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We show that the superconducivity in twisted graphene multilayers originates from a common
feature, which is the strong valley symmetry breaking characteristic of these moiré systems at the
magic angle. This leads to a breakdown of the rotational symmetry of the flat moiré bands down to
C3, and to ground states in which the time-reversal symmetry is broken for a given spin projection.
However, this symmetry can be recovered upon exchange of spin-up and spin-down electrons, as we
illustrate by means of a self-consistent microscopic Hartree-Fock resolution where the states for the
two spin projections acquire opposite sign of the valley polarization. There is then a spin-valley
locking by which the Fermi lines for the two spin projections are different and related by inversion
symmetry. This effect represents a large renormalization of the bare spin-orbit coupling of the
graphene multilayers, lending protection to the superconductivity against in-plane magnetic fields.
In the twisted bilayer as well as in trilayer and quadrilayer graphene, the pairing glue is shown to be
given by the nesting between parallel segments of the Fermi lines which arise from the breakdown of
symmetry down to C3. This leads to a strong Kohn-Luttinger pairing instability, which is relevant
until the Fermi line recovers gradually a more isotropic shape towards the bottom of the second
valence band, explaining why the superconductivity fades away beyond three-hole doping of the
moiré unit cell.

Introduction.— The origin of superconductivity (SC)
in twisted multilayer graphene samples1–4 is still highly
debated and poses one of the major theoretical chal-
lenges of condensed matter physics.5–41 Whereas initially
also electron-phonon pairing was intensively discussed,
it has now become an experimental evidence that the
electron-electron interaction is responsible for the un-
conventional low-temperature behavior of twisted bilayer
graphene (TBG) at the magic angle.

In this paper, we establish a common ground to un-
derstand the interaction effects in TBG, twisted tri-
layer graphene (TTG), and twisted quadrilayer graphene
(TQG). We elucidate that the SC originates in all of them
from a common feature, which is the strong valley sym-
metry breaking (VSB) characteristic of these moiré sys-
tems at the magic angle. Such a strong symmetry break-
ing pattern has profound consequences and, in TBG as
well as for TTG and TQG, it leads to the breakdown of
the C6 symmetry of the quasi-flat moiré bands down to
C3, which is the natural symmetry group operating in a
single valley.

The breakdown of inversion symmetry gives rise to a
strong distortion of the quasi-flat valence bands (VBs)
in the Brillouin zone, with a strong modulation of the
Coulomb interaction along the anisotropic Fermi line
which reflects in the development of some negative (at-
tractive) couplings in the decomposition over the differ-
ent harmonics. This type of Kohn-Luttinger (KL) pair-
ing instability is relevant until the Fermi line recovers a
more isotropic shape towards the bottom of the second
VB, which explains the reduction of the critical tempera-
ture of SC beyond three-hole doping per moiré unit cell.

The strong VSB can be confirmed from the experi-
mental observations in TBG and TTG. It offers an ex-

planation for the reset of the Hall density around filling
fraction ν = −2, which otherwise would be an ordinary
filling level in the middle of the lowest-energy VBs. At
ν = −2, the strong VSB splits the two valleys, placing
the Fermi level at the vertices of the Dirac cones in the
energetically lower valley. The Dirac nodes are destabi-
lized by a sufficiently strong Coulomb interaction, open-
ing a gap through a mechanism of dynamical symmetry
breaking. This subsequent pattern turns out to be time-
reversal symmetry breaking (TRSB) driving into an in-
sulator phase in the case of TTG, thus explaining the
experimental observation of a Chern number C = −2 in
the trilayer at ν = −2. However, the subsequent metal-
lic or insulating character (after TRSB) is less robust in
TBG and it may fluctuate depending on the twist angle
and the screening environment, making more variable the
experimental observations.

The lack of inversion symmetry in the regime of VSB
implies also that singlet Cooper pairs can only be formed
if electronic states with opposite spin projection are al-
lowed to have opposite sign of the valley polarization, so
that the two spin projections are attached to opposite
valleys. This type of solution for the two spin sectors
arises naturally in the self-consistent resolution of the in-
teracting system in the Hartree-Fock approximation, as
we show below.

VSB leads then to spin-valley locking, where the Fermi
lines for the two spin projections are different and related
by inversion symmetry, as shown in Fig. 1. This leads to
a particular realization of the so-called Ising SC, as the
spin-valley locking represents a large renormalization of
the small spin-orbit coupling of the graphene multilayers,
lending protection to the SC against in-plane magnetic
fields. This may explain the large in-plane fields required
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FIG. 1. Energy contour maps showing the Fermi lines in
the second valence band for (a) spin-up and (b) spin-down
electrons in the moiré Brillouin zone of TBG with twist angle
θ ≈ 1.08◦, for interaction strength e2/4πε = 0.1 eV×a (the
same units as in Fig. 2) and filling fraction of 2.4 holes per
moiré unit cell. Contiguous contour lines differ by a constant
step of 0.2 meV, from lower energies in blue to higher energies
in light color.

to destroy the SC and the Pauli limit violation observed
in TTG, and which would be absent in TBG due to the
large orbital Zeeman coupling characteristic of the bilayer
system.

Symmetry breaking in Hartree-Fock approximation.—
We carry out a real space description of the twisted
multilayers, taking into account all the carbon atoms in
the supercell of the moiré systems. In this respect, we
are going to consider some representatives from the se-
quence of commensurate superlattices with twist angle
θi = arccos

(
(3i2 + 3i+ 1/2)/(3i2 + 3i+ 1)

)
. In the case

of TBG we will focus on the system with i = 30, with
a twist angle θ = 1.08◦ which matches well the magic-
angle condition. We will recall the results obtained for
TTG in Ref. 42, which considered the configuration with
alternating twist angle between layers with θ = 1.61◦,
very close to the magic-angle condition for this sym-
metric TTG. In the case of TQG, we will assemble two
twisted bilayers with i = 18 and alternating twist an-
gle θ = 1.79◦, which place the system very close to the
flat-band condition.

The starting point in the real space approach is the
tight-binding approximation for the noninteracting sys-
tem, in which the Hamiltonian H0 is taken with a typical
parametrization of the exponential decay of hopping ma-
trix elements, as given in Ref. 43. To this, we add the
interacting Hamiltonian Hint accounting for the Coulomb
interaction, which is expressed in terms of creation (anni-

hilation) operators a†iσ (aiσ) for electrons at each carbon
site i with spin σ as

Hint =
1

2

∑
i,j,σ,σ′

a†iσaiσ vσσ′(ri − rj) a
†
jσ′ajσ′ , (1)

For ri 6= rj , we take vσσ′(ri − rj) = v(ri − rj), v being
the extended Coulomb potential. This is supposed to be
screened by metallic gates above and below the graphene
compound, which introduces an exponential decay with
screening length ξ. Moreover, the strength of the poten-
tial is also reduced by a dielectric constant ε, accounting
mainly for internal screening from electron-hole excita-
tions. For ri = rj , we have the Hubbard interaction
vσσ′ = Uδσ,−σ′ . The precise value of this coupling is not
very important, as long as it is nonvanishing, but it plays
an essential role to constrain the relative orientation of
the spin projections in the two valleys of the multilayers.

We adopt a Hartree-Fock (HF) approach to the many-
body problem, which implies the self-consistent resolu-
tion of the Dyson equation involving the interacting (non-
interacting) electron propagator G (G0) and the self-
energy Σ

G−1 = G−1
0 − Σ (2)

The HF approximation proceeds by assuming that the
static limit of the propagator G admits a representation
similar to that of G0, but with a set of eigenvalues εaσ
and eigenvectors φaσ(ri) modified by the interaction:

(G)iσ,jσ = −
∑
a

1

εaσ
φaσ(ri)φaσ(rj)

∗ . (3)

The resolution of (2) is then feasible since the self-energy
is given in terms of the eigenvectors by

(Σ)iσ,jσ = Iij
∑′

a

∑
l,σ′

vσσ′(ri − rl) |φaσ′(rl)|2

− vσσ(ri − rj)
∑′

a

φaσ(ri)φaσ(rj)
∗ , (4)

where the prime denotes that the sum is only over the
occupied levels44.

The HF approach is well-suited to our discussion, since
the Fock potential is the essential contribution trigger-
ing the different symmetry-breaking order parameters.
These can be written from the matrix elements

h
(σ)
ij =

∑′

a

φaσ(ri)φaσ(rj)
∗ . (5)

Thus, the order parameters for TRSB are given by

P
(σ)
± = Im

(∑
i∈A

(
h

(σ)
i1i2

h
(σ)
i2i3

h
(σ)
i3i1

) 1
3 ±

∑
i∈B

(
h

(σ)
i1i2

h
(σ)
i2i3

h
(σ)
i3i1

) 1
3

)
(6)

where the sums run over the loops made of three nearest
neighbors i1, i2 and i3 of each atom i in graphene sub-
lattices A and B. A nonvanishing P+ corresponds to the
usual Chern insulator phase with Haldane mass, while
P− 6= 0 signals instead an uneven rigid shift in the en-
ergies of the two valleys of the moiré system. Moreover,
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the other pattern likely to be found corresponds to chiral
symmetry breaking, measured by the order parameter

C(σ) =
∑
i∈A

h
(σ)
ii −

∑
i∈B

h
(σ)
ii (7)

The resolution of Eq. (2) allows us to map the different
symmetry breaking order parameters as the strength of
the Coulomb interaction evolves with ε, from weak to
strong coupling. The different phases obtained at filling
fraction ν = −2 for TBG and TQG at their respective
magic angles are shown in Fig. 2. The phase diagram
for TTG with θ = 1.61◦ at the same hole doping can be
found in Ref. 42.
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FIG. 2. Phase diagrams showing the order parameters of
symmetry breaking at a filling fraction of 2 holes per moiré
unit cell in (a) TBG at twist angle θ ≈ 1.08◦ and (b) TQG at
θ ≈ 1.79◦, obtained by means of a self-consistent Hartree-Fock
approximation. In the two cases the screening length of the
long-range Coulomb potential is ξ = 10 nm. The interaction
strength is measured in units of eV times the C-C distance a.

It is remarkable that the picture of symmetry breaking
patterns is qualitatively the same in the three multilay-
ers. The critical point for the opening of a gap at the
Dirac nodes is shifted towards weaker coupling in Fig.
2(a), but this is due to the fact that TBG at θ = 1.08◦

starts from a more critical condition, with a width of the
noninteracting quasi-flat bands smaller than in the other
two cases. On the other hand, we observe that another
transition takes place to the right of the phase diagrams.
The order parameter of VSB vanishes at a certain inter-
action strength, which is the signal that VSB is giving
way to a different phase characterized by intervalley co-
herence in the strong coupling limit. However, in the
absence of valley polarization, this new pattern cannot
account for the jumps observed in the Hall density of

TBG and TTG at ν = −2, so we will not consider such
a strong coupling phase in the subsequent discussion.

The common structure of the phases in the three mul-
tilayers is indeed ubiquitous in the moiré systems, as it
is also found in TBG at larger twist angles where the
magic-angle condition is tuned by applying hydrostatic
pressure. These systems with smaller supercells afford an
exact HF treatment, including all the valence bands. In
the real systems with 5000-10000 atoms in the moiré, we
only include up to 128 bands around the neutrality point
in the self-consistent resolution, due to technical reasons.
Nevertheless, the exact resolutions of the smaller systems
show a similar structure of the phases as in Figs. 2(a)-(b)
which lends further support to the results obtained here.
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FIG. 3. Lowest valence and conduction bands of (a) TBG at
twist angle θ ≈ 1.08◦ and (b) TQG at twist angle θ ≈ 1.79◦,
computed in a self-consistent Hartree-Fock approximation for
respective interaction strengths e2/4πε = 0.1, 0.125 eV×a, at
filling fraction of 2 holes per moiré unit cell (the dashed line
stands for the Fermi level).

We remark that the gap plotted in Figs. 2(a)-(b) corre-
sponds to the separation between valence and conduction
bands at the K point in the lower valley, in the presence
of valley polarization. We consider that TBG, as well as
TTG and TQG, must be placed in the phase with VSB,
since the splitting of the conduction and the valence band
in the lower valley is the feature that explains the jump
in the Hall density observed experimentally at ν = −2.
In the phase with VSB, TBG and TQG show indeed at
ν = −2 a splitting of the bands at the Fermi level, as can
be seen in Fig. 3. It has been shown in Ref. 42 that a
similar effect takes place in the case of TTG, and that the
splitting of the valence and the conduction band repro-
duces the reset of the Hall density found experimentally
near the integer filling.

Let us finally comment on the behavior of the band-
structure of TBG close to the Γ point. As can be seen in
Fig. 3(a), the eigenenergies are shifted to lower energies
in contrary to the expectation that the Coulomb energy
should push them upward. The reason is that the Hartree
contribution is not fully taken into account as only 128
bands are considered. Nevertheless, it is the exchange en-
ergy that is responsible for the symmetry breaking which
is treated adequately.
Ising superconductivity.— The strong VSB leads to
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(a) (b)

FIG. 4. Energy contour maps showing the Fermi lines in
the second valence band for (a) spin-up and (b) spin-down
electrons in the moiré Brillouin zone of TQG with twist angle
θ ≈ 1.79◦, for interaction strength e2/4πε = 0.125 eV×a (the
same units as in Fig. 2) and filling fraction of 2.8 holes per
moiré unit cell. Contiguous contour lines differ by a constant
step of 0.2 meV, from lower energies in blue to higher energies
in light color.

ground states in which the time-reversal symmetry is bro-
ken for a given spin projection, but where this symmetry
is recovered upon exchange of the two spin projections.
This is indeed realized in the HF approximation as this
approach allows for solutions where the states for the two
spin sectors have opposite sign of the VSB order param-
eter. The bands are then symmetric under the trans-
formation k → −k and concurrent exchange of the spin
projections, as shown in Figs. 1 and 4. We observe in
the figures that the two spin sectors have different Fermi
lines, related by inversion symmetry in momentum space.

The main consequence of the spin-valley locking is that
the electrons with opposite momenta of a Cooper pair
are forced to live on different Fermi lines attached to
opposite valleys. In this regard, this effect represents
a strong reinforcement of the small spin-orbit coupling
in the graphene layers. A similar renormalization was
considered in Ref. 45, taking into account diagrammatic
contributions which coincide with those encoded in the
Fock part of our approximation. This implies that the SC
in the twisted multilayers must be of Ising type, as the
spin-valley locking favors a preferred orientation of the
spins of a Cooper pair, normal to the graphene planes.

What remains to be discussed is the pairing instability
in the system, which demands the analysis of the Cooper
pair vertex V for electrons with zero total momentum.
This vertex can be parametrized in terms of the angles φ
and φ′ of the respective momenta of the spin-up incoming
and outgoing electrons on each contour line of energy ε.
The instabilities of the vertex can be obtained by solving
the equation encoding the iteration of the scattering of

Cooper pairs:

V (φ, φ′) = V0(φ, φ′)−
1

(2π)2

∫ Λ0 dε

ε

∫ 2π

0

dφ′′
∂k⊥
∂ε

∂k‖

∂φ′′
V0(φ, φ′′)V (φ′′, φ′)(8)

where k‖, k⊥ are the longitudinal and transverse com-
ponents of the momentum for each energy contour line
while V0(φ, φ′) is the bare vertex at a high-energy energy
cutoff Λ0.

Eq. (8) can be simplified by differentiating with re-
spect to the cutoff, which leads to

ε
∂V̂ (φ, φ′)

∂ε
=

1

2π

∫ 2π

0

dφ′′V̂ (φ, φ′′)V̂ (φ′′, φ′) (9)

with V̂ (φ, φ′) = F (φ)F (φ′)V (φ, φ′) and F (φ) =√
(∂k⊥/∂ε)(∂k‖/∂φ)/2π. Eq. (9) implies that the vertex

is a function of the variable ε/Λ0. If the initial condition
V0(φ, φ′) has a negative eigenvalue for any of its projec-
tions (harmonics) over the Fermi line, the solutions of
(9) will display then a divergence in the magnitude of
the negative coupling as ε→ 0, which is the signature of
the pairing instability.

The crucial question is to start with a sensible repre-
sentation of the initial vertex V0(φ, φ′) at the high-energy
cutoff. For this we rely on the iteration of diagrams in
the particle-hole channel shown in Fig. 5, which are not
included in the RPA diagrams already accounted for by
the internal screening of the Coulomb potential v. We
have therefore

V0(φ, φ′) = vk−k′ +
v2
Q χ̃k+k′

1− vQ χ̃k+k′
, (10)

where k,k′ are the respective momenta for angles φ, φ′

and χ̃q is particle-hole susceptibility appearing in Fig. 5.

k −k

k’−k’

FIG. 5. Lowest-order diagram dressing the BCS vertex in the
particle-hole channel.

The final step is to project the vertex onto the harmon-
ics cos(nφ), sin(nφ) which build up the different contri-

butions to V̂ (φ, φ′) at the high-energy cutoff. We have
carried out this operation along the Fermi lines of TBG
shown in Fig. 1, at filling fraction ν = −2.4. The eigen-
values for the different harmonics can be grouped accord-
ing to the irreducible representations of the approximate
symmetry group C3v. The results can be seen in Table I.

We find that, among the eigenvalues in Table I, there is
a pair of negative couplings with relatively large magni-
tude |λ| ≈ 0.4. We recall that, for a negative coupling λ
in a given representation, the solution of Eq. (9) develops
a divergence in that channel at the energy scale

εc = Λ0 e
−1/|λ| (11)
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Eigenvalue λ harmonics Irr. Rep.

4.25 1
2.14 {cos(φ), sin(φ)} E
2.09
−0.43 {cos(7φ), sin(7φ),

E−0.40 cos(8φ), sin(8φ)}
−0.36 cos(6φ) A1

0.33 cos(3φ) A1

0.26 {cos(2φ), sin(2φ),
E

0.21 cos(5φ), sin(5φ)}

TABLE I. Eigenvalues of the Cooper-pair vertex with largest
magnitude and dominant harmonics grouped according to the
irreducible representations of the approximate C3v symmetry,
for the Fermi line of TBG shown in Fig. 1.

In TBG, the magnitude of Λ0 is constrained by the re-
duced bandwidth of the second VB in Fig. 1. We can
assign to Λ0 the value of half the bandwidth, so that
Λ0 ∼ 1 meV. In this case, the small magnitude of the
cutoff is compensated by the relatively large value of |λ|,
which leads to a critical temperature Tc ∼ 1 K.

Eigenvalue λ harmonics Irr. Rep.

3.54 1
1.40 {cos(φ), sin(φ),

E
1.39 cos(2φ), sin(2φ)}
0.37 cos(3φ) A1

−0.31 {cos(5φ), sin(5φ),
E−0.30 cos(7φ), sin(7φ)}

−0.30 cos(6φ) A1

0.27 sin(6φ) A2

TABLE II. Eigenvalues of the Cooper-pair vertex with largest
magnitude and dominant harmonics grouped according to the
irreducible representations of the approximate C3v symmetry,
for the Fermi line of TQG shown in Fig. 4.

The same analysis of Fourier decomposition can be
done in the case of TQG, with the results shown in Table
II for the Fermi line in Fig. 4 at ν = −2.8. The value
of the dominant negative coupling is somewhat smaller
than in TBG, |λ| ≈ 0.3, but the estimate of the critical
temperature gives the same order of magnitude Tc ∼ 1
K. In both cases, we observe that the main limitation
in Tc may come from the reduced space for the scatter-
ing of the Cooper pairs, which is inherent to the small
bandwidth of the second VB.
Conclusion.— In both TBG and TQG, the large values

of the dominant attractive couplings are a consequence
of the approximate nesting between parallel segments in
the Fermi lines shown in Figs. 1 and 4. In this respect,
the Kohn-Luttinger mechanism operates in rather simi-
lar way as in TTG, where there is approximate nesting
between the sides of the triangular patches of the Fermi
line (as shown in Ref. 42). In the three cases, the nest-
ing features disappear as the hole doping increases and
the Fermi lines recover a more isotropic shape, explain-
ing why the Kohn-Luttinger instability fades away before
reaching the bottom of the band.

We have seen that the Fermi lines for the two spin pro-
jections are different and related by inversion symmetry
in the twisted multilayers. This leads to a particular real-
ization of the so-called Ising SC, as the spin-valley locking
represents a large renormalization of the small spin-orbit
coupling of the graphene multilayers, lending protection
to the SC against in-plane magnetic fields. This may
explain the large in-plane fields required to destroy the
SC and the Pauli limit violation observed in TTG, and
which would be absent in TBG due to the large orbital
Zeeman coupling characteristic of the bilayer system.
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