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State-of-the-art approaches to extract transport coefficients of many-body quantum systems
broadly fall into two categories: (i) they target the linear-response regime in terms of equilibrium
correlation functions of the closed system; or (ii) they consider an open-system situation typically
modeled by a Lindblad equation, where a nonequilibrium steady state emerges from driving the sys-
tem at its boundaries. While quantitative agreement between (i) and (ii) has been found for selected
model and parameter choices, also disagreement has been pointed out in the literature. Studying
magnetization transport in the spin-1/2 XXZ chain, we here demonstrate that at weak driving,
the nonequilibrium steady state in an open system, including its buildup in time, can remarkably
be constructed just on the basis of correlation functions in the closed system. We numerically il-
lustrate this direct correspondence of closed-system and open-system dynamics, and show that it
allows the treatment of comparatively large open systems, usually only accessible to matrix product
state simulations. We also point out potential pitfalls when extracting transport coefficients from
nonequilibrium steady states in finite systems.

Introduction. Our understanding of the properties of
many-body quantum systems out of equilibrium has seen
remarkable advances in the last decades thanks to var-
ious experimental and theoretical breakthroughs [1–5].
Central questions are concerned with the emergence of
particular (thermal or nonthermal) steady states in the
long-time limit, but also with the (universal) properties
of the actual nonequilibrium process towards such states
in the course of time [2–5]. Broadly speaking, these and
related questions are usually studied in two different sce-
narios: (i) the system of interest is perfectly isolated from
its environment and evolves unitarily in time; (ii) the sys-
tem’s time evolution is nonunitary due to an explicit cou-
pling to an external bath which can affect the dynamics
(see, e.g., Ref. [6–8]).

In systems with a global conservation law, a fundamen-
tal role is played by transport processes [9]. Quantum
transport is also a prime example of a research question
that is explored both from a closed-system and an open-
system perspective. In closed systems, a widely used ap-
proach is linear response theory, where the Kubo formula
allows for the extraction of transport coefficients from
equilibrium correlation functions, which can be studied
in the time or frequency domain and in real or momen-
tum space [9]. While nonintegrable systems are expected
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to exhibit normal diffusion [10–12], the concrete calcula-
tion of diffusion constants for specific models turns out
to be a hard task in practice. This difficulty has been
one of the motivations for the development of sophisti-
cated numerical methods [13–27]. Moreover, some classes
of models can generically feature anomalous subdiffusion
or superdiffusion in certain parameter regimes [2, 28–41].

In contrast, when studying transport in an open-
system setting, the model of interest is often coupled
at its edges to two reservoirs, e.g., at different temper-
atures or chemical potentials, leading to a nonequilib-
rium steady state in the long-time limit. Then, the pro-
file and currsnt of this steady state yield information on
the transport behavior [42–45]. A popular description of
such an open system is provided by the Lindblad quan-
tum master equation [6], not least since it allows for ef-
ficient numerical simulations based on matrix product
states, giving access to comparatively large system sizes
[39, 46–51]. While quantitative agreement of transport
coefficients according to the Lindblad description with
those from closed-system approaches has been found for
selected models and parameter regimes [52–54], also dis-
agreement has been pointed out in the literature [55],
and there is no proof that both approaches have to agree
[9, 55–58].

From a physical perspective, computed transport co-
efficients for a given system should of course be inde-
pendent of the method employed. In fact, some of us
have recently shown that the dynamics of closed and
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open systems can be connected with each other in a cer-
tain simple setting. Specifically, Ref. [54] considered an
initially homogeneous system coupled locally to a single
Lindblad bath, which induces a net magnetization into
the system. Remarkably, it was shown that if the Lind-
blad driving is weak, the flow of the magnetization in
the open system, i.e., the broadening of the nonequilib-
rium density profile, can be described by an appropriate
superposition of equilibrium correlation functions in the
closed system. Building on this result, we here go beyond
Ref. [54] in a crucial point and explore the more common
situation of two Lindblad baths inducing a nonequilib-
rium steady state. Considering magnetization transport
in the paradigmatic spin-1/2 XXZ chain as an example,
we demonstrate that the steady state in the open system
can be constructed on the basis of correlation functions
in the closed system. We support our analytical results
by large-scale numerical simulations and show that our
scheme enables efficient unravelings of Lindblad equa-
tions for systems with up to 36 sites, which are usually
only accessible with matrix product state techniques.

Closed System. We consider the one-dimensional XXZ
model, which is described by the Hamiltonian

H = J

N∑
r=1

(Sx
r S

x
r+1 + Sy

rS
y
r+1 + ∆Sz

rS
z
r+1) , (1)

where Sj
r (j = x, y, z) are spin-1/2 operators at site r,

J > 0 is the antiferromagnetic coupling constant, and ∆
denotes the anisotropy in the z direction. Moreover, N
is the number of sites and we employ periodic bound-
ary conditions, Sj

N+1 ≡ Sj
1. The XXZ chain conserves

the global magnetization, [H,
∑

r S
z
r ] = 0, and we will

particularly focus on the regime ∆ > 1, where it is well-
established that spin transport is diffusive [9]. This dif-
fusive transport behavior can, for instance, be seen in
the Gaussian shape of the infinite-temperature spin-spin
correlation function at ∆ = 1.5 [59], see Fig. 1(a),

⟨Sz
r (t)Sz

r′(0)⟩eq =
tr[eiHtSz

r e
−iHtSz

r′ ]

2N
. (2)

The root-mean-squared displacement of the
above grows as Σ(t) ∝

√
t, see Fig. 1(b), where

Σ2(t) =
∑

r(r − r′)2Crr′(t) − [
∑

r(r − r′)Crr′(t)]
2 and

Crr′(t) = 4⟨Sz
r (t)Sz

r′⟩eq. Moreover, a diffusion coefficient

can be defined as 2D(t) = d
dtΣ

2(t) [60]. As shown in
Fig. 1(b), D(t) takes on a constant value D/J ≈ 0.6 for
tJ ≲ 10, which is approximately independent of time
(and system size [59, 61]) and consistent with other
results in the literature [51, 62–64].

In the following, we will show that the equilibrium cor-
relation function ⟨Sz

r (t)Sz
r′(0)⟩eq in Eq. (2) is not only

central to transport in the closed system, but can re-
markably be used to predict the buildup of a nonequi-
librium steady state in an open-system situation where
the spin chain is weakly driven by two Lindblad baths.
While we focus on the integrable XXZ chain as a concrete

10−5

10−3

10−1

1 36

tJ = 5, 10, 20

0

2

4

0 5 10 15 20

〈S
z r
(t
)S

z N
/
2
(0
)〉 e

q

r

(a)

D
(t
)/
J
,
Σ
(t
)

tJ

Σ(t)
D(t)/J

∝
√
t

(b)

D(t)/J = 0.6

FIG. 1. (a) Infinite-temperature correlation function
⟨Sz

r (t)S
z
N/2(0)⟩eq for N = 36 and ∆ = 1.5. The dashed curves

indicate Gaussians, see also [59]. (b) Diffusive growth of root-
mean-squared displacement Σ(t) ∝

√
t. A diffusion constant

D/J ≈ 0.6 can be extracted from the approximately constant
plateau of 2D(t) = d

dt
Σ2(t) at tJ ≲ 10. For longer times,

finite-size effects become relevant.

example due to its interesting transport properties, we
expect our conceptual findings to apply to a wider range
of models. In particular, while our derivation [54, 65]
is largely model-independent, it implicitely assumes suf-
ficiently fast local equilibration, which should be even
better fulfilled in nonintegrable chaotic systems.
Open System. Let us consider a scenario, where the

XXZ chain is explicitly coupled to an environment. We
describe this setting with a Lindblad equation,

ρ̇(t) = L ρ(t) = i[ρ(t), H] + D ρ(t) , (3)

which consists of a coherent time evolution of the density
matrix ρ with respect to H and an incoherent damping
term,

D ρ(t) =
∑
j

αj

(
Ljρ(t)L†

j −
1

2
{ρ(t), L†

jLj}
)
, (4)

with non-negative rates αj , Lindblad operators Lj , and
the anticommutator {•, •}. While the derivation of this
equation can be a subtle task for a given microscopic
model [43, 66], it is the most general form of a time-
local quantum master equation, which maps any density
matrix to a density matrix, i.e., which preserves trace,
hermiticity, and positivity [6]. Here, we choose [9]

L1 = S+
B1
, α1 = γ(1 + µ) (5)

L2 = L†
1 = S−

B1
, α2 = γ(1 − µ) (6)

L3 = S+
B2
, α3 = γ(1 − µ) (7)

L4 = L†
3 = S−

B2
, α4 = γ(1 + µ) , (8)

where γ is the system-bath coupling and µ is the driv-
ing strength. L1 and L2 are local Lindblad operators at
site B1 and flip a spin up and down, respectively. L3

and L4 act similarly on another site B2. In the follow-
ing, we set B1 = 1 and B2 = N/2 + 1. Note that we still
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FIG. 2. Open-system dynamics for the spin-1/2 XXZ chain
coupled to two Lindblad baths, as obtained for anisotropy
∆ = 1.5, N = 20 sites (with periodic boundary conditions),
small coupling γ/J = 0.1, and weak driving µ = 0.1. Numeri-
cal results from the full stochastic unraveling (data) are com-
pared to the prediction based on closed-system correlation
functions [cf. Eq. (20)]. (a) Time evolution of the local mag-
netization ⟨Sz

r (t)⟩ for different sites r. (b) Site dependence of
the steady state at tJ = 50.

consider periodic boundary conditions. However, our ap-
proach can also generally be applied to open boundaries
with the two baths at the system’s edges B1 = 1 and
B2 = N , and we present results for this setting in [65].
For µ > 0, the first (second) bath induces a net polar-
ization of µ/2 (−µ/2), leading to a steady state in the
long-time limit with a characteristic density profile and
a constant current. Note that, while the Lindblad mod-
eling (3) - (8) is standard in the context of transport in
quantum lattice models [9], there exist other approaches
to open-system dynamics which can also address poten-
tial non-Markovian effects [67].

In addition to the long-time limit, we are interested in
the temporal buildup of the steady state. Thus, we study
the time evolution of local densities

⟨Sz
r (t)⟩ = tr[ρ(t)Sz

r ] , (9)

which depends on the parameters of the system H, but
also on the bath parameters γ and µ. As an initial state,
we here consider a homogeneous situation with ρ(0) ∝ 1
being the infinite-temperature ensemble.

Quantum-trajectory approach. One possibility to solve
the Lindblad equation is given by the concept of stochas-
tic unraveling, which relies on pure states |ψ⟩ rather than
density matrices [68, 69]. It consists of an alternating
sequence of stochastic jumps with one of the Lindblad
operators and deterministic evolutions governed by an

effective Hamiltonian Heff = H − i
2

∑
j αj L

†
jLj . For our

choice of Lindblad operators,

Heff = H − iγ + iγµ(nB1
− nB2

) , (10)

with nr = S+
r S

−
r = Sz

r + 1/2. For weak driving µ≪ 1,
the time scale on which the last term in Eq. 10 affects
the dynamics is much longer than the typical time scale
between jumps. Thus, the effective Hamiltonian can be
approximated as

Heff ≈ H − iγ (11)

and the time evolution of a pure state reads

|ψ(t)⟩ ≈ e−γt e−iHt |ψ(0)⟩ , (12)

i.e., apart from the scalar damping term, the dynamics
is generated by the closed system H only. The approx-
imation in Eq. (12) is one of the main ingredients to
establish a correspondence between the dynamics of the
isolated and the weakly-driven XXZ chain below. For
larger values of µ, the effective Hamiltonian generating
the dynamics of |ψ(t)⟩ also involves the two operators
nB1

and nB2
, cf. Eq. (10).

Naturally, since Heff is a non-Hermitian operator, the
norm of a pure state is not conserved as a function of
time. As a consequence, for a given ε drawn at random
from a uniform distribution ]0, 1], there is a time, where

the condition ∥|ψ(t)⟩∥2 > ε is first violated. At this time,
a jump with one of the Lindblad operators occurs and the
new and normalized pure state reads

|ψ′(t)⟩ =
Lj |ψ(t)⟩

∥Lj |ψ(t)⟩∥ , (13)

where the specific jump is chosen with probability

pj =
αj ∥Lj |ψ(t)⟩∥2∑
j αj ∥Lj |ψ(t)⟩∥2

. (14)

After this jump, the next deterministic evolution takes
place. This sequence of stochastic jumps and determin-
istic evolutions leads to a particular trajectory |ψT(t)⟩.
The time-dependent density matrix according to the
Lindblad equation can eventually be approximated by
the average over different trajectories T. Thus, expecta-
tion values read

⟨Sz
r (t)⟩ ≈ 1

Tmax

Tmax∑
T=1

⟨ψT(t)|Sz
r |ψT(t)⟩

∥|ψT(t)⟩∥2
, (15)

where Tmax is the number of trajectories.
In order to mimic the homogeneous state ρ(0) ∝ 1,

we use random pure states as initial condition for the
stochastic unraveling,

|ψ(0)⟩ ∝
∑
j

cj |ϕj⟩ , (16)

where the real and imaginary parts of the coefficients cj in
some given basis |ϕj⟩ are drawn at random according to a
Gaussian probability distribution with zero mean. Cru-
cially, by exploiting the concept of quantum typicality
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FIG. 3. [(a) and (b)] Analogous data as in Fig. 2, but now
for N = 36 sites, for which stochastic unraveling is unfeasible.
(c) Magnetization injected by the first bath as a function of
time, see also [65]. A diffusion constant D/J ≈ 0.99 [76] can
be extracted from the slopes in (b) and (c).

[59, 70–75], expectation values ⟨ψ| • |ψ⟩ of local observ-
ables evaluated within such random states can be related
to infinite-temperature averages tr[•]/2N . This is used in
the following to connect the equilibrium correlation func-
tions ⟨Sz

r (t)Sz
r′(0)⟩eq [Eq. (2)] to the dynamics ⟨Sz

r (t)⟩ in
the open system [Eq. (9)].

Constructing steady states from correlation functions.
In Ref. [54], it was demonstrated that individual quan-
tum trajectories of the open system can be described
by closed-system equilibrium correlation functions if the
driving by the Lindblad bath is weak. We here build
on this result and apply it to the case of two Lind-
blad baths leading to a nonequilibrium steady state.
While we relegate details of the derivation to the sup-
plemental material [65], we find that for small coupling
γ and weak driving µ, the local magnetization dynam-
ics within a single trajectory T can be approximated as
dr,T(t) ≈ ⟨ψT(t)|Sz

r |ψT(t)⟩ / ∥|ψT(t)⟩∥2, where

dr,T(t) = 2µ
∑
j

Aj Θ(t− τj) Cr(t− τj) (17)

with Cr(t) ≡ ⟨Sz
r (t)Sz

B1
(0)⟩eq − ⟨Sz

r (t)Sz
B2

(0)⟩eq. Here,

⟨•⟩eq = tr[•]/2N denotes the infinite-temperature ensem-
ble, Θ(t) is the Heavyside function, and the sum runs
over the jump times τj of the particular trajectory T.

Moreover, the amplitudes Aj in Eq. (17) read

Aj =
aj − dB1,T(τj − 0+)

µ
(18)

with aj =
µ− 2 dB1,T(τj − 0+)

2 − 4µdB1,T(τj − 0+)
, (19)

where Aj → 1/2 for dB1,T(τj − 0+) → 0. Note that, due
to the symmetry dB1,T(τj − 0+) = −dB2,T(τj − 0+), only
B1 enters the above expressions. Equation (17) is the
main result of this Letter. It predicts the magnetization
dynamics in the open system by suitably superimposing
equilibrium correlation functions of the closed system in-
volving the two bath sites B1 and B2. In particular, from
Eq. (17), the trajectory-averaged magnetization dynam-
ics follows as

⟨Sz
r (t)⟩ ≈ 1

Tmax

Tmax∑
T=1

dr,T(t) , (20)

where each dr,T(t) is evaluated for a different se-
quence (τ1, τ2, . . .) of τj . Given the exponential
damping in Eq. (12), the τj can be generated as
τj+1 = τj − ln εj+1/2γ, where εj+1 are random numbers
drawn from a box distribution ]0, 1]. If the correlation
functions ⟨Sz

r (t)Sz
B1

(0)⟩eq and ⟨Sz
r (t)Sz

B2
(0)⟩eq are known,

it is thus straightforward to evaluate Eq. (20) for a large
number of sequences.
Numerical Illustration. We now test our theoretical

prediction and its accuracy for a specific example, namely
the spin-1/2 XXZ chain with ∆ = 1.5, N = 20, and pe-
riodic boundary conditions. The baths are located at
B1 = 1 and B2 = 11 and we focus on small coupling
γ/J = 0.1 and weak driving µ = 0.1. Additional data for
other values of ∆, γ, and µ, as well as for open boundary
conditions can be found in [65].

Our theoretical prediction (20) is carried out numeri-
cally for O(104 − 105) different sequences of jump times,
which turns out to be sufficient to obtain negligibly small
statistical errors. For comparison, we simulate the exact
dynamics of the open system by performing a stochastic
unraveling of the Lindblad equation. We stress that while
(20) is derived in the limit of weak driving, cf. Eq. (12),
the stochastic unraveling is here performed for the full
Heff in Eq. (10).

In Fig. 2, we depict the outcome of the comparison. In
Fig. 2(a), we show the time evolution of the local magne-
tization ⟨Sz

r (t)⟩ for different sites r. The site dependence
of the steady-state profile is depicted in Fig. 2(b) and is
well described by a linear function, except for the sites
located exactly at the bath contacts. Importantly, we
observe a remarkably good agreement between our pre-
diction (20) and the exact open-system dynamics for all
times up to tJ = 50, where the steady-state profile is al-
ready established. This confirms our main result (17).
We also note that for larger values of γ and µ, deviations
are expected to become more pronounced, see [65].

For N ≫ 20, stochastic unraveling cannot be carried
out, since the required average over many trajectories
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FIG. 4. Diffusion coefficient D(t) = ∂t⟨Sz
r (t)⟩/∇2⟨Sz

r (t)⟩
based on our prediction for the dynamics of the weakly-driven
open system in Fig. 3. Data is obtained at lattice site r = 12
and the approximately constant plateau for tJ ≲ 25 is consis-
tent with the transport behavior of the isolated XXZ chain in
Fig. 1. Similar data for predictions in smaller systems with
N = 20 and N = 28 are shown for comparison.

becomes unfeasible. In contrast, our theoretical predic-
tion (20) can be evaluated for larger system sizes, since
only the equilibrium correlation functions are needed in
Eq. (17). In particular, by relying on quantum typical-
ity [24, 26], we simulate these correlation functions for
up to N = 36 lattice sites on Jülich’s “JUWELS” super-
computer. As shown in Figs. 3(a) and 3(b), we are thus
able to describe the buildup of a nonequilibrium steady
state in a N = 36 XXZ chain weakly driven by Lindblad
baths at sites B1 = 1 and B2 = 19. Open-system simu-
lations for such system sizes are typically only accessible
with matrix product state techniques, which are in turn
usually restricted to open boundary conditions.

On the extraction of transport coefficients. In the
nonequilibrium steady state, the diffusion constant can
be calculated as D = −⟨jr⟩/∇⟨Sr⟩ for some site r in the
bulk away from the bath sites. Here, jr is the local spin-
current operator. Its expectation value can be expressed
as ⟨jr⟩ = d

dt ⟨δSz
B1

(t)⟩/2, where ⟨δSz
B1

(t)⟩ is the magnetiza-
tion injected by the first bath (see [65] for more details),
and the factor 1/2 takes into account that magnetization
can flow to the left and to the right of this bath, due
to periodic boundary conditions. As shown in Fig. 3(c),
⟨δSz

B1
(t)⟩ grows linearly in time (i.e., a constant ⟨jr⟩) and

we can thus evaluate the diffusion constant in the steady
state as the ratio of the slopes in Figs. 3(b) and 3(c). In
this way, we obtain a value D/J ≈ 0.99 which differs no-
tably from what we found earlier in the context of Fig. 1.

This discrepancy may be explained by finite-size ef-
fects. Specifically, as also apparent in Fig. 1(a), the equi-
librium correlation function ⟨Sz

r (t)Sz
r′(0)⟩eq is affected by

finite-size effects already at tJ ∼ 20, where the broaden-
ing of the density profile has explored the full system.
These effects then likely translate into the steady state
in the weakly-driven open system and its finite-N esti-
mate of the diffusion constant. Such finite-size effects
demonstrate that care must be taken when extracting
transport properties both in closed and open systems.
Importantly, we stress that the main conceptual result of
our work, i.e., establishing a connection between weakly-
driven Lindblad dynamics and closed quantum systems,
remains unabated. In the supplemental material [65],

we provide more details on this issue: Specifically, one
can assume an ideal situation where the closed system
behaves perfectly diffusive without finite-size corrections
(in contrast to Fig. 1), in which case the equilibrium cor-
relation functions ⟨Sz

r (t)Sz
r′(0)⟩eq follow analytically as

damped modified Bessel functions [65]. Using this ideal-
ized Ansatz, we find that the nonequilibrium steady state
indeed yields the same diffusion constant as the closed
system.

We note that one can extract a diffusion coef-
ficient also from the finite-time dynamics of the
open system, even before the steady state is es-
tablished, via D(t) = ∂t⟨Sz

r (t)⟩/∇2⟨Sz
r (t)⟩, where

∇2⟨Sz
r (t)⟩ = ⟨Sz

r−1(t)⟩ − 2⟨Sz
r (t)⟩ + ⟨Sz

r+1(t)⟩. We are
able to find a D(t) in Fig. 4 that exhibits an approxi-
mately constant plateau D/J ≈ 0.6 for tJ ≲ 25 (while
at longer t the behavior becomes uncontrolled due
to dividing two small numbers), consistent with our
analysis of the closed system in Fig. 1.

Conclusion. Considering the example of magnetization
transport in the spin-1/2 XXZ chain, we have connected
linear response theory to the dynamics in an open quan-
tum system driven by two Lindblad baths. Specifically,
building on Ref. [54], we have shown that, at weak driv-
ing, the nonequilibrium steady state and its buildup in
time can be constructed by suitably superimposing equi-
librium correlation functions of the closed system.

Conceptually, our results for a specific model might
reflect the natural expectation that transport coeffi-
cients obtained from closed-system and open-system ap-
proaches should agree with each other, at least if the
driving is sufficiently weak. While we have presented
data for systems with periodic boundary conditions, we
provide additional results in [65], where we consider the
more common case of open boundaries with Lindblad
driving at the edge spins. In particular, we find that
our main result (20) works convincingly also in this case
and is in good agreement with state-of-the-art simula-
tions based on time-evolving block decimation [47, 48].
From a practical perspective, our results enable the treat-
ment of quite large open systems, which are usually not
accessible by full stochastic unraveling. It would be an in-
teresting attempt to generalize our setting to other jump
operators, e.g., dephasing noise with Lj = Sz

j , and other
questions beyond quantum transport.
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J. Herbrych, and P. Prelovšek, Spin diffusion in a per-
turbed isotropic Heisenberg spin chain, Phys. Rev. B 108,
L081115 (2023).

[40] J. Richter and A. Pal, Anomalous hydrodynamics in a
class of scarred frustration-free Hamiltonians, Phys. Rev.
Research 4, L012003 (2022).

[41] J. Richter, O. Lunt, and A. Pal, Transport and entan-
glement growth in long-range random Clifford circuits,
Phys. Rev. Research 5, L012031 (2023).

[42] M. Michel, M. Hartmann, J. Gemmer, and G. Mahler,
Fourier’s Law confirmed for a class of small quantum
systems, Eur. Phys. J. B 34, 325 (2003).

[43] H. Wichterich, M. J. Henrich, H.-P. Breuer, J. Gemmer,
and M. Michel, Modeling heat transport through com-
pletely positive maps, Phys. Rev. E 76, 031115 (2007).
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DETAILS ON THE DERIVATION OF THE
THEORETICAL PREDICTION

In this section, we are going to sketch the derivation of
our theoretical prediction given in Eq. (17) of the main
text, which is an extension of the derivation in Ref. [54],
where only a single Lindblad bath was considered, in-
stead of the two baths treated here.

To this end, let us for the moment consider a simple
scenario featuring a jump with the Lindblad operator L1

immediately at some time t, say t = 0. Then,

|ψ(0)⟩ → |ψ′⟩ ∝ L1 |ψ(0)⟩ . (S1)

For a random initial state |ψ(0)⟩, as given in Eq. (16),
this jump results in a random superposition over a subset
of pure states with a spin-up at site B1, which mimics
ρ(0) ∝ 1 + Sz

B1
.

At weak driving µ ≪ 1, the subsequent deterministic
evolution before the next jump reads

dr(t)≡ ⟨ψ′(t)|Sz
r |ψ′(t)⟩

∥|ψ′(t)⟩∥2
≈⟨ψ′|eiHtSz

r e
−iHt|ψ′⟩ , (S2)

cf. Eq. (12) of the main text. Now, using the concept of
typicality, Eq. (S2) can be rewritten as

dr(t)

2
≈ ⟨Sz

r (t)Sz
B1

(0)⟩eq (S3)

with Sz
r (t) = eiHtSz

r e
−iHt and ⟨•⟩eq = tr[•]/2N denot-

ing the infinite-temperature ensemble [59]. Analogously,
one can obtain such a relation for the other possible
jumps with the Lindblad operators Lj , which then in-
volve either ⟨Sz

r (t)Sz
B1

(0)⟩eq or ⟨Sz
r (t)Sz

B2
(0)⟩eq. Note that

in the derivation of Eq. (S3), we used the facts that

∗ tjark.heitmann@uos.de
† rsteinig@uos.de

Sz
r = nr − 1/2, (nr)2 = nr, and tr[Sz

r (t)] = 0, see e.g.,
Ref. [24] for more details.

For the above homogeneous initial state |ψ(0)⟩, the
jump probabilities according to Eq. (14) are simply given
by pj = αj/4γ. Consequently, averaging over all 4 jumps
possibilities,

d̄r(t)

2
= (p1 − p2)⟨Sz

r (t)Sz
B1

(0)⟩eq
+ (p3 − p4)⟨Sz

r (t)Sz
B2

(0)⟩eq (S4)

yields the theoretical prediction

d̄r(t) = µ⟨Sz
r (t)Sz

B1
(0)⟩eq − µ⟨Sz

r (t)Sz
B2

(0)⟩eq (S5)

for the time evolution after the first and before the second
jump.

Let us consider a second jump at a later time τ . The
corresponding jump probabilities pj can then be derived
based on typicality arguments. To this end, we assume
a random pure state |ψ(τ − 0+)⟩ right before the jump
with d̄B1

(τ − 0+) ̸= 0 and d̄B2
(τ − 0+) ̸= 0. Then, due to

the symmetry

d̄B1
(τ − 0+) = −d̄B2

(τ − 0+) (S6)

we have

y1 =
∥∥L1|ψ(τ − 0+)⟩

∥∥2 =
1

2
− d̄B1

(τ − 0+) (S7)

y2 =
∥∥L2|ψ(τ − 0+)⟩

∥∥2 =
1

2
+ d̄B1

(τ − 0+) (S8)

y3 =
∥∥L3|ψ(τ − 0+)⟩

∥∥2 =
1

2
− d̄B2

(τ − 0+) = y2 (S9)

y4 =
∥∥L4|ψ(τ − 0+)⟩

∥∥2 =
1

2
+ d̄B2

(τ − 0+) = y1 (S10)

with y1 + y2 + y3 + y4 = 1. Thus, the jump probabilities
read

p1 = p4 =
1

2

(1 + µ)y1
(1 + µ)y1 + (1 − µ)y2

(S11)

p2 = p3 =
1

2

(1 − µ)y1
(1 + µ)y1 + (1 − µ)y2

(S12)
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with p1 +p2 +p3 +p4 = 1. A straightforward calculation
yields

p1 − p2 = p4 − p3 =
µ− 2 d̄B1

(τ − 0+)

2 − 4µ d̄B1
(τ − 0+)

. (S13)

Using this expression, we can define the amplitude

Aτ =
(p1 − p2) − d̄B1

(τ − 0+)

µ
, (S14)

to incorporate both the probabilities for the next jump
as well as the fact that some magnetization is already
induced at the bath site. With this, we can eventually
formulate a theoretical prediction for the deterministic
evolution after the second jump, in analogy to the case
of a single Lindblad bath [54]. This prediction reads

d̄r(t) = µ Cr(t) + 2µAτ Θ(t− τ) Cr(t− τ) (S15)

with the Heavyside function Θ(t) and the abbreviation

Cr(t) = ⟨Sz
r (t)Sz

B1
(0)⟩eq − ⟨Sz

r (t)Sz
B2

(0)⟩eq . (S16)

Reiterating this procedure finally yields a generalization
of Eq. (S15) to a sequence of jump times τj ,

d̄r(t) = 2µ
∑
j

Aj Θ(t− τj) Cr(t− τj) , (S17)

i.e., Eq. (17) in the main text.
As discussed in Ref. [54], the central assumption within

the above derivation is that the system has sufficient time
to equilibrate between two jumps or, in other words, the
magnetization injected at the contact sites has to spread
over some region of the system. This requirement means
that, in addition to a weak driving µ, one has to choose
a small coupling γ. Still, it might happen that even for
a small coupling the equilibration process is hampered,
as it is the case for open boundary conditions in certain
models and parameter regimes, see the discussion below
for more details.

PERFECT DIFFUSION

As mentioned in the main text, we attribute differences
between diffusion constants in open and closed systems to
finite-size effects at long times, where the steady state is
established. To support this, it is instructive to consider
the idealized assumption of perfect diffusion in the closed
system. In this case, which has no finite-size effects at
any time, the equilibrium correlation functions take on
the simple form [9]

⟨Sz
r (t)Sz

r′(0)⟩eq =
1

4
e−2Dclosedt Ir−r′(2Dclosedt) , (S18)

where Ir(t) is the modified Bessel function of the first
kind and of the order r. Choosing Dclosed/J = 0.6, we
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FIG. S1. Prediction under the idealized assumption that the
closed system is perfectly diffusive with a diffusion constant
D/J = 0.6. In the open system, the corresponding diffusion
constant obtained from the steady state is D/J ≈ 0.60 [80].

show our prediction for the open system in Fig. S1. In-
deed, using the relationship D = −⟨jr⟩/∇⟨Sr⟩, we find
a corresponding diffusion constant D/J ≈ 0.60 in the
steady state [80]. Thus, for perfectly diffusive behav-
ior without finite-size effects, the steady state yields the
same transport coefficient as the equilibrium correlation
function (in contrast to the realistic case discussed in the
context of Fig. 3 in the main text).

Furthermore, as already discussed in the main text, it
is possible to calculate D(t) already at finite times before
the steady state is established, via

D(t) =
∂t⟨Sz

r (t)⟩
∇2⟨Sz

r (t)⟩ (S19)

with

∇2⟨Sz
r (t)⟩ = ⟨Sz

r−1(t)⟩ − 2⟨Sz
r (t)⟩ + ⟨Sz

r+1(t)⟩ , (S20)

which is just the diffusion equation for a lattice in one
spatial dimension. Evaluating this expression for, e.g.,
site r = 9 and time tJ = 25 for the perfectly diffusive
data in Fig. S1, we obtain the value

D/J ≈ (0.012748 − 0.012062)/1

0.025282 − 2 · 0.012062 + 0
≈ 0.59 , (S21)

which is again in good agreement with Dclosed.
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FIG. S2. [(a) and (b)] Analogous to Fig. 2 of the main text,
but now with open boundary conditions and bath sites B1 = 1
and B2 = N , where N = 20. Numerical results obtained by
stochastic unraveling (data) are compared to our prediction
based on equilibrium correlation functions [cf. Eq. (20)]. Fur-
thermore, we show data obtained by solving the Lindblad
equation using a time-evolving block decimation (TEBD) ap-
proach, which are in perfect agreement with the stochastic
unraveling. The diffusion constant extracted from the steady
state is D/J ≈ 0.63 [81].

OPEN BOUNDARIES AND COMPARISON
WITH TEBD SIMULATIONS

So far, we have focused on systems with periodic
boundary conditions, which are the natural choice for
closed systems, whereas state-of-the-art matrix product
state approaches to open systems commonly rely on open
boundary conditions with Lindblad driving at the sys-
tems’ edges.

In Fig. S2, we show a comparison between our theoreti-
cal prediction (20) and full stochastic unraveling, similar
to Fig. 2 in the main text, but now for a XXZ chain
with open boundaries, where the two baths are placed at
the ends of the chain, B1 = 1 and B2 = N . As shown in
Fig. S2(a), the time evolution of the local magnetization
⟨Sz

r (t)⟩ is well captured by the prediction (20), though
deviations start to appear at times tJ ≳ 20. These slight
deviations might be caused by the fact that the equilib-
rium correlation functions can exhibit unusual behavior
in the case of open boundary conditions. In particular,
⟨Sz

B1
(t)Sz

B1
(0)⟩ and ⟨Sz

B2
(t)Sz

B2
(0)⟩ do not fully decay for

any ∆ > 1 in the case of open boundary conditions due
to the presence of a strong zero mode, where the edge
spins retain memory of their initial conditions for very
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FIG. S3. Time evolution of the local magnetizations ⟨Sz
r (t)⟩

for the model parameters in Fig. 2, but for the cases of (a)
large coupling γ/J = 1 (µ = 0.1) and (b) strong driving µ = 1
(γ/J = 0.1). As before, the derived prediction is compared to
stochastic unraveling (data).

long times [78, 79].

In addition to our prediction (20) and the stochastic
unraveling, we include in Fig. S2 numerical data obtained
by a state-of-the-art matrix product state implementa-
tion based on time-evolving block decimation (TEBD)
with time step dtJ = 0.05 and bond dimension χ = 128.
Importantly, we find that this TEBD data is in perfect
agreement with the results from stochastic unraveling.

The convincing agreement between TEBD, stochastic
unraveling, and our theoretical prediction is further high-
lighted in Fig. S2(b), where the site dependence of the
profile ⟨Sz

r (t)⟩ is shown for time tJ = 50. Moreover, we
find that this profile is well described by a linear func-
tion in the bulk, far away from the bath contacts. The
injected magnetization ⟨δSz

B1
(t)⟩ is shown in Fig. S2(c).

The diffusion constant in the open system is again given
by the ratio of the slopes in Figs. S2(b) and S2(c). This
way, we find the value D/J ≈ 0.63 in very good agree-
ment with the value D/J ≈ 0.6 in the closed system.

INJECTED MAGNETIZATION

The first Lindblad bath injects magnetization at the
corresponding contact site r = B1. This magnetization
can also be predicted and written as

⟨δSz
B1

(t)⟩ ≈ 1

Tmax

Tmax∑
T=1

δdB1,T(t) (S22)
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with

δdB1,T(t)

2µ
=

∑
j

Aj Θ(t− τj) ⟨ [Sz
B1

(0)]2⟩ , (S23)

cf. Eq. (17). This magnetization can then be related to
the local currents, which are all the same in the steady
state, i.e.,

⟨jr⟩ = ⟨jr′⟩ , B1 ≤ r, r′ ≤ B2 . (S24)

Thus, it is sufficient to know ⟨jB1
⟩, which follows from

the injected magnetization via

⟨jB1
⟩ =

d

dt

⟨δSz
B1

(t)⟩
2

, (S25)

where the factor 1/2 takes into account that the injected
magnetization can flow to the left and to the right of this
bath, due to periodic boundary conditions. By the use
of this expression, we find that, for the case discussed in
Fig. 2, ⟨jr⟩/J ≈ 0.0028.

For comparison, we can calculate the local currents for
the same model within the stochastic unraveling as

⟨jr⟩ ≈
1

Tmax

Tmax∑
T=1

⟨ψT(t)| jr |ψT(t)⟩
∥|ψT(t)⟩∥2

(S26)

for O(104) trajectories. For long times tJ ≳ 30, where
the steady state is established, we find a corresponding
value of ⟨jr⟩/J ≈ 0.003, which is close to the predicted
one above.
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FIG. S4. Time evolution of the local magnetizations ⟨Sz
r (t)⟩

for the model parameters in Fig. 2, but for the anisotropies (a)
∆ = 1.0 and (b) ∆ = 0.5. As before, the derived prediction is
compared to stochastic unraveling (data).

LARGE COUPLING / STRONG DRIVING

In the main text, we have focused on the case of small
coupling γ/J = 0.1 and weak driving µ = 0.1, where we
have found a convincing agreement between the derived
prediction and exact numerics in Fig. 2. To illustrate that
deviations occur for larger coupling or stronger driving,
we depict a corresponding comparison for (a) γ/J = 1
(µ = 0.1) and (b) µ = 1 (γ/J = 0.1) in Fig. S3. In both
cases (a) and (b), deviations are visible already at finite
times before the steady state is reached. Interestingly,
in the case (a) of strong coupling, the overall agreement
is still satisfactory and the profile in the steady state is
predicted accurately.

OTHER ANISOTROPIES

In Fig. 2 of the main text, we have provided a com-
parison of the magnetization dynamics for anisotropy
∆ = 1.5. Complementarily, we show a comparison for
anisotropies (a) ∆ = 1.0 and (b) ∆ = 0.5 in Fig. S4. For
the case of ∆ = 1.0, we again find a convincing agree-
ment. While for the case of ∆ = 0.5 the overall behav-
ior of prediction and numerics is still similar, deviations
are visible at long time scales. These deviations reflect
that the prediction is not exact in a mathematical sense
but involves physical assumptions (such as, e.g., on the
equilibration properties of the involved equilibrium cor-
relation functions) which may not hold perfectly in any
given situation.
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