well-defined as∫ 1

z2−1
z

dw

2Wd−2

(1 − w2)
d−3

2√
z′2 − z2 (1 − w2)

, (83)

remains finite at z′ = 1 and Kη=0 (z′) is integrable at z′ = 1. Accordingly, the same
holds for L2 since

lim
η→0

L2[K](z) = 2
∫ z

1
dz′z′Kη=0 (z′)

∫ √
z2−1
z

√
z2−z′2

z

dw

2Wd−2

(1 − w2)
d−3

2√
z′2 − z2(1 − w2)

. (84)

We now turn to the study of L3. We recall Eq. (48),

L3[K](z) =
∫ +∞

z
dz′z′K (z′)

∫ √
z2−1
z

−1

dw

2Wd−2

(
1 − w2

) d−3
2 × (85)

. . . ×
exp

(
−ηzw − η

√
z′2 − z2(1 − w2)

)
√

z′2 − z2(1 − w2)
. (86)

from which it appears that if Kη=0 (z′) is integrable at +∞, then
lim
η→0

L3[K](z) exists. (87)

The integrability of limη→0 K0(z) for z → ∞ therefore guarantees that for z > 1
K(z) = K0(z) + η lim

η→0
L[K0](z) + o(η) , (88)

which self-consistently proves the integrability of Kη=0(z) which was our starting
assumption. Equation (69) then follows immediately. The result in Eq. (69) is
independent of the persistence length ℓp of the RTP. It only depends on σ through
the rescaling r = σz.

Two interesting results follow. First, the main results of this section, notably Eqs.
(67)-(69)-(75), also hold for different classes of self-propelled particles [10,29]. For active
Brownian particles whose self-propulsion has norm v0 and correlation time τ , the steady
state distribution function also depends only on z and w and obeys

0 = −
(

w∂rP (z, w) + 1 − w2

z
∂wP (z, w)

)
+ 1

zd−1 ∂z

(
zd−1P (z, w)∂zV (z)

)
+ηRP (z, w) . (89)
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with R an operator independent of η accounting for the reorientation of the active
self-propulsion, see e.g. [10] for a comparative review on run-and-tumble and active
Brownian particles. In the limit η → 0, the subtleties associated to the details of the
operator R are therefore suppressed and our results derived for run-and-tumble particles
are expected to hold. We also conjecture that our results also hold for active Ornstein-
Ulhenbeck particles [29], which may come more as a surprise since the norm of the active
self-propulsion fluctuates in this model. There, the steady-state distribution function
indeed depends on (z, w) and on v the self-propulsion velocity. Here we denote v0 = ⟨v⟩
its average and introduce as before η = σ/(v0τ). The steady-state distribution obeys

0 = −
(

w∂rP (z, w, v) + 1 − w2

z
∂wP (z, w, v)

)
+ 1

zd−1 ∂z

(
zd−1P (z, w, v)v0

v
∂zV (z)

)
+v0

v
ηRP (z, w, v) . (90)

with R another operator independent of η accounting for the reorientation of the active
self-propulsion. In the η → 0 limit, and in the hard-sphere limit where the prefactor v0

v

in front of the gradient of the potential becomes irrelevant, it follows that v and (z, w)
decouple in the steady-state and that the results obtained in this section for run-and-
tumble particles provide the correct marginal in the (z, w) space of the steady-state
distribution of a highly-ballistic active Ornstein-Ulhenbeck particle interacting with a
hard-sphere obstacle.

Additionally, Eq. (69) also corresponds to the steady-state distribution function
of two highly-ballistic RTPs interacting via hard-core repulsion – or equivalently the
low-density pair-distribution function of a fluid of highly ballistic hard-core RTPs –
with σ representing the diameter of a single particle. Indeed, the relative separation
r = r1 − r2 of the two run-and-tumble particles, with self-propulsions along u1 and u2,
evolves according to

dr
dt

= v0||u1 − u2||n − 2∇V (r) . (91)

with the relative self-propulsion direction

n = u1 − u2

||u1 − u2||
. (92)

At large distances, n is isotropically distributed on the unit sphere. Therefore, in the
highly ballistic limit, where the self-propulsion n is only set by boundary conditions,
the problem maps to that of a single run-and-tumble particle studied in this work. The
highly-ballistic steady-state distribution function being independent of the persistence
length ℓp, Eq. (69) also holds for a pair of highly-ballistic particles.

5.2. Corrections to the ballistic limit

Equation (80) gives the first order corrections to the ballistic limit of the surface term
of the steady-state distribution function. Imposing integrability at w = −1, we obtain
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η

Γ̂

Figure 5. Amplitude of the delta peak accumulation at the surface of the obstacle Γ̂
in dimension d = 2 as a function of the ratio η of the obstacle size over the persistence
length of the RTP. The dashed orange line is the theoretical prediction of Eq. (94).
The blue dots correspond to numerical simulations at fixed persistence length with
varying obstacle sizes. Parameters: v = 1, τ = 1, L = 20, T = 1010 with T the total
physical time.

in dimension d = 2,

Γ1(w) = −(2 + πw)
√

1 − w2 + π(−π + arccos(w)) − 2w2arctanh(
√

1 − w2)
4π

√
1 − w2

, (93)

thus yielding

Γ̂ = 1
2 − η

4C − 2 + π

8π
+ o(η) , (94)

with C ≃ 0.92 Catalan’s constant. We numerically confirmed the decay of the amplitude
of the surface term predicted by Eq. (94) as shown in Fig. 5. In dimension d = 3, Eq. (80)
allows to express Γ1(w) in terms of K and E, which are the complete elliptic integral of
the first and second kind, respectively,

Γ1(w) =
6w2K (1 − w2) + 3π (w2 − 1) w 2F1

(
−1

2 , 3
2 ; 2; 1 − 1

w2

)
− 4w3 − 6E (1 − w2) + 6w + 2

24 (w2 − 1) .

(95)

We therefore obtain

Γ̂ = 1
4 − cη + o(η) , (96)

with the constant c given by

c = −
∫ 0

−1

dw

2 Γ1(w) ≃ 0.053 . (97)

6. The effect of hydrodynamic interactions

In the above, we studied the steady state distribution function of a run-and-tumble
particle around a fixed spherical obstacle. In the highly ballistic limit, the latter
matches the steady-state distribution of two run-and-tumble particles with hard-core
repulsion. In the present section, we consider the motion of two run-and-tumble particles
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interacting via hydrodynamic interactions carried by a Stokesian fluid of viscosity µ and
a repulsive hard-core potential in dimension d ≥ 3. We deal with colloids driven by an
external force and endowed with a no-slip boundary condition at their surface, as can
be implemented by trapping them in mobile optical traps [30]. In the overdamped
limit, the equations of motion express a balance between the propulsion force, the
potential interaction between the particles and the force exerted by the surrounding
fluid on each of them. This results in a effective position dependent mobility for each
particle given, to leading order in their relative separation, by the Oseen tensor. The
Oseen tensor is the first term of an infinite series in powers of σ/r which does not fully
capture near-field phenomenology by overestimating the mobility in that regime [31].
Retaining the Oseen tensor only, as we shall now implement, can be seen as a first
step towards understanding the role of hydronamics. As in the dry case, we find that
in this approximation the steady-state distribution displays a singular-at-contact delta-
peak accumulation. Furthermore, we show that the main features of the highly-ballistic
bulk density obtained in the previous section, i.e. a square-root divergence close to
contact and a power-law decay with exponent −4 in d = 3 at large distances (but on
scales smaller than the persistence length) survive. The latter feature, the r−4 decay, is
likely to be robust upon expanding beyond the Oseen approximation. Our study also
predicts a reduced sticking coefficient compared to the dry case. Refined results on
the effect of hydrodynamic interactions could be obtained by using the Rotne-Prager-
Yamakawa [32, 33] approximation and subsequent expansions of the mobility tensor as
derived in [34]. For completeness we provide in Appendix C a derivation of the equations
of motion used in this section. Upon explicitly reintroducing a mobility ω for the purpose
of the discussion, these can be written as

0 = f0u1 − ∇rV (r) − ω

[
dr1

dt
− A(r)dr2

dt
− (d − 2)A(r) 1

r2

(
r · dr2

dt

)
r

]
,

0 = f0u2 + ∇rV (r) − ω

[
dr2

dt
− A(r)dr1

dt
− (d − 2)A(r) 1

r2

(
r · dr1

dt

)
r

]
,

(98)

with r = r1 − r2 and

ω = µ
d(d − 2)

d − 1
Ωdσd−2

2d−2 ,

A(r) = d

2(d − 1)

(
σ

2r

)d−2
, (99)

yielding [
1 + A(r) + (d − 2)A(r)

r2 (r·) r
]

dr
dt

= f0

ω
(u1 − u2) − 2

ω
∇rV (r) . (100)

To first order in r ≫ σ, we can easily invert this equation and obtain
drα

dt
= Mαβ

(
v0
(
uβ

1 − uβ
2

)
− 2∂βV (r)

)
, (101)
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with v0 = f0/ω and where we have rescaled the potential V (r) → V (r)/ω. The tensor
Mαβ is given by

Mαβ = δαβ(1 − A(r)) − (d − 2)A(r)rαrβ

r2 , (102)

which allows us to rewrite the equation of motion as
dr
dt

= (1 − A(r)) v0 (u1 − u2) − v0(d − 2)A(r) [(u1 − u2) · r̂] r̂

−2 (1 − (d − 1)A(r)) ∇rV (r) . (103)

Several comments are in order. First the amplitude of the pairwise forces is reduced due
to hydrodynamic interactions. Second, the effective propulsion velocity is also reduced
and it becomes space dependent: the velocity is lower as the particles get closer. Third,
there is also an extra force along r̂. Note that it is repulsive if (u1 − u2) · r̂ < 0
and attractive if (u1 − u2) · r̂ > 0. We will show that this results in a reduced delta-
peak attraction with respect to the dry case. The stationary state distribution function
g0(r;u1,u2) is the solution of

0 = −∂α

(
g0M

αβ
(
v0
(
uβ

1 − uβ
2

)
− 2∂βV (r)

))
+ Rg0 , (104)

where the operator R, which is negligible in the highly ballistic limit, accounts for the
reorientation of the active forces. In this limit, when the pair-potential is taken to be
of the hard-sphere type, the bulk distribution function f obeys

w [1 − (d − 1)A(z)] ∂zf + (1 − A(z)) 1 − w2

z
∂wf = 0 . (105)

with w the cosine of the angle between u1 − u2 and r̂ and z = r/σ. Furthermore, the
surface term satisfies

Γ′(w) − (d − 1) w

1 − w2 Γ(w) = −f(σ, w) w

1 − w2

[
1 − (d − 2)A(σ)

1 − A(σ)

]
, (106)

= −(d − 1)f(1, w) w

1 − w2

(
1 − d21−d

d − 1 − d21−d

)
. (107)

for w < 0 and Γ(w > 0) = 0. In the highly ballistic limit, the bulk distribution function
f is constant along the characteristics of Eq. (105) which read

z
√

1 − w2

[
1 − d

2

( 1
2z

)d−2] 1
d−1

= b , (108)

with b the far away impact parameter. In d = 3, this leads to

f(z, w)=Θ(−w)+Θ(w)
[
Θ
(√

(1 − w2)z(4z − 3)−1
)

+ 1
2δ
(√

(1 − w2)z(4z − 3)−1
)]

.(109)

Accordingly, the density can be obtained for z > 1 as

ρ(z) = 1
2 + 1

2

√√√√z(4z − 3) − 1
z(4z − 3) + 1

4
√

z(4z − 3)
1√

z(4z − 3) − 1
. (110)

This shows that the square-root divergence close to contact of the bulk density
identified in Sec. 4 is robust to the inclusion of far-field hydrodynamic interactions,
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though it remains an open question to find out how near-field corrections would affect
this behavior. The far-field structure of the density field is also left unchanged by
hydrodynamic interactions as we obtain ρ(z) ∼ z−4 for z ≫ 1, similarly to the d = 3
case of Eq. (69). Lastly, the surface term can be deduced for w < 0 from Eq. (106) as

Γ(w) = 1 − d21−d

d − 1 − d21−d
,

= 1
d − 1 + d21−d(2 − d)

(d − 1)(d − 1 − d21−d) <
1

d − 1 . (111)

The amplitude of the sticking term is therefore reduced by far-field hydrodynamic
interactions (from 1/2 without hydrodynamic interactions downto 1/5 when they are
included, in d = 3).

7. Conclusion

We have studied analytically the steady-state of a run-and-tumble particle around a
hard spherical obstacle. We have showed that as soon as the self-propulsion force has
a non-vanishing correlation time, the RTP is effectively attracted to the obstacle when
in its vicinity. This effect shows up in two ways. First, the steady-state distribution
function displays a delta-peak accumulation at the surface of the obstacle. Second, the
bulk density diverges with an exponent −1/2 close to it because the radial velocity of a
particle leaving the obstacle vanishes, provided that it didn’t flip its orientation in the
course of skidding. We have then obtained the full steady-state distribution function
in the limit where the persistence length of the RTP is much larger than the obsta-
cle size. This also gives us the pair-distribution function at low density of a fluid of
highly ballistic hard-core RTPs. We have furthermore showed that the amplitude of
the delta-peak accumulation is an increasing function of the persistence length, at least
when the latter is still large compared to the obstacle size. Lastly we have investigated
the role of the far-field hydrodynamic interactions on colloids driven by an external
force, as captured by the Oseen tensor. We conjecture that hydrodynamic interactions
reduce the propensity of highly persistent run-and-tumble particles to stick together
while preserving the qualitative features of the bulk density. It would certainly be in-
teresting to investigate the robustness of the structure of the distribution function not
only upon incorporating near-field hydrodynamic effects but also by considering differ-
ent propulsion mechanisms in the spirit of [35]. Other stimulating open questions are
concerned with non-spherical obstacles for which the far-field decay of the density field
is known to be drastically different [36]. The separation of the steady-state probabil-
ity distribution into a bulk distribution and a surface distribution is expected to survive.
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Appendix A. Dynamics in the r, w variables

The dynamics in Eq. (1) is closed in terms of the variables r and w. We discuss the
resulting dynamics for the case of a hard spherical obstacle. In between two tumbles,
say at t0 and t1, and while the particle is away from the obstacle r(t) ≥ σ, we have

r(t) =
√

r(t0)2 + v2
0 (t − t0)2 + 2v0 (t − t0) r(t0)w(t0) , (A.1)

together with

w(t) = v0 (t − t0) + w(t0)r(t0)
r(t) . (A.2)

The last two equations are obtained by projecting Eq. (1) along r and u. Let us
now assume that the particle hits the obstacle at some intermediate time t2 such that
r(t2) = σ. For all t2 ≤ t ≤ t1 such that w(t) < 0, the particle skids on the obstacle and

r(t) = σ , (A.3)
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while

w(t) = e
2v0(t−t0)

σ (1 + w(t2)) + w(t2) − 1
e

2v0(t−t0)
σ (1 + w(t2)) + 1 − w(t2)

. (A.4)

Lastly, when a tumble occur, the new value of w is sampled with the measure
Ptumble(w) = (2Wd−2)−1 (1 − w2)

d−3
2 . With increasing the dimension, Ptumble(w) gets

more biased towards w = 0, the counterpart of the increasing number of directions
orthogonal to r.

Appendix B. Bound on the growth in equation (66)

In this appendix, we show that if ρ(z) is an integrable function at z = 1, the integral in
Eq. (66)

I =
∫ a

h
dh′ρ(1 + h′) ln(h′) , (B.1)

does not grow faster than ln h as h → 0 for any finite a > 0. Let

P (h) =
∫ h

0
ρ(1 + h′)dh′ . (B.2)

It is such that P (h) → 0 as h → 0. By integration by part we have,

I = P (a) ln a − P (h) ln h −
∫ a

h

P (h′)
h′ . (B.3)

We can lastly write∫ a

h

P (h′)
h′ < P (a) (ln a − ln h) , (B.4)

that proves that I does not grow faster than ln h as h → 0.

Appendix C. Derivation of the equations of motion with hydrodynamic
interactions

Appendix C.1. Fluid flow around a moving obstacle

We consider a moving spherical obstacle of radius σ/2 at velocity u. The fluid is
incompressible and viscous with viscosity µ and the flow is given by the Stokes equation
with no-slip boundary conditions

µ∆v − ∇P = 0 ,

∇ · v = 0 ,

v(r = (σ/2)r̂) = u ,

P (r) = P∞ as ||r|| → ∞ .

(C.1)

We hereafter follow [37]. Due to the linearity of the equations in u, we introduce Mα
β

and Xβ such that vα(r) = Mα
β (r)uβ ,

P (r) − P∞ = ηXβ(r)uβ .
(C.2)
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They satisfy 

∂β∂βMα
γ − ∂αXγ = 0 ,

∂αMα
γ = 0 ,

Mβ
γ (r = (σ/2)r̂) = δβ

γ ,

Xβ(r) = 0 as ||r|| → ∞ ,

(C.3)

which is a completely rotationaly invariant set of equations. We have hence by symmetryXβ(r) = f(r)rβ ,

Mα
γ (r) = M1(r)δα

γ + M2(r)rαrγ .
(C.4)

We can therefore obtain a set of three coupled equations for f , M1 and M2 as

M ′′
1 + d − 1

r
M ′

1 + 2M2 − f = 0 , M1(σ/2) = 1 ,

M ′′
2 + d − 1

r
M ′

2 + 4M ′
2

r
− f ′

r
= 0 , M2(σ/2) = 0 ,

M ′
1

r
+ rM ′

2 + (d + 1)M2 = 0 .

(C.5)

Combining them so as to express the vanishing of the Laplacian of the pressure field,
we arrive at

f ′′ + d + 1
r

f ′ = 0 , (C.6)

so that

f(r) = A

rd
. (C.7)

When injecting this expression into the second equation of Eq. (C.5), we obtain M2(r)
as

M2(r) = A

2rd

(
1 − σ2

4r2

)
, (C.8)

which in turn can eventually be plugged into the first equation of Eq. (C.5) so as to get

M1(r) = A

2d

(
σ2

4rd
− 1

rd−2

)
+ σd−2

2d−2rd−2 . (C.9)

The constant A can then be obtained thanks to the divergenceless condition of the
velocity field. This eventually yields the pressure and velocity fields which are given by

P (r) = P∞ + µ
d(d − 2)

d − 1
2
σ

(
σ

2r

)d−1
r̂ · u ,

v(r) = 1
2(d − 1)

(
σ

2r

)d
[
d
(2r

σ

)2
+ (d − 2)

]
u + d(d − 2)

2(d − 1)

(
σ

2r

)d
[(2r

σ

)2
− 1

]
(r̂ · u) r̂ .

(C.10)
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Appendix C.2. Two moving spheres and hydrodynamic interactions

We now consider the case of two spheres of radius σ/2 at positions r1 and r2 with
velocities u1 and u2. The flow field is given by the solution of the Stokes equation
subjected to the proper boundary conditions

µ∆v − ∇P = 0 ,

∇ · v = 0 ,

v(r1 + (σ/2)r̂) = u1 ,

v(r2 + (σ/2)r̂) = u2 .

(C.11)

In this case, we look for the solution asv(r) = v
(0)
1 (r − r1) + v

(0)
2 (r − r2) + vcorr(r) ,

P (r) = P
(0)
0 (r − r1) + P

(0)
0 (r − r2) + Pcorr(r) + P∞ ,

(C.12)

with v
(0)
1 (r−r1) the fluid flow due to particle 1 in absence of particle 2 (and accordingly

for particle 2 and for the pressure fields). The correcting terms satisfy the following
system of equations

µ∆vcorr − ∇Pcorr = 0 ,

∇ · vcorr = 0 ,

vcorr(r1 + (σ/2)r̂) = −v
(0)
2 (r1 − r2 + (σ/2)r̂) ,

vcorr(r2 + (σ/2)r̂) = −v
(0)
1 (r2 − r1 + (σ/2)r̂) .

(C.13)

The correcting velocity field vcorr vanishes as the separation between the two particles
goes to infinity (comparatively to their size). In the following we will be interested
in the first correction of vcorr in the inverse separation σ/||r1 − r2||. We define
δv2 = v

(0)
2 (r1 − r2 + σ/2r̂), and accordingly δv1 = v

(0)
1 (r2 − r1 + σ/2r̂), which, from

Appendix C.1, writes to leading order in the inverse separation,

δv2 = d(d − 2)
2(d − 1)

(
σ

2|r1 − r2|

)d−2 ((r1 − r2) · u2) (r1 − r2)
|r1 − r2|2

(C.14)

+ d

2(d − 1)

(
σ

2|r1 − r2|

)d−2

u2 + O

( σ

2|r1 − r2|

)d−1
 , (C.15)

which is therefore independent of r̂. As a consequence, up to their first order correction
in the inverse separation, the velocity and pressure fields are given by the sum of the
fields sourced by two isolated spherical particles with shifted velocities: one at r1 with
velocity u1 − δv2 and one at r2 with velocity u2 − δv1. Hence

v(r) = 1
2(d − 1)

(
σ

2|r − r1|

)d
d

(
2|r1 − r|

σ

)2

+ (d − 2)
 (u1 − δv2)

+ 1
2(d − 1)

(
σ

2|r − r2|

)d
d

(
2|r2 − r|

σ

)2

+ (d − 2)
 (u2 − δv1)
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+ d(d − 2)
2(d − 1)

(
σ

2|r1 − r|

)d
(2|r1 − r|

σ

)2

− 1
 ((r − r1) · (u1 − δv2)) (r − r1)

|r − r1|2

+ d(d − 2)
2(d − 1)

(
σ

2|r2 − r|

)d
(2|r2 − r|

σ

)2

− 1
 ((r − r2) · (u2 − δv1)) (r − r2)

|r − r2|2
.(C.16)

Accordingly, the pressure field is given by

P (r) = P∞ + µ
d(d − 2)

d − 1
2
σ

(
σ

2|r − r1|

)d−1 (r − r1) · (u1 − δv2)
|r − r1|

+ µ
d(d − 2)

d − 1
2
σ

(
σ

2|r − r2|

)d−1 (r − r2) · (u2 − δv1)
|r − r2|

. (C.17)

We now seek to compute the force exerted by the fluid flow on particle 1,

F =
∫

dS · π , (C.18)

with πij = −Pδij + η (∂ivj + ∂jvi) the stress tensor. One can check that to next to
leading order in the relative separation, the force exerted by the fluid on particle 1 is
the same as the one exerted on an isolated particle with velocity u1 − δv2, i.e.

F = −µ
d(d − 2)

d − 1
Ωdσd−2

2d−2 (u1 − δv2) . (C.19)

The equations of motion (98) of the main text then follow.
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