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In kagome metals, the chiral current order parameter η with time-reversal-symmetry-breaking
is the source of various exotic electronic states, while the method of controlling the current order
and its interplay with the star-of-David bond order φ are still unsolved. Here, we reveal that tiny
uniform orbital magnetization Morb[η,φ] is induced by the chiral current order, and its magnitude
is prominently enlarged under the presence of the bond order. Importantly, we derive the magnetic-
field (hz)-induced Ginzburg-Landau (GL) free energy expression ∆F [hz,η,φ] ∝ −hzMorb[η,φ],
which enables us to elucidate the field-induced current-bond phase transitions in kagome metals.
The emergent current-bond-hz trilinear coupling term in the free energy, −3m1hzη · φ, naturally
explains the characteristic magnetic field sensitive electronic states in kagome metals, such as the
field-induced current order and the strong interplay between the bond and current orders. The GL
coefficients of ∆F [hz,η,φ] derived from the realistic multiorbital model are appropriate to explain
various experiments. Furthermore, we present a natural explanation for the drastic strain-induced
increment of the current order transition temperature Tc reported by a recent experiment.

Introduction

Recent discovery of unconventional quantum phases
in metals has led to a new trend of condensed matter
physics. Exotic charge-density-wave orders and uncon-
ventional superconductivity in geometrically frustrated
kagome metal AV3Sb5 (A=Cs,Rb,K) have been attract-
ing increasing attention [1, 2]. The 2×2 (inverse) star-of-
David order, which is presumably the triple-q (3Q) bond
order (BO), occurs at TBO ≈ 100 K at ambient pressure
[3, 4]. The BO is the time-reversal-symmetry (TRS) pre-
serving modulation in the hopping integral, δtbij = real.
[5–11]. Below TBO, nodeless superconductivity occurs for
A=Cs [12, 13], which is naturally explained based on the
BO fluctuation mechanism proposed in Ref. [11].

In kagome metals, unusual TRS breaking (TRSB)
phase without long-range spin orders has been reported
by µ-SR [14–17], Kerr rotation [18, 19], field-tuned chi-
ral transport [20] measurements and STM studies under
magnetic field [3, 20]. The transition temperature TTRSB

is still under debate. Although it is close to TBO in many
experiments, the TRSB order parameter is strongly mag-
nified at T ∗ ≈ 35K for A=Cs [14, 16, 20] and T ∗ ≈ 50K
for A=Rb [17]. Recently, magnetic torque measurement
reveals the nematic order with TRSB at T ∗∗ ≈ 130K
[21], while no TRSB was reported by recent Kerr rotation
study [22]. A natural candidate is the correlation driven
TRSB hopping integral modulation: δtcij = imaginary.
This order accompanies topological charge-current [23]
that gives the giant anomalous Hall effect (AHE) [24, 25].

Theoretically, the BO and the current order emerge

∗These authors made equal contribution to the work.

in the presence of sizable off-site electron correlations
in Fe-based and cuprate superconductors [26–34] and in
kagome metals [7–9, 11, 35–39]. Notably, strong off-site
interaction (due to the off-site Coulomb repulsion or the
BO fluctuations) gives rise to the charge current order
[8–10, 35]. Based on the GL free-energy analysis, in-
teresting bond+current nematic (C2) coexisting phases
have been discussed in two-dimensional (2D) and three-
dimensional (3D) models [9, 35, 37–39]. Experimentally,
the nematic state is actually observed by the elastoresis-
tance [40], the scanning birefringence [18], and the STM
[4] measurements.

In kagome metals, outer magnetic field hz drastically
modifies the electronic states. The chirality of the charge-
current is aligned under very tiny |hz| ∼ 1 Tesla ac-
cording to the measurements of AHE [24, 25] and field-
tuned chiral transport [20]. In addition, the amplitude
of the loop current is strongly magnified by applying
small hz (& 1Tesla) [15–17]. Very recent transport mea-
surement of highly symmetric fabricated CsV3Sb5 micro
sample [41] reveals that current-order state is drastically
enlarged by the small hz. These drastic hz-dependences
are the hallmarks of the TRSB state, and it is important
to understand the coupling between the current order,
chirality and the magnetic field in kagome metals.

In this paper, we reveal that the 3Q loop-current order
parameters accompany tiny orbital magnetization, Morb,
and its magnitude is drastically enlarged under the pres-
ence of the bond order. Importantly, we derive the hz-
induced Ginzburg-Landau (GL) free energy expression
∆F , which is useful to study nontrivial phase transitions
under the magnetic field. The emergent current-bond-hz
trilinear coupling term in ∆F not only explains the origin
of novel field-induced chiral symmetry breaking [15–17]
but also provides useful hints to control the charge cur-
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FIG. 1: (a) Kagome lattice tight-binding model. The 3Q
BO φ = (φ, φ, φ)/

√
3 (φ > 0) is depicted. The dXZ-orbital

on each sublattice is drawn. (b) FS at the vHS filling nvHS.
Three vHS points kA, kB and kC are respectively composed
of A (red), B (blue), and C (green) orbitals. The inter-vHS
nesting vectors qn (n = 1 − 3) are shown. (c) 3Q current
order η = (η1, η2, η3) is depicted. Note that (η1, η2, η3) and
(η1,−η2,−η3) are the same bulk states.

rent in kagome metals. In addition, the “strain-induced
increment of TTRSB reported in Ref. [41] is naturally
understood.
In the present study of Morb, we mainly focus on the

current order in the 3dXZ-orbital (in b3g-representation)
of V ion, which has been intensively studied previously
[7–10, 35]. However, other 3d-orbitals (especially 3dY Z -,
dX2−Y 2-, d3Z2−R2 -orbitals) also form the large Fermi sur-
faces (FSs) with the van-Hove singularity (vHS) points
near the Fermi level. The impact of these non-b3g or-
bitals on the current order has also been studied in Refs.
[37, 39]. The present field-induced GL theory does not
depend on the d-orbital character of the current order pa-
rameter. We calculate the GL coefficients mn (n = 1−3)
for various d-orbital current order states based on the
first-principles kagome metal models. For a fixed order
parameter,mn is large when the FS reconstruction due to
the current order parameters occurs near the vHS points.

Model Hamiltonian with current and bond orders

Here, we study the kagome-lattice tight-binding model
with b3g (or dXZ) orbitals shown in Fig. 1 (a). Each unit-
cell is composed of three sublattices A, B, C. We set the
nearest-neighbor hopping integral t = −0.5[eV]. In ad-
dition, we introduce the nearest intra-sublattice hopping
t′ = −0.02[eV] shown in Fig. 1 (a) to avoid the perfect
nesting. (Hereafter, the unit of the energy is eV.) The FS
at the vHS filling, n = nvHS = 2.55 per 3-site unit cell,

is shown in Fig. 1 (b). Then, the FS lies on the three
vHS points (kA, kB, kC), each of which is composed of
a single sublattice A, B, or C. This simple three-orbital
model well captures the main pure-type FS in kagome
metals [3, 42–45].
The bond/current order is the modulation of the hop-

ping integral between i and j atmos due to the elec-

tron correlation, δt
b/c
ij . Theoretically, it is the symme-

try breaking in the self-energy, and it is derived from the
density-wave (DW) equation [11, 35]. The wavevectors
of the bond and current orders correspond to the inter-
sublattice nesting vectors qn (n = 1 − 3) in Fig. 1 (b)
according to previous theoretical studies [7–9, 11, 35, 36].
The triple Q (3Q) current order between the nearest
atoms is depicted in Fig. 1 (c). The form factor (=nor-

malized δtcij) with q = q1, f
(1)
ij , is +i for (i, j) belongs

to the sites (l,m) = (1, 2), (2, 4), (4, 5), (5, 1) in Fig. 1
(c), and −i for (7, 8), (8, 10), (10, 11), (11, 7). Odd parity

relation f
(1)
ij = −f (1)

ji holds. Other form factors with q2

and q3, f
(2)
ij and f

(3)
ij , are also derived from Fig. 1 (c).

Using fij = (f
(1)
ij , f

(2)
ij , f

(3)
ij ), the current order is

δtcij = η · fij , (1)

where η ≡ (η1, η2, η3) is the set of current order param-
eters with the wavevector qm. Also, the BO is given as

δtbij = φ · gij , (2)

where φ ≡ (φ1, φ2, φ3) is the set of BO parameters

with the wavevector qm, and g
(m)
ij = g

(m)
ji = ±1 is the

even-parity form factor for the BO shown in Fig. 1

(a). For example, g
(1)
ij = +1 [−1] for (i, j) belongs to

(1, 2), (4, 5), (8, 10), (11, 7) [(2, 4), (5, 1), (7, 8), (10, 11)].
The unit cell under the 3Q bond/current order is

magnified by 2 × 2 times. Thus, we analyze the elec-
tronic states with the current order based on the 4 × 3-
site kagome lattice model. The Hamiltonian with the
bond+current order is Ĥ =

∑

k,l,m,σ hlm(k)c†k,l,σck,m,σ,
where l,m = 1 ∼ 12 and hlm(k) (= hml(k)

∗) is the
Fourier transform of the hopping integral t̃ij = tij +
δtbij+δt

c
ij . Here, tij is the hopping integral of the original

model, and δt
b(c)
ij is the hopping integral due to the bond

(current) order in Eq. [2] (Eq. [1]).

Uniform orbital magnetization

The TRS is broken in the presence of the current order
δtcij . In this case, the uniform orbital magnetizationMorb

may appear due to the finite Berry curvature as pointed
out in Ref. [9]. Morb per V atom in the unit of Bohr
magneton µB = e~/2mec (me= free electron mass) is
given as [46, 47]

Morb =
µB

E0NucN

∑

k,σ

m(k), (3)
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m(k) =
∑

α6=β

Im(V ∗
βαk × Vβαk)z

×
(

(ǫβk − ǫαk)n(ǫαk)− 2T ln[1 + e−(ǫαk−µ)/T ]
)

, (4)

Vαβk = 〈αk|∇khk|βk〉/(ǫαk − ǫβk), (5)

where ǫαk is α-th eigenenergy of 4 × 3-site kagome lat-
tice model in the folded BZ. n(ǫ) is Fermi distribution
function, Nuc = 12 is the site number of 2 × 2 unit cell,
N is the k-mesh number, and E0 = ~

2/a2me. a is the
unit length in the numerical study, and we set a = |aAB|
(= 0.275 nm in kagome metals). E0 = 1.0 eV when
a = 0.275 nm.
At zero temperature, Eq. [3] is rewritten as

MT=0
orb =

µB

E0NucN

∑

k,α<β

Im{V x
βαkV

y
αβk − (α ↔ β)}

×(ǫαk + ǫβk − 2µ)(n0(ǫαk)− n0(ǫβk)), (6)

where n0(ǫ) is the Fermi distribution function at T =
0. Considering the factor (n0(ǫαk) − n0(ǫβk)) with α <
β, Morb originates from the “vertical particle-hole (p-h)
excitation”, from ǫαk < 0 to ǫβk > 0, at the same k in
the folded BZ.
The folded FS (η = φ = 0) and bandstructure in the

folded Brillouin zone (BZ) at n = nvHS are shown in Figs.
S1 (a)-(c) in the SI A [49]. Here, all vHS points A, B, C
in the original BZ in Fig. 1 (b) move to Γ point, and they
will hybridize each other due to the current and/or BO
parameter. When n ≈ nvHS, prominent band hybridiza-
tion occurs near the Γ point, as understood in Fig. S1
(a). Then, the bonding (antibonding) band energy at Γ
point is below (above) the Fermi level, as shown in Fig.
S1 (b). Because of the factor Im{· · · } ∝ |ǫαk − ǫβk|−2 in
Eq. [6], Morb becomes large when n ≈ nvHS.
Here, we calculate Morb [µB] near the vHS filling

nvHS = 2.55 at T = 1 meV, in the case of E0 = 1.0
eV. Figure 2 (a) represents the obtained Morb under the
3Q current order η = (η, η, η)/

√
3 for n = 2.47 ∼ 2.63.

(The FS without the current order is shown in Fig. 2
(b).) We obtain the relation Morb ∝ η3, and it becomes
large when the filling is close to nvHS. Therefore, the 3Q
current order state is a weak-ferromagnetic (or ferrimag-
netic) state. Because the additional free energy under
the magnetic field hz per 3-site unit cell is

∆F = −3hzMorb, (7)

the chirality of the current order is aligned under tiny hz.
In other words, the 3Q current order is stabilized under
hz. In contrast, Morb = 0 for 1Q and 2Q current orders.
hz = 10−4 corresponds to ∼ 1 Tesla.
Here, we present a symmetry argument to under-

stand Morb induced by the current order. Both 1Q and
2Q current orders are invariant under the time-reversal
and the translational operations successively. Therefore,
Morb = 0 due to the TRS in the bulk state. In contrast,
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FIG. 2: (a) Morb [µB] per V atom due to the 3Q current order
η = (η, η, η)/

√
3 at T = 1 meV for n = 2.47 ∼ 2.63. Morb (∝

η3) is large when n ≈ nvHS. (b) FS around nvHS = 2.55. (c)
Charge-current pattern in real space. J 6= J ′ 6= J ′′ in spite of
the same order parameter η1 = η2 = η3. (d) Morb (∝ η) due
to the coexistence of 3Q current order and 3Q BO at n = 2.47.
(e) 1Q bond+current order with finite Morb. Its time-reversal
and translation by 2aAB causes a different state.

Morb is nonzero in the 3Q current order because this state
breaks the TRS in the bulk state [9]. To find an intuitive
reason, we calculated the charge-current along the near-
est bonds Jij in the 3Q state using the method in Refs.
[33, 48], and found that |Jij | is bond-dependent in spite
of the same order parameter η1 = η2 = η3. The obtained
relation J 6= J ′ 6= J ′′ shown in Fig. 2 (c) indicates that
Morb becomes finite because the magnetic fluxes through
triangles and hexagons do not cancel perfectly.
For general order parameter η = (η1, η2, η3), we ver-

ified the relation Morb ∝ η1η2η3 up to the third-order.
In fact, based on the perturbation theory with respect to
Eq. [1]; ηmf̂

(m) (m = 1 − 3). Morb[η] is expanded as
∑

pqr bpqr(η1)
p(η2)

q(η3)
r with p + q + r = odd because

Morb[η] is an odd function of η. In addition, bpqr can be
nonzero only when pq1 + qq2 + rq3 = 0 (modulo origi-
nal reciprocal vectors), because we study the nonlinear
response of the uniform (q = 0) magnetization due to
the potential ηmf

(m) with wavevector qm in the original
unit cell. (See the SI B for a more detailed explanation
[49].) In Fig. 2 (a), Morb originates from the third-order
term b111, which is allowed because of the momentum
conservation q1 + q2 + q3 = 0.
Next stage, we calculateMorb under the coexistence of

the 3Q current order η = (η, η, η)/
√
3 and the 3Q bond

order φ = (φ, φ, φ)/
√
3. Figure 2 (d) represents Morb
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FIG. 3: Obtained coefficients of M̄orb, (a) m1 and (b)
m2 (≈ −m3), per V atom as a function of n. Both |m1|
and |m2| are large for n ∼ nvHS. (c) Folded FS and (d)
folded bandstructure in the folded BZ when η = φ → 0.
The k-path is shown in the (c). We set the origin of the en-
ergy at the vHS energy. (e) m1(k) ≡ ∂2m(k)/∂η1∂φ1|η=φ=0

and (f) m2(k) ≡ ∂3m(k)/∂η1∂η2∂η3|η=φ=0 for n = 2.58
(nvHS = 2.55). Note that mn ∝ ∑

k
mn(k).

at φ = 0,±0.01 as a function of η, for n = 2.47 and
T = 1 meV. Interesting relation Morb ∝ η is obtained
when φ 6= 0. Then, the field-induced ∆F contains a non-
analytic η-linear term that always produces 〈η〉 6= 0. This
fact causes significant field-induced change in the phase
diagram, as we will explain in the SI C [49].

To understand the η-linear term in Fig. 2 (d),
we expand Morb with respect to the current order
ηmf̂

(m) and bond order φmĝ
(m). Its Taylor expansion

is
∑

pqrp′q′r′ b
p′q′r′

pqr (η1)
p(η2)

q(η3)
r(φ1)

p′

(φ2)
q′(φ3)

r′ with
p+q+r = odd and (p+p′)q1+(q+q′)q2+(r+r′)q3 = 0

(modulo original reciprocal vectors). The η-linear term
in Fig. 2 (c) mainly originates from the second-order
term b100100 in addition to the third-order term b011100. In
fact, the 1Q current + 1Q BO state shown in Fig. 2 (e)
violates the TRS in the bulk state.

Field-induced GL free energy expression

From the above discussions, we obtain the following
convenient expression of the orbital magnetization and
the “field-induced GL free energy formula” up to the
third-order:

M̄orb = m1φ · η +m2η1η2η3

+m3(η1φ2φ3 + φ1η2φ3 + φ1φ2η3), (8)

∆F̄ = −3hzM̄orb, (9)

which enables us to elucidate the field-induced
bond+current phase transitions in kagome metals. Fig-
ures 3 (a) and (b) show the coefficients m1 and m2 de-
rived from Eq. [3] numerically, respectively. Interest-
ingly, |m1| and |m2| become large for n ∼ nvHS.
In the SI D [49], we show that M̄orb in Eq. [8] well

reproduces the original Morb when |η|, |φ| . 0.02. The
expression of M̄orb is also justified based on the first prin-
ciples model for |η|, |φ| . 0.02 in the SI D [49].
To understand the n-dependences of m1 and m2, we

discuss the folded FS and bandstructure given in Figs. 3
(c) and (d), respectively, for η = φ → 0. Here, band a [b,
and c] originates from the bandstructure around vHS-A
[B,C] in Fig. 1 (b). As shown in Fig. 3 (d), band a and
band b degenerate along kx-axis and ky-axis. Hereafter,
we set µ = 0.
First, we consider the origin of m1, which is caused

by the band-folding induced by η1f̂
(1) and φ1ĝ

(1), both
of which convey the wavevector q = q1. Therefore, m1

is induced by the “vertical p-h excitation between band
a and band b” in Fig. 3 (d) in the folded BZ. (Band c
gives no contribution for m1.) To verify this considera-
tion, we examine the function m(k) in Eq. [4]. Figure 1
(e) shows the obtained m1(k) ≡ ∂2m(k)/∂η1∂φ1|η=φ=0.
(Note that m1 ∝

∑

km1(k).) It is verified that large m1

originates from the FS a and FS b near the Γ-M line in
Fig. 3 (c). This mechanism occurs for both n > nvHS

and n < nvHS, so |m1| takes large value for a wide range
of n. Note that m1 in Fig. 3 (a) changes its sign at
n = 2.44, when kAB and k′

AB in Fig.1 (b) touch in the
folded BZ.
Next, we consider the origin of m2, which is caused

by the band-foldings caused by f̂ (1) (at q = q1), f̂
(2)

(at q = q2) and f̂ (3) (at q = q3). This situation al-
lows the “vertical p-h excitation between band a + b
and band c” in Fig. 3 (d), which is significant because
the band splitting between ǫck (> 0) and ǫa,bk (< 0) is
very small. This process gives huge |m2| at n = nvHS

obtained in Fig. 3 (b). Figure 3 (f) shows the ob-
tained m2(k) ≡ ∂3m(k)/∂η1∂η2∂η3|η=φ=0. (Note that
m2 ∝

∑

km2(k).) The large m2 originates from the six
band-crossing points (kcross) near the Γ point, due to the
vertical p-h excitation among three bands a, b, c.
To summarize, large |m1| and |m2| are caused by the

FS crossing near the vHS points and the M-M’ line for
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n ∼ nvHS. Therefore, the field-induced free energy ∆F̄
should be significant in real kagome metals. In the SI
B [49], we verify that the relation m3 ≈ −m2 holds
very well. This relation originates from the relation

f
(m)
ij = ig

(m)
ij or −ig(m)

ij when both order parameters are
composed of only the nearest bonds.
We verified in the SI E [49] that the magnitudes of m1

and m2 at t′ = −0.08 is comparable to those in Fig. 3.
When t′ = −0.02 in Fig. 3 (b), the obtained m2(nvHS)
takes a large value because the p-h asymmetry around
E = EvHS is significant. When t′ = −0.08 in Fig. S6 (e),
in contrast, m2(nvHS) is small and m2(n) tends to be an
odd function of n−nvHS because of the approximate p-h
symmetry and the factor (ǫαk + ǫβk − 2µ) in Eq. [6].
(The numerical results of m2(n) in the 30-orbital model
in Figs. 5 (g)-(h) are closer to the results at t′ = −0.02
near the vHS filling.)
Below, we derive the order parameters under hz by

minimizing the GL free energy F = F 0 + ∆F̄ , where
F 0 = F 0

η +F 0
φ +F 0

η,φ is the free energy at hz = 0 [9, 35]:

F 0
φ = ab|φ|2 + b1φ1φ2φ3

+d1(φ
4
1 + φ42 + φ43) + d2(φ

2
1φ

2
2 + (cycl.)), (10)

F 0
η = ac|η|2 + d3(η

4
1 + η42 + η43) + d4(η

2
1η

2
2 + (cycl.)),(11)

and F 0
η,φ contains the current-bond cross terms propor-

tional to η2φ1 and η2φ2:

F 0
η,φ = b2(φ1η2η3 + (cycl.))

+2d5(φ
2
1η

2
1 + φ22η

2
2 + φ23η

2
3) + d6(φ

2
1η

2
2 + (cycl.)).(12)

Here, ac(b) = rc(b)(T − T 0
c(b)), where T

0
c(b) is the current-

order (BO) transition temperature without other orders.
Theoretically, ac(b) ∼ N(0)(−1 + λ−1

η(φ)), where N(0) is

the density-of-states (∼ 1 eV−1) and λη(φ) is the DW
equation eigenvalue of the current order (bond order)
[50]. λη(φ) = 1 at T = T 0

c(b), while λη(φ) = 0 (i.e.,

ac(b) = ∞) in the absence of interaction. According to
Ref. [50], rbT

0
b ∼ 0.1N(0) for the nematic BO in FeSe,

while the corresponding value for BCS superconductors
is ∼ N(0).
To discuss the phase diagram qualitatively, we set

m1 = 5, m2 = −m3 = −1000, both of which are mod-
erate compared with the values in Fig. 3. We also put
di = 150 (i = 1 − 4) by seeing the numerical results in
the SI F [49] and set rc = rb = 30. Then, both cur-
rent and bond orders become 3Q states because of the
relations 2d1/d2 > 1 and 2d3/d4 > 1. A more detailed
explanation for the GL parameters is presented in the SI
F [49].

hz-effect on 3Q current order state

In this section, we demonstrate that the 3Q current
order state is drastically modified by hz. Figure 4 (a)

shows the obtained 3Q current order η = (η1, η2, η3)
with η1 = η2 = η3, when T 0

c = 0.01 in the absence of
BO (T 0

b = −∞). Here, we set hz = 0 ∼ 2 × 10−3.
Because of the η3-term by m2 = −1000, 3Q current
order η = (η, η, η)/

√
3 with negative η is stabilized in

the presence of hz > 0. In addition, the field-induced
first-order transition occurs at T = T 0

c + ∆Tc, where
∆Tc = (hzm2)

2/4rc(d3 + d4) is quite small.

Next, we demonstrate the hz-induced 3Q current order
state above T 0

c inside the BO state. Under the 3Q BO
phase φ = (φ, φ, φ)/

√
3, the 2nd order GL coefficient ac

in Eq. [11] is renormalized as āc = ac + (d5 + d6)(2φ
2/3)

due to the d5, d6 terms. It is given as āc = r̄c(T − T̄ 0
c ),

where T̄ 0
c < T 0

c and r̄c < rc as we explain in the SI F
[49]. The smallness of r̄c is favorable for the hz-induced
current order. In this subsection, we simply denote T̄ 0

c

and r̄c as T 0
c and rc, respectively.

First, we drop the 3rd order GL terms bi (i = 1, 2) to
concentrate on the field-induced novel phenomena. Fig-
ure 4 (b) exhibits the 3Q current order with T 0

c = 0.005,
in the presence of the BO phase below T 0

b = 0.01. For
hz = 1 × 10−4 and 2 × 10−4, η starts to emerge just be-
low T 0

b thanks to the η-linear term ∆F̄ = −3hz(m1φ +
m3φ

2)η, and therefore Tc = T 0
b . When hz 6= 0, T 0

c is
just a crossover temperature. To understand the role of
the non-analytic term qualitatively, we analyze a simple
GL free energy with a η-linear term in the SI C [49]: It
is found that the field-induced current order |ηind| under
the BO φ is approximately given as

|ηind| ≈ 9|m1hzφ|/2ac. (13)

Thus, the field-induced |ηind| is prominent when the sys-
tem at hz = 0 is close to the current order state (i.e.,
ac & 0). The expression of |ηind| in Eq. [13] is propor-
tional to φ in contrast to Eq. (31) of Ref. [9].

A schematic picture for the field-induced current order
is shown in Fig. 4 (c). In the 3Q BO phase φ ∝ (1, 1, 1),
the field-induced η above T 0

c is proportional to φ to max-
imize M̄orb ∝ φ ·η. This coexisting state (η ∝ φ) has C6

symmetry; see Ref. [35].

Next, we consider the effect of 3rd order GL terms in
Fig. 4 (d), by setting −b1 = b2 = 1.0. (The relation
b1b2 < 0 is general [35].) Due to the energy gain from
the b1-term, 3Q BO φ ∝ (1, 1, 1) appears at T ≈ T 0

b =
0.01 as the first order transition [9]. At hz = 0, the 3Q
current order η = (η, η,−η′) appears below T 0

c = 0.005
to maximize the energy gain from the b2 term (b1b2 < 0),
as explained in Ref. [35]. Just below T 0

c (|φ| ≫ |η|),
η′ = 2η is satisfied. (More generally, η ∝ (η1, η2,−η1 −
η2).) Figure 4 (e) depicts the “nematic” bond+current
coexisting state below T 0

c with η ∼ (1, 1,−1) and φ ∼
(1, 1, 1); see Ref. [35] for detail.

For hz = 4 × 10−4 in Fig. 4 (d), the field-induced
3Q current order η ∝ (1, 1, 1) start to emerge just below
T 0
b , similarly to Fig. 4 (b). The realized C6 symmetry
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FIG. 4: (a)(b) Obtained 3Q current order η = (η1, η2, η3)
with η1 = η2 = η3 for 2d1/d2 = 2, 2d3/d4 = 2 and b1 = b2 = 0
under hz. hz = 10−4 corresponds to 1 Tesla. (a) 3Q current
order for T 0

c = 0.01 and T 0
b = −∞. The first-order transition

is induced by hz due to m2-term. (b) 3Q current order for
T 0
c = 0.005 under the 3Q BO φ ∝ (1, 1, 1) with T 0

b = 0.01.
For hz 6= 0, η starts to increase below Tb thanks to m1-term,
i.e., Tc = T 0

b . (c) hz-induced C6-symmetry bond+current
order above T 0

c the shaded area in (b). (d) 3Q current order
for −b1 = b2 = 1.0. Other model parameters are equal to
(b). The symmetry of the bond+current coexisting state is
C6 (η1 = η2 = η3) for T > T 0

c , while Cc (η1 = η2 ≈ −η3) for
< T 0

c . (e) Bond+current coexisting state below T 0
b . It has

C2 symmetry to gain the 3rd order GL terms. (f) Obtained
current order ηm for 2d3/d4 = 1/1.2 at T 0

c = 0.01 and hz =
5 × 10−4, for T 0

b = −∞. The 3Q current order appears due
to the m2-term, while it changes to 1Q order at T ≈ 0.008.

coexisting state above T 0
c is shown in Fig. 4 (c). Be-

low T 0
c , the coexisting state changes to the nematic (C2)

bond+current state shown in Figure 4 (e). We stress that
sgn(η1η2η3) changes at T ≈ T 0

c . To summarize, the hz-
induced coexisting state changes its symmetry from C6

(T > T 0
c ) to C2 (T < T 0

c ) with decreasing T . The field-
induced first-order phase transition occurs at T ≈ T 0

c ).

hz-effect on 1Q current order state

In this scetion, we explain that the 1Q current order
state is also drastically modified by hz. Here, we in-
crease d4 = 150 to 360 (i.e., 2d3/d4 = 1/1.2) in the
previous GL parameters. A clear evidence of the 1Q cur-
rent order has been reported recently in Ref. [21]. We
set T 0

c = 0.01. Figure 4 (f) shows the obtained order
parameters without BO (T 0

b = −∞) at hz = 5 × 10−4.
We obtain the field-induced 3Q-current order due to the
m2-term, while it changes to 1Q order at T ≈ 0.008. The
field-induced first-order transitions reported in Ref. [21]
would originate from the 1Q current order at T ∗∗ (> T 0

b )
together with ∆F̄ . In Fig. 4 (f), we set 2d3/d4 = 1.2 and
m2 = 1000. The obtained hz-induced 3Q current order
is realized even when m2 ≈ 100 when 2d3/d4 & 1.
In Fig. 4 (f), we set T 0

b = −∞ for simplicity. However,
T 0
b ≈ 0.01 (≈ 100 K) experimentally. In this case, as

revealed in Ref. [9], the 3Q current order induces the
finite 3Q BO even above T 0

b via the b2 term. This fact
means that the 3Q current order is energetically favorable
when b2 6= 0. Therefore, hz-induced transition from 1Q
to 3Q current order shown in Fig. 4 (f) can emerge even
if 2d3/d4 . 1 for b2 6= 0.
For reference, we studied the case of the intra-original-

unit-cell current order (q = 0) in kagome lattice in the
SI G [49]. In this case, Morb is η-linear even if the BO is
absent.

Derivation of GL coefficients based on the

first-priciples kagome metal model

In the next stage, we calculate the GL coefficients
based on the first-principles tight-binding model for
kagome metals. We reveal that |m1| and |m2| becomes
large due to the “inter-orbital (dXZ+dY Z) mixture” even
if the current order emerges only in the dXZ -orbital.
First, we derive 30-orbital (15 d-orbital and 15 p-

orbitals) tight-binding model for CsV3Sb5 by using
WIEN2k and Wannier90 softwares. Figure 5 (a) shows
the FS of the obtained model in the kz = 0 plane. (Its
bandstructure is shown in Fig. S9 (a).) The dXZ-
orbital “pure-type” FS corresponds to the FS of the
present three-orbital model. Its vHS energy is located
at EXZ

vHS ≈ −0.1. Also, the dY Z -orbital forms the “mix-
type” FS whose vHS energy is EY Z

vHS ≈ +0.1. In addition,
both dX2−Y 2 and d3Z2−R2 orbitals form one pure-type

band with the vHS energy EX2−Y 2

vHS ≈ 0.
Figure 5 (b) shows the FS with introducing the p-

orbital shift ∆Ep = −0.2 eV. Its bandstructure is shown
in Fig. S9 (b). Here, the dY Z -orbital (mix-type) FS
approaches the M point, and its vHS point shifts to
the Fermi level, consistently with the ARPES measure-
ment in Ref. [42]. Figure 5 (c) shows the change in
the FS topology due to the pure-mix hybridization in
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the Ep = −0.2 model for n = 30.48 ∼ 31.00. When
n = nXZ

vHS (= 30.48), we obtain two hole-pockets that at-
tach the M point. With increasing n, it changes to the
electron-like Dirac pockets at n ≈ nD (= 30.66), com-
posed of both dXZ and dY Z orbitals. At n = nL (=
30.76), large hole-like pure-type FS and large electron-
like mix-type FS are formed. At n = 31, the mix-type
FS lines on the M-M’ line. We will see that large |m1|
and |m2| appear at n ≈ nvHS, nD and 31.
Figure 5 (d) shows the obtained m2(k) with the folded

FSs. For both n = nD and 31, the pure-mix hybridization
contributes to the large GL coefficient in the 30-orbital
model. This mechanism is absent in the simple single
orbital model.
We note that EXZ

vHS ≈ 0 is reported in an ARPES study
for pristine CsV3Sb5 in Ref. [45]. In this case, both m1

and m2 become very large theoretically.
Now, we calculate m1 and m2 in M̄orb by introduc-

ing the current and bond orders on the dXZ orbitals in
the 30-orbital kagome lattice model given in Figs. 5 (a)
(∆Ep = 0) and (b) (∆Ep = −0.2). We derive the coeffi-

cients m1 and m2 defined as M̄orb = m1φ̃ · η̃+m2η̃1η̃2η̃3,
where η̃i and φ̃i are the dXZ -orbital order parameters
projected on the pure-type band. (We set η̃i = ηiWXZ

and φ̃i = φiWXZ with WXZ = 0.7, which is the dXZ -
weight on the pure-type band.)
The obtained m1 is shown in Figs. 5 (e) (∆Ep = 0)

and (f) (∆Ep = −0.2), as function of the electron filling
n. Here, m1(2) is derived from the kz = 0 plane electronic
structure. First, we discuss the case n = 31 that corre-
sponds to undoped CsV3Sb5. In both Figs. 5 (e) and (f),
the obtained m1 is very larger for n ≈ nXZ

vHS (< 31). At
n = 31, m1 in Fig. 5 (e) is relatively small (∼ −0.5) ac-
cidentally, while its magnitude becomes large (m1 ∼ −2)
in Fig. 5 (f), where the mix-type FS is closer to the M-M’
line. In fact, the mix-type FS contains finite dXZ-weight
(∼ 10%) owing to the inter-orbital mixture in kagome
metal bandstructure. For this reason, the mix-type band
can cause largeMorb even if the current order parameter
occurs only in dXZ -orbital. Thus, the current-bond-field
trillinear coupling due to m1 term will cause the drastic
field-induced chiral current order shown in Fig. 4 (b).
This is the main result of this study.
The obtained m2 is shown in Figs. 5 (g) (∆Ep = 0)

and (h) (∆Ep = −0.2), at T = 0.01 and 0.005. The
obtained m2 is extremely larger for n ≈ nXZ

vHS (< 31). At
n = 31, m2 becomes relatively small (∼ −50) in Fig. 5
(g). However,m2 increases to ∼ 400 in Fig. 5 (h) because
the mix-type FS is closer to the M-M’ line. Thus, large
|m2| can be realized by the mix-type band with finite
dXZ -orbital weight even when |EXZ

vHS − µ| ∼ 0.1. We
stress that the relation m2 ≈ −m3 is well satisfied; see
the SI B [49].
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FIG. 5: (a) FS of CsV3Sb5 model in the kz = 0 plane. The
dXZ-orbital band gives the pure-type FS, and the dY Z-orbital
band gives the mix-type FS. The dX2

−Y 2+d3Z2
−R2 -orbital

band gives another pure-type FS. (b) FS with the p-orbital
shift ∆Ep = −0.2 eV. Here, the mix-type FS is closer to the
M points. (c) Change in the FS topology with n in Ep = −0.2
model inside the dashed line square in (b) (d) m2(k) inside
the dotted line square in (c). with the folded FSs at n = nD

and n = 31. (e-h) Obtained mn at T = 0.01 and 0.005: (e)
m1 in ∆Ep = 0 model, where m1 ∼ −0.5 at n = 31. (f) m1

in ∆Ep = −0.2 model, where m1 ∼ −2 at n = 31. (g) m2

in ∆Ep = 0 model, where m2 ∼ −50 at n = 31. (h) m2 in
∆Ep = −0.2 model, where m2 ∼ 300 at n = 31.
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Next, we discuss the n-dependences of m1 and m2 in
more detail. In Figs. 5 (e)-(h), both coefficients take
very large values at n ≈ nXZ

vHS due to the hybridization
between dXZ-orbital bands, as we explained in Fig. 3.
With increasing n, these coefficients exhibit drastic n-
dependences when the FS changes its topology due to
the pure-mix hybridization. When n ≈ nD, the electron-
like Dirac pockets made of dXZ+dY Z orbitals cause large
|m1| and |m2|. |m1| and |m2| are also enlarged when the
mix-band (with finite dXZ-weight) is close to the M-M’
line at n ≈ 31 in ∆Ep = −0.2 model [at n ≈ 31.2 in
∆Ep = 0 model].
To summarize, bothm1 andm2 exhibit interesting sen-

sitivity to the multiorbital character and the nesting con-
dition of the bandstructure around M points. Unexpect-
edly, both dXZ-orbital (pure-type) band and dY Z -orbital
(mix-type) band play important role for m1 and m2 even
when the current order emerges only on the dXZ -orbital.
When ∆Ep = −0.2, the mix-type FS approaches the M
point, consistently with the ARPES bandstructure [42].
Then, we obtain large |m1|(∼ 2) and |m2|(. 400) at
n = 31 as shown in Figs. 5 (f) and (h). Thus, the hz-
induced change in Fig. 4 can be obtained by changing
the parameters slightly. (“Nearly commensurate” cur-
rent order may appear in ∆Ep = 0 model, in which the
nesting of the FS at qm is not perfect [11]. The calculated
mn will be larger by using the correct incommensurate
nesting vector of ∆Ep = 0 model. ) In the SI H [49],
we calculate the GL coefficients when the current and
bond orders emerge on other d-orbitals. It is found that
largem1 and m2 are obtained in various cases. Thus, the
present study is valid for various types of current order
mechanisms, not restricted to Ref. [35].

Summary and Discussions

In summary, the chiral current order in kagome metal
exhibits weak ferromagnetism, and its magnitude are en-
larged in the bond order state. Importantly, we derived
the hz-induced GL free energy expression ∆F̄ in Eq. [9],
which provides an important basis for future research in
kagome metals. The emergent η · φ · hz trilinear term
in ∆F̄ explains prominent field-induced chiral symmetry
breaking in kagome metals. We revealed that mn be-
comes large when the vHS energy is close to the Fermi
level because the prominent FS reconstruction occurs due
to the current order parameters. Furthermore, the multi-
orbital mixing in the bandstructure of real kagome metals
makesmn larger for a wide filling range. The finding that
mn sensitively depends on the multiorbital bandstructure
in Fig. 5 provides a useful hint to control the charge cur-
rent or to understand the difference between Cs-based
and K-based compounds [51]. Interestingly, we obtain
large mn when the current order parameter emerges in
not only dXZ -orbital, but also other d-orbitals. It is in-

teresting to study mn for theoretically proposed exotic
TRS breaking states, such as the inter-orbital exciton
order [39] and multipolar and toroidal magnetic orders
[37].
Below, we discuss several important issues.

Comparison with experiments: hz–induced current

order

In Ref. [41], it was proposed that CsV3Sb5 is lo-
cated at the quantum critical point of the current order
(T̄ 0

c ≈ 0) in the absence of the uniaxial strain. (As we
discussed above, T 0

c is renormalized to T̄ 0
c under the BO

phase.) The field-induced (hz ∼ 9T) current order at
T ∼ 20K is naturally understood based on the GL free
energy analysis with the current-bond-hz trillinear term.
Figures 4 (b) and (d) corresponds to the experimental
report in Ref. [41] by considering that T̄ 0

c ≈ 0. In ad-
dition, the present GL theroy explains the field-induced
enhancement of the local magnetic flux (∝ η1) observed
by µSR measurements in AV3Sb5 [15–17] and field-tuned
chiral transport study [20]. Interestingly, the obtained
mn sensitively depends on the multiorbital bandstruc-
ture and the filling in Fig. 5 (and Fig. S9). The present
discovery provides a useful hint to control the charge cur-
rent in kagome metals. The present finding will also be
essential to understand the significant difference between
Cs-based and K-based compounds reported in Ref. [51].
In addition, the discovery of CDW state in double-layer
kagome metal ScV6Sn6 [52] has attracted increasing the-
oretical interest [38, 53, 54]. The TRS breaking state and
its increment under hz discovered in ScV6Sn6 [55] may
be understood by developing the present GL theory.
We note that the trilinear term in ∆F̄ is also caused

by the spin magnetization in the presence of spin-orbit
interaction [37]. Future quantitative calculations would
be important.

Comparison with experiments: Strain-induced

current order

Reference [41] also reports interesting prominent
strain induced increment of T̄ 0

c . Under the uniaxial
strain, the degeneracy of the current order transition

temperature at q = qm (m = 1 ∼ 3), T̄
(m)
c , is lifted

by the change in the 2nd order GL term as discussed in

Ref. [41]. Then, T̄c = maxm T̄
(m)
c will be larger than

the original T̄ 0
c . In the SI I [49], we find that additional

significant contribution to the increment of T̄ 0
c originates

from the strain induced change in the 4th order GL terms
(di). Here, the “BO-induced suppression of the current
order by d5 and d6 GL terms is found to be drastically
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reduced by the strain. In fact, we find that di is sensitive
to the strain because the vHS energy is close to the Fermi
level; see Fig. S10 in the SI I [49].
Below, we explain the discussion in the SI I [49]. Con-

sidering the D6h symmetry, we assume that the E1g sym-
metry strain (ǫ, ǫ′) induces the shift of the vHS energy
levels as ∆E ≡ (∆EA,∆EB ,∆EC) = α(ǫ, 0,−ǫ). (∆E′

by ǫ′ is presented in the SI I [49].) Hereafter, we set
α = 1. Under the 3Q BO phase φ0 = (φ0, φ0, φ0)/

√
3,

the 2nd order GL coefficient ac in Eq. [11] in the absence
of the strain (ǫ = 0) is changed to

āc(0) = ac + 2(d5 + d6)((φ0)2/3)

∝ T − T̄ 0
c , (14)

where |φ0| & Tb when T ≪ Tb. Here, we assume that
φ0 is T -independent because we study the strain-induced
current order for T ≪ T 0

b . For finite ǫ, it is changed by
∆F (ǫ) as

āc(ǫ) = ā0c − [(2g5 + g6) +D(2g1 + g2)]((φ
0)2/6)

∝ T − T̄c(ǫ), (15)

where gl are ǫ-linear. Here, T̄c(0) = T̄ 0
c . gl and d

(m)
l are

related as ǫ · (∂ǫd(1)l , ∂ǫd
(2)
l , ∂ǫd

(3)
l ) = (−1)l · gl(1,−1, 0).

The the current order appears in the BO phase when
Eq. [15] becomes negative. Therefore, T̄c(ǫ) will increase
in proportion to ǫ if (2g5 + g6) > 0. Therefore, we ob-
tain T̄c(ǫ) ∼ (ǫ/ǫ0)(T

0
c − T̄ 0

c ) with ǫ0 = 0.025 (0.029) for
n = 2.56 (2.48), according to the numerical study in Fig.
S10. This increment of T̄c(ǫ) originates from the reduc-
tion of the BO-induced suppression of the current order.
Therefore, considering that T 0

c ∼ 0.01 and T̄ 0
c = 0 (= at

current order QCP), we obtain T̄c(ǫ) ∼ 0.002 (≈ 20 K)
at ǫ ∼ 0.005 (≈ 50 K). Based on this extrinsic strain
scenario, one may understand the difference of Tc by ex-
periments, such as the absence of the TRS breaking at
hz = 0 reported by Kerr rotation study [22].

Nematic 3D stacking 3Q BO and current order

As revealed in Ref. [9], the nematic state can be re-
alized by the π-shift 3D stacking of the 3Q BO thanks
to the 3rd order GL term b1. This state is the combina-
tion of three BO states at wavevectors q3D

l = (q2D
l , qzl )

for l = 1, 2, 3 (q2D
l is shown in Fig. 1 (a)) when

{qz1 , qz2 , qz3} = {π, π, 0}, {π, 0, π} or {0, π, π}. Because

of the relation
∑1,2,3

l q3D
l = 0, the π-shift stacking gains

the 3rd order GL free energy due to the b1 term. Its
necessary condition is that the 2nd order GL term ab
is almost qz-independent. Consistently, we recently find
that the DW equation eigenvalue for the BO, λφ(q

2D
l , qz),

is almost qz-independent by reflecting almost 2D char-
acter of 3D 30-orbital CsV3Sb5 model [56]. (Note that

ab ∝ (−1+λ−1
φ ).) In contrast, the qz-dependence of b1 is

rather prominent [56]. Thus, we expect that the namatic
3Q BO state discussed in Ref. [9] is realistic.
Next, we discuss the 3D structure of the field-induced

3Q current order. In the absence of the BO, by the same
argument as above, the 3Q current order will form the
π-shift stacking to gain the m2-term contribution in ∆F̄ .
When the 3Q current order appears inside the 3Q BO
state, the 3D stacking of the current order would be
mainly determined by the the 3rd order GL term b2 that
describes the bond-current coupling energy.

Derivation of E0

The expressions of orbital magnetization derived by
Refs. [46, 47] is given as

Morb =
ea2

2c~NucN

∑

kσ

m(k),

where m(k) is given in Eq. [4]. a is the unit length
in this numerical calculation. Here, we set a = |aAB|.
Nuc is the site number of the unit cell, N is the k-mesh

number. By using the µB = e~
2mec

and E0 ≡ ~
2

mea2 , we

obtain Eq. [3]. By using the mec
2 = 0.511×106 [eV] and

~

mec
= 3.86× 10−13 [m], we obtain E0 = 0.5 [eV] for a =

0.4 [nm]. In Kagome metals (a = 0.275 [nm]), E0 = 1.0
[eV]. In the numerical calculation, large number of N is
required to obtain a reliable result at low temperatures.
Here, we set N = (2400)2 at T = 1 [meV].

Acknowledgments

We are grateful to Y. Matsuda, T. Shibauchi, K.
Hashimoto, T. Asaba, S. Onari, A. Ogawa and K.
Shimura for fruitful discussions. This study has
been supported by Grants-in-Aid for Scientific Re-
search from MEXT of Japan (JP20K03858, JP20K22328,
JP22K14003), and by the Quantum Liquid Crystal No.
JP19H05825 KAKENHI on Innovative Areas from JSPS
of Japan.

[1] B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski,
M. Bordelon, J. S. Mangum, I. W. H. Oswald, J.
A. Rodriguez-Rivera, J. R. Neilson, S. D. Wilson, E.
Ertekin, T. M. McQueen, and E. S. Toberer, New kagome
prototype materials: discovery of KV3Sb5,RbV3Sb5, and
CsV3Sb5, Phys. Rev. Materials 3, 094407 (2019).

[2] B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P.
M. Sarte, E. C. Schueller, A. M. M. Abeykoon, M. J.
Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri, L. Ba-
lents, J. He, and S. D. Wilson, CsV3Sb5: A Z2 Topologi-



10

cal Kagome Metal with a Superconducting Ground State,
Phys. Rev. Lett. 125, 247002 (2020).

[3] Y.-X. Jiang, J.-X. Yin, M. M. Denner, N. Shumiya, B. R.
Ortiz, G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu,
J. Ruff, L. Kautzsch, S. S. Zhang, G. Chang, I. Belopol-
ski, Q. Zhang, T. A. Cochran, D. Multer, M. Litskevich,
Z.-J. Cheng, X. P. Yang, Z. Wang, R. Thomale, T. Ne-
upert, S. D. Wilson, and M. Z. Hasan, Unconventional
chiral charge order in kagome superconductor KV3Sb5,
Nat. Mater. 20, 1353 (2021).

[4] H. Li, H. Zhao, B. R. Ortiz, T. Park, M. Ye, L. Balents, Z.
Wang, S. D. Wilson, and I. Zeljkovic, Rotation symmetry
breaking in the normal state of a kagome superconductor
KV3Sb5, Nat. Phys. 18, 265 (2022).

[5] M. L. Kiesel, C. Platt, and R. Thomale, Unconven-
tional Fermi Surface Instabilities in the Kagome Hubbard
Model, Phys. Rev. Lett. 110, 126405 (2013).

[6] W.-S. Wang, Z.-Z. Li, Y.-Y. Xiang, and Q.-H. Wang,
Competing electronic orders on kagome lattices at van
Hove filling, Phys. Rev. B 87, 115135 (2013).

[7] X. Wu, T. Schwemmer, T. Müller, A. Consiglio, G.
Sangiovanni, D. Di Sante, Y. Iqbal, W. Hanke, A. P.
Schnyder, M. M. Denner, M. H. Fischer, T. Neupert,
and R. Thomale, Nature of Unconventional Pairing in
the Kagome Superconductors AV3Sb5 (A = K,Rb,Cs),
Phys. Rev. Lett. 127, 177001 (2021).

[8] M. M. Denner, R. Thomale, and T. Neupert, Analysis
of Charge Order in the Kagome Metal AV3Sb5 (A =
K,Rb,Cs), Phys. Rev. Lett. 127, 217601 (2021).

[9] T. Park, M. Ye, and L. Balents, Electronic instabilities of
kagome metals: Saddle points and Landau theory, Phys.
Rev. B 104, 035142 (2021).

[10] Y.-P. Lin and R. M. Nandkishore, Complex charge den-
sity waves at Van Hove singularity on hexagonal lattices:
Haldane-model phase diagram and potential realization in
the kagome metals AV3Sb5 (A = K, Rb, Cs), Phys. Rev.
B 104, 045122 (2021).

[11] R. Tazai, Y. Yamakawa, S. Onari, and H. Kontani, Mech-
anism of exotic density-wave and beyond-Migdal uncon-
ventional superconductivity in kagome metal AV3Sb5 (A
= K, Rb, Cs), Sci. Adv. 8, eabl4108 (2022).

[12] M. Roppongi, K. Ishihara, Y. Tanaka, K. Ogawa, K.
Okada, S. Liu, K. Mukasa, Y. Mizukami, Y. Uwatoko,
R. Grasset, M. Konczykowski, B. R. Ortiz, S. D. Wil-
son, K. Hashimoto, and T. Shibauchi, Bulk evidence of
anisotropic s-wave pairing with no sign change in the
kagome superconductor CsV3Sb5, Nat. Commun. 14, 667
(2023).

[13] W. Zhang, X. Liu, L. Wang, C. W. Tsang, Z. Wang, S.
T. Lam, W. Wang, J. Xie, X. Zhou, Y. Zhao, S. Wang, J.
Tallon, K. T. Lai, and S. K. Goh, Nodeless superconduc-
tivity in kagome metal CsV3Sb5 with and without time
reversal symmetry breaking, Nano Lett., 23, 872 (2023).

[14] L. Yu, C. Wang, Y. Zhang, M. Sander, S. Ni, Z.
Lu, S. Ma, Z. Wang, Z. Zhao, H. Chen, K. Jiang,
Y. Zhang, H. Yang, F. Zhou, X. Dong, S. L. John-
son, M. J. Graf, J. Hu, H.-J. Gao, and Z. Zhao,
Evidence of a hidden flux phase in the topological
kagome metal CsV3Sb5, arXiv:2107.10714 (avalable at
https://arxiv.org/abs/2107.10714).

[15] C. Mielke, D. Das, J.-X. Yin, H. Liu, R. Gupta, Y.-
X. Jiang, M. Medarde, X. Wu, H. C. Lei, J. Chang,
P. Dai, Q. Si, H. Miao, R. Thomale, T. Neupert, Y.
Shi, R. Khasanov, M. Z. Hasan, H. Luetkens, and Z.

Guguchia, Time-reversal symmetry-breaking charge order
in a kagome superconductor, Nature 602, 245 (2022).

[16] R. Khasanov, D. Das, R. Gupta, C. Mielke, M. Elender,
Q. Yin, Z. Tu, C. Gong, H. Lei, E. T. Ritz, R. M. Fer-
nandes, T. Birol, Z. Guguchia, and H. Luetkens, Time-
reversal symmetry broken by charge order in CsV3Sb5,
Phys. Rev. Research 4, 023244 (2022).

[17] Z. Guguchia, C. Mielke, D. Das, R. Gupta, J.-X. Yin, H.
Liu, Q. Yin, M. H. Christensen, Z. Tu, C. Gong, N. Shu-
miya, M. S. Hossain, T. Gamsakhurdashvili, M. Elender,
P. Dai, A. Amato, Y. Shi, H. C. Lei, R. M. Fernandes,
M. Z. Hasan, H. Luetkens, and R. Khasanov, Tunable un-
conventional kagome superconductivity in charge ordered
RbV3Sb5 and KV3Sb5, Nat. Commun. 14, 153 (2023).

[18] Y. Xu, Z. Ni, Y. Liu, B. R. Ortiz, Q. Deng, S. D. Wil-
son, B. Yan, L. Balents, and L. Wu, Three-state nematic-
ity and magneto-optical Kerr effect in the charge density
waves in kagome superconductors, Nat. Phys. 18, 1470
(2022).

[19] Y. Hu, S. Yamane, G. Mattoni, K. Yada, K. Obata,
Y. Li, Y. Yao, Z. Wang, J. Wang, C. Farhang, J.
Xia, Y. Maeno, and S. Yonezawa, Time-reversal sym-
metry breaking in charge density wave of CsV3Sb5 de-
tected by polar Kerr effect, arXiv:2208.08036 (avalable at
https://arxiv.org/abs/2208.08036).

[20] C. Guo, C. Putzke, S. Konyzheva, X. Huang, M.
Gutierrez-Amigo, I. Errea, D. Chen, M. G. Vergniory, C.
Felser, M. H. Fischer, T. Neupert, and P. J. W. Moll,
Switchable chiral transport in charge-ordered kagome
metal CsV3Sb5, Nature 611, 461 (2022).

[21] T. Asaba et al., unpublished.
[22] D. R. Saykin, C. Farhang, E. D. Kountz, D. Chen,

B. R. Ortiz, C. Shekhar, C. Felser, S. D. Wilson, R.
Thomale, J. Xia, and A. Kapitulnik, High Resolution Po-
lar Kerr Effect Studies of CsV3Sb5: Tests for Time Re-
versal Symmetry Breaking Below the Charge Order Tran-
sition, Phys. Rev. Lett. 131, 016901 (2023).

[23] F. D. M. Haldane, Model for a Quantum Hall Effect with-
out Landau Levels: Condensed-Matter Realization of the
”Parity Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).

[24] S.-Y. Yang, Y. Wang, B. R. Ortiz, D. Liu, J. Gayles, E.
Derunova, R. Gonzalez-Hernandez, L. Šmejkal, Y. Chen,
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A: Bandstructure with bond+current orders

In the main text, we study the orbital magnetization
Morb in the presence of the current and bond orders based
on Eqs. [3] and [6] in the main text [1, 2]. Morb origi-
nates from the vertical p-h excitation between the occu-
pied bands (ǫαk < µ) and unoccupied bands (ǫβk > µ).
In the present study, Morb becomes finite in the presence
of the TRSB order current order parameters. Thus, it
is important to understand the change in the bandstruc-
ture due to the order parameters. Hereafter, the unit of
energy is eV unless otherwise noted.
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FIG. S1: (a) Folded FS at vHS filling for φ = η = 0. (b)(c)
Folded bandstructure in the presence of (b) the 3Q current
order (η = 0, 0.01) and (c) the 3Q BO (φ = 0, 0.01). Here,
we set the origin of the energy at the vHS energy.

The folded FS at the vHS filling for φ = η = 0 is
shown in Fig. S1 (a). Figure S1 (b) shows the folded
bandstructure at n = nvHS around Γ point in the pres-
ence of 3Q current order η = (η, η, η) for φ = 0 and 0.01.
Here, all vHS points A, B, C in Fig. 1 (b) move to Γ
point, and they split into one bonding (δE = −

√
3η),

one antibonding (δE =
√
3η), and one unhybridized

(δE = 0) states for finite η. (The bandstructure for 3Q
BO φ = (φ, φ, φ) is shown in Fig. S1 (c). The three
vHS points split into two bonding (δE = −φ) and one
antibonding (δE = 2φ).)
In the bandstructure shown in Fig. S1 (a), the “verti-

cal p-h excitations” (from ǫαk < 0 to ǫβk > 0 for µ = 0)
in the expression of Morb are allowed in a wide k-space
for µ ∼ 0; around Γ-M and M-M’ lines and around Γ and
M points. Then, the factor (ǫαk + ǫβk − 2µ)−2 in the
integrand of Morb is O(η−2), and the cancellation due to
the factor (ǫαk + ǫβk − 2µ) is imperfect due to the p-h
asymmetry. For this reason, large |Morb| is realized at
n ∼ nvHS.

B: Relation m2 ≈ −m3, Expansion of Morb[η, φ] based
on the Green function method

In Fig. S2, we show the obtained m2 and −m3 in the
(a) three-orbital kagome lattice model and (b) 30-orbital
first-principles model. In both models, the relationm2 ≈
−m3 is well satisfied. For this reason, we present only
m1 and m2 in the main text.

(a) (b)

n

m2

−m3

m2

−m3

n
2.4 2.5 2.6

−2000

−1000

0

(c)

Ĝ Ĝ
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FIG. S2: Obtained m2 and −m3 in the (a) three-orbital
kagome lattice model and (b) 30-orbital first-principles model
with ∆Ep = −0.2. (c) Diagrammatic expression ofMorb given
in Eq. [S1].

To understand the approximate relation m2 ≈ −m3,
we consider the expansion of Morb with respect to η and

φ; Morb =
∑

bp
′q′r′

prq ηp1η
q
2η

r
3φ

p′

1 φ
q′

2 φ
r′

3 . In this notation,
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m2 = b000111 and m3 = b110001. To discuss the nature of
the coefficient bp

′q′r′

prq , we analyze the expression of Morb

based on the thermal Green function method derived in
Ref. [3]:

Morb =
µB

E0NucN

x,y,z
∑

ab

ǫzab

×T
∑

k,n

ImTr(λ̂kĜ(k)v̂
b
kĜ(k)v̂

c
kĜ(k)), (S1)

where ĥk is the tight-binding Hamiltonian with finite
η,φ, λ̂k = ĥk − µ1̂, vak = ∂ĥk/∂ka is the velocity, and

Ĝ(k) is the Green function. ǫabc is the antisymmetric
tensor, and k ≡ (k, ǫn) with ǫn = (2n + 1)πT . The di-
agrammatic expression of Eq. [S1] is shown in Fig. S2
(c). The Hamiltonian of the 4× 3 site model,

ĥk = ĥ0k + Σ̂k, (S2)

where ĥ0k is the 12 × 12 Hamiltonian for η = φ = 0

and Σ̂l,m
k = ηl,mf

l,m
k + φl,mg

l,m
k , where f l,m

k [gl,mk ] is the
form factor of the current order [BO], which is given by
the Fourier transform of fij [gij ] introduced in the main
text. ηl,m [φl,m] (l,m = 1 ∼ 12) is the current order [BO]
parameter. Then, the Green function is expanded as

Ĝ(k) = Ĝ0(k) + Ĝ0(k)Σ̂kĜ
0(k)

+Ĝ0(k)Σ̂kĜ
0(k)Σ̂kĜ

0(k)

+ · · · , (S3)

where Ĝ0(k) = ((iǫn−µ)1̂− ĥ0k)
−1. Thus, the coefficient

m1 (m2) can be derived from Eq. [S1], by expanding it
with respect to η1φ1 (η1η2η3) by using Eqs. [S2]-[S3].
Because of the relations

h0,lmk = h0,ml
−k , (S4)

G0,lm(k, ǫm) = G0,ml(−k, ǫm), (S5)

Morb given by Eq. [S1] is zero for φ = η = 0. Equa-
tions [S4] and [S5] are violated for η 6= 0 because the

current order form factor is odd-parity: f l,m
k = −fm,l

−k =

−(f l,m
−k )∗. (Note that gl,mk = fm,l

−k = (gl,m−k )
∗ for the BO.

Any Hermitian orders with the wavevector q = 0 sat-
isfy f l,m

k = (fm,l
k )∗.) Thus, only odd-order terms with

respect to η can give nonzero Morb.
Here, we considerMorb in Eq. [S1] in the original 3-site

unit cell picture. Then, the Green function in Eq. [S1]
is expressed as Ĝ(k + q; k) = Ĝ0(k) · δq,0 +

∑

m Ĝ0(k +

qm)Σ̂
(m)
k Ĝ0(k)·δq,qm

+
∑

m,n Ĝ
0(k+qm+qn)Σ̂

(m)
k+qn

Ĝ0(k+

qn)Σ̂
(n)
k Ĝ0(k)·δq,qm+qn

+ · · · , where Ĝ and Σ̂(m) are 3×3

matrices. The momentum qm is introduced by Σ̂
(m)
k .

To obtain finite Morb, the total momenta introduced by
Σ̂(mi),

∑1,2,···
i qmi

, should be 0 (modulo original recipro-
cal vectors).

Hereafter, we discuss the reason for the relation m2 ≈
−m3. In this study, the nearest-neighbor order parame-
ters are given in Fig. 1 (c) for the current order and Fig. 1
(a) for the BO. In the original 3-site unit cell picture, the
relation f ll′

k′ f l′l′′

k = −gll′k′ gl
′l′′

k (k′ = k+(ql′ − ql′′)) holds,
where l 6= l′ 6= l′′. For instance, we consider a m2 term
given by replacing v̂x(y)k, λ̂k and Ĝ with (∂/∂kx(y))f̂k,

f̂k and Ĝ0, respectively. The corresponding m3 term is
given by replacing (∂/∂kx(y))f̂k with (∂/∂kx(y))ĝk in m2.
Due to the absence of sublattice hybridization around the
vHS points [4], Ĝ0(k) is sublattice diagonal around the
vHS points, that is, G0,mm′

(k) = 0 for m 6= m′. Then,
the relation m2 = −m3 is satisfied approximately due to
the relation f ll′

k′ f l′l′′

k = −gll′k′ gl
′l′′

k with k′ = k+(ql′ −ql′′).

We have just started the analysis based on the Green
function method. This is our important future issue.

C: Analysis of GL free energy with non-analytic

η-linear term

In the main text, we studied the strong interplay be-
tween the bond and current orders under the magnetic
field in kagome metals. In Fig. 4, we studied the situation
where bond order transition temperature T 0

b is higher
than the chiral current order one T 0

c at hz = 0. We re-
vealed that chiral current order emerges at T = T 0

b under
hz ∼ 10−4 (∼ 1T). That is, the current-order transition
temperature is enlarged to T 0

b under small hz , as shown
in Fig. 3 (b). The drastic field-induced 3Q current order
originates from the non-analytic η-linear terms in ∆F̄ ,
that is, ∆F̄ = −3hz[m1φ·η+m3(η1φ2φ3+cycl.)+O(η3)].
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)
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0

FIG. S3: (a) Induced ηg due to the η-linear term for as a
function of a (> 0). Here, g = 0.9hz and hz = 1 ∼ 3× 10−4.
This result is not sensitive to the choice of d when g is small.
(b) ∆F̄ as a function of η for a = 0.06. (Inset) Enlarged plots
around the bottoms.

To understand the effect of the field-induced non-
analytic free energy qualitatively, we analyze the follow-
ing simple GL free energy with a η-linear term:

F (η) = aη2 + dη4 − gη. (S6)
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Here, we assume a and d are positive. When g 6= 0, F (η)
is minimized at finite η even if a > 0. The solution is
given as

ηg = X1/3(d−1 − 2 · 31/3aX−2/3)/(2 · 32/3), (S7)

X = 9gd2 +
√
3
√

d3(8a3 + 27dg2). (S8)

Note that

ηg ≈ g/2a, (S9)

for small g. Therefore, ηg is finite even when a > 0 due
to the η-linear term.
Here, we derive d and g from the GL free energy of

kagome metal, Eqs. [11] and [10] in the main text. By
setting φ = (φ, φ, φ) and η = (η, η, η) in Eqs. [11] and
[10], we obtain d = 6di and g = 3(3m1φ + 3m3φ

2)hz.
When di = 150, m1 = 5, m3 = 1000 and φ = 0.01, we
get d = 900 and g = 1.35hz. a in Eq. [S6] corresponds
to 3ac in the main text. In Fig. 3 (b) in the main text,
we set ac = rc(T − T 0

c ) with rc = 30 and T 0
c = 0.005,

so T = T 0
c (2T 0

c = T 0
b ) in Fig. 4 (b) corresponds to

a = 0 (0.45) in Eq. [S6].
Figure S3 (a) shows ηg given in Eq. [S8] as a function

of a, in the case of d = 1000 and g = 1.35hz. We see that
hz ∼ 10−4, which corresponds to ∼ 1T, induces sizable
current order even above T 0

c if a & 0. The obtained
value of ηg in Fig S3 (a) at a ≈ 0 is comparable to the
field-induced order in Fig. 4 (b). The field-induced η is
prominent only when the system at hz = 0 is close to the
current order state (i.e., a & 0). Asymmetric ∆F̄ as a
function of η is shown in Fig S3 (b).

D: Comparison between M̄orb and Morb

In the main text, we calculated the orbital mag-
netization Morb in kagome metal with current order
η and bond-order φ using Eq. [3]. Next, we de-
rived its expression up to the third-order of η and φ:
M̄orb = m1φ · η + m2η1η2η3 + m3(η1φ2φ3 + (cycl.)).
To obtained the coefficients m1 and m2, we calculate
Morb[η,φ] very accurately and expand it around η =
φ = 0 numerically. For instance, we derive m2 as m2 =
Morb[(η1, η2, η3),0]/η1η2η3 with ηm = 0.001. (Note that
Morb[η,0] = 0 if one of ηm is zero.)
The expression M̄orb is very useful to understand the

strong interplay between current and bond orders in
kagome metal. By considering the field-induced free en-
ergy ∆F̄ = −3hzM̄orb, we understand the characteris-
tic phase diagram of kagome metals under the magnetic
field.
Here, we verify that M̄orb in Eq. [8] well reproduces

Morb in Eq. [3]. Figures S4 (a)-(c) show the obtained
results at n = 2.47 under η = (η, η, η)/

√
3 and φ =

(φ, φ, φ)/
√
3 as functions of η, in the case of (a) φ = 0, (b)

φ = +0.01 and (b) φ = −0.01. It is found that M̄orb well
reproduce the original Morb when |η|, |φ| . 0.02, unless
the shape of the Fermi surface is drastically changed by
order parameters.

0 0.02 0.04
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0

0 0.02 0.04
0

0.01

0 0.02 0.04
0

0.01

(a) (b) (c)
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−
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/ = 0.01 / = −0.01

FIG. S4: Morb and M̄orb for η = (η, η, η)/
√
3 in the cases of

(a) φ = 0 and (b) φ = (φ, φ, φ)/
√
3 at φ = +0.01 and (c)

−0.01.

Next, we examine the validity of the expansion expres-
sion M̄orb in the realistic 30-orbital model for kagome
metal. Figure S5 shows the coefficients m1 and m2 given
by Morb in Eq. [3] in the main text, derived from the
region |ηi|, |φi| < Λ. The convergence of the obtained
results for both m1 and m2 is good for Λ < 0.01 for wide
range of n, except at the close vicinity of the vHS filling.
Therefore, the GL free energy expression [9] in the main
text is valid for real kagome metals.
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m1 m2

(b)

n n
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14
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FIG. S5: Obtained coefficients (a) m1 and (b) m2 at T =
0.005 derived from the region |ηi|, |φi| < Λ.

E: Morb in kagome lattice model with

(t, t′) = (−0.5,−0.08)

In the main text, we studied Morb in kagome lattice
model with the bare hopping integrals t = −0.5 and t′ =
−0.02. The obtained coefficients m1 and m2 in M̄orb

take large values for n ≈ nvHS, where nvHS is the van-
Hove filling. Using the obtained coefficients m1 and m2,
we discovered the mechanism of the field-induced chiral
current order in kagome metals.
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To verify the robustness of the obtained results, here
we analyze Morb in kagome lattice model with large t′;
(t, t′) = (−0.5,−0.08). The obtained FS shown in Fig.
S6 (a) has large curvature due to large |t′|. Here, we
have introduce the 3Q BO φ = (φ, φ, φ)/

√
3 and the 3Q

current order η = (η, η, η)/
√
3. Figure S6 (b) shows the

obtained Morb [µB] per V atom due to the 3Q current
order with φ = 0. The relation Morb ∝ η3 is satisfied,
and its magnitude is enlarged when n ≈ nvHS. Figure S6
(c) showsMorb [µB] due to the coexistence of 3Q current
order and 3Q BO. The relation Morb ∝ η1 is satisfied
when φ 6= 0. Figures S6 (d) and (e) represent the ob-
tained coefficients m1 and m2 in M̄orb. The magnitudes
of m1 and m2 for t′ = −0.08 are comparable to those for
t′ = −0.02 given in the main text.
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FIG. S6: (a) FS around nvHS = 2.75 at t′ = −0.08. (b) Morb

[µB] per V atom due to the 3Q current order η = (η, η, η)/
√
3

at T = 1 meV for n = 2.67 ∼ 2.83. (c) Morb due to the
coexistence of 3Q current order and 3Q BO at n = 2.67.
Obtained (d) m1 and (e) m2 (≈ −m3), per V atom as a
function of n. Both |m1| and |m2| are large for n ∼ nvHS.

F: Calculation of GL parameters, Renormalization

of ac

To verify that the GL free energy coefficients assumed
in the main text are qualitatively reasonable, we calculate
GL coefficients based on the diagrammatic method. The

4rh order GL parameters per unit cell are given as

d1 = Ig1111, (S10)

d2 = 2Ig1212 + 4Ig1122, (S11)

d3 = If1111, (S12)

d4 = 2If1212 + 4If1122, (S13)

where

Iwhlmn =
T

4

∑

k,σ

Trŵqh
(k + qn + qm + ql)

× Ĝ(k + qn + qm + ql)

× ŵql
(k + qn + qm)Ĝ(k + qn + qm)

× ŵqm
(k + qn)Ĝ(k + qn)ŵqn

(k)Ĝ(k),(S14)

where Ĝ(k) is 3× 3 Green function for the original 3-site
kagome lattice model and k ≡ (k, iǫn). The diagram-
matic expression Iwhlmn is depicted in Fig. S7 (a). ŵq(k)
is the form factor in the momentum space in the original
BZ, f̂q(k) or ĝq(k), and h, l,m, n is 1, 2, or 3. Note that
f lm
qm

(k) [f lm
qm

(k)] (l,m=1-3) is given by the Fourier trans-

form of f
(m)
i,j [g

(m)
i,j ] introduced in the main text. The

relation qh + ql + qm + qn = 0 should be satisfied. Here-
after, we use f̂q(k) derived from the density-wave equa-
tion in Ref. [5], in which distant-atom components are
included. On the other and, ĝq(k) is derived from the
nearest-neighbor BO in Fig. 1 (a). In the same way, the
analytic expressions of d5 and d6 are obtained in Ref. [5].

The obtained numerical results are given in Fig. S7 (b)
for t′ = 0 and t′ = −0.02. Here, the dimensionless form
factors are normalized as maxk |gBA

q1
(k)| = |gBA

q1
(kA)| =

1. (This normalization corresponds to |δtbij | = 1/2.) In

the same way, we set maxk |fBA
q1

(k)| = |fBA
q1

(kA)| = 1.
Thus, the parameter di = 150 [eV−3] is consistent with
Fig. S7 (b) for T ∼ 0.01. For φ = (φ, φ, φ) with φ = 0.01,
the 4th order term for the BO is F b

4 ∼ 150 · 6(10−2)4 ∼
10−5 [eV] for di = 150. The obtained ratios r = 2d1/d2
and r′ = 2d3/d4 are shown in Fig. S7 (c): For t′ = 0,
we obtain 2d1/d2 ≫ 1 and 2d3/d4 & 1. For t′ = −0.02,
2d1/d2 ∼ 1 and 2d3/d4 ≈ 1. Both ratios tend to become
smaller than unity for larger |t′|. (Note that d1 ≈ d3 ≈ d5

and d2 ≈ d4 ≈ d6 when the form factors satisfy f
(m)
ij =

±ig(m)
ij .)

In deriving d1 ∼ d6 in Fig. S7 (b), we included the self-
energy due to the BO fluctuations [5], because the self-
energy reduces unrealistic behaviors of di at low temper-
atures when the inter-sublattice nesting vector is not ex-
actly commensurate [7]. (Note that the present method
works well only for |t′/t| ≪ 1.) To calculate the self-
energy, we introduce the following effective BO interac-
tion [5]:

Ĥint = − 1

N

∑

q

v

2
Ôg

q Ô
g
−q, (S15)
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FIG. S7: (a) Diagrammatic expressions of 4th order GL pa-
rameters. (b) Numerical results of the 4th order GL parame-
ters as functions of T . (c) Ratio r = 2d1/d2 and r′ = 2d3/d4
in the case of t′ = 0 and t′ = −0.02. (d) Diagrammatic ex-
pression of the self-energy driven by the BO fluctuations. (e)
Expression of BO susceptibility.

where Ôg
q ≡ ∑

k,l,m,σ g
lm
q (k)c†k+q,l,σck,m,σ is the BO

operator [6, 8, 9]. and v is the effective interac-
tion. Here, the BO form factor glmq (k) is normalized as

maxk,l,m |glmq (k)| = 1 at each q, ı.e., |δtbij | ≡ 1/2 for the
nearest sites. We next calculate the on-site self-energy
due to BO fluctuations as [5]

Σm(ǫn) =
T

N2

∑

k,q,m′′,m′′′

Gm′m′′(k + q, ǫn + ωl)

×Bmm′,mm′′(k, q), (S16)

Bml,m′l′(k, q) = glmq (k)∗gl
′m′

q (k) · v(1 + vχg(q)), (S17)

which is shown in Fig. S7 (d). Here, the BO susceptibil-
ity χg(q) is [5]

χg(q) = χ0
g(q)/(1− vχ0

g(q)), , (S18)

χ0
g(q) =

∑

lmm′l′

χ0,lmm′l′

g (q), (S19)

χ0,lmm′l′

g (q, ωl) =
T

N

∑

k,ǫn

glmq (k)∗Glm′(k + q, ǫn + ωl)

×Gl′m(k, ǫn)g
m′l′

q (k), (S20)

which is shown in Fig. S7 (e). Then, the Green function

is given as Ĝ(k) = (iǫn+µ− ĥ(k)− Σ̂(ǫn))
−1. The effect

of thermal fluctuations described by the self-energy is es-
sential to reproduce the T -dependence of various physical
quantities. In the present numerical study, we calculate
Eqs. [S16]-[S20] self-consistently.
We also study the 2nd order GL term, which is de-

rived as F b
2 ∼ −χ0

g(q1)R|φ|2 according to Ref. [10].
Here, χ0

g(q1) is the irreducible BO susceptibility, and
R ≡ (dλ/dT ) · (−T 0

b ), where λ is the eigenvalue of the
density-wave equation, which is similar to the eigenvalue
of the BCS gap equation. R ∼ O(0.1) in usual BO phase
transitions [10], while R ∼ 1 in BCS superconductivity
because of large logT singularity of the p-p channel. As a
result, F b

2 ∼ −3× 10−5 [eV] for χ0
g(q1) ∼ 3 and R = 0.1.

Note that χ0
g(q1)R ∼ 0.1 corresponds to rT 0

b ∼ 0.1 in the
main text.
Therefore, the BO total free energy is F b

tot ∼
−10−5 [eV] for T 0

b ∼ φ ∼ 0.01 and N(0) ∼ 1. The
current-order total free energy F c

tot will be comparable
to F b

tot. Thus, the GL parameters assumed in the main
text are qualitatively reasonable. (In BCS superconduc-
tors, Ftot = −∆2N(0)/2 ∼ −10−4 when ∆ = 0.01 and
N(0) ∼ 1.) As discussed in Ref. [10], the specific heat
jump ∆C/T at the BO or current-order phase transi-
tion is much smaller than the BCS value ∆C/TSC =
1.43N(0).
Finally, we discuss the renormalization of the 2nd or-

der GL coefficient for η, ac, in the BO phase. Under
the 3Q BO phase φ = (φ, φ, φ)/

√
3, ac in Eq. [11]

is renormalized as āc = ac + (d5 + d6)(2φ
2/3) due to

the d5, d6 terms. When η = 0, we obtain φ2 ≈
−3ab/2(d1 + d2) by neglecting b1 term, which is allowed
except for T ≈ T 0

b . Therefore, we obtain āc = r̄c(T−T̄ 0
c ),

where r̄c = rc(1 − C), T̄ 0
c = (T 0

c − CT 0
b )/(1 − C), and

C ≡ (rb/rc)[(d5+d6)/(d1+d2)]. Here, we assume C < 1
by referring to the relation d5 + d6 < d1 + d2 in Fig.
S7, owing to the difference between the BO and current
order form factors. For detail, see Ref. [35].

G: Morb by intra-original-unit-cell current order in

kagome lattice

Here, we calculate Morb in the case of the intra-
original-unit-cell (q = 0) current order in Fig. S8 (a). In
this case, the translational symmetry is preserved. The
obtained Morb is shown in Fig. S8 (b). We find that
Morb is η-linear even in the absence of the BO, while
its coefficient is small for n ∼ nvHS that is realized in
kagome metals. Regardless of the presence of the η-linear
term in Morb, field-induced intra-original-unit-cell order
will be quite small in kagome metals. In fact, the field-
induced cLC order at q = 0 becomes sizable only when
its second-order GL coefficient, ac ∼ (−1+λ−1

q=0
), is very
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small. Here, λq=0 is the eigenvalue of the current order
solution at q = 0. However, the relation λq=0 ≪ 1 is
obtained in the DW equation analysis in Ref. [5].

0 0.005 0.01
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0

6×10−4

3×10−4

X

Mch

(a) (b) 2.47
2.51
2.55
2.59
2.63

n =

FIG. S8: (a) Intra-original-unit-cell (q = 0) current or-
der. (b) Morb for the intra-original-unit-cell current order
η = (η, η, η)/

√
3. We set (t, t′) = (−0.5,−0.02), and no BO

is introduced.

H: First principles 30-orbital model for kagome metal

In the main text, we analyzed the GL coefficients based
on the first-principles 30-orbital model for kagome met-
als. Figure S9 (a) shows the obtained bandstructure
in the kz = 0 plane. Its FS is shown in Fig. 5 (a).
The dXZ -orbital “pure-type” band corresponds to the
present three-orbital model. Its vHS energy is located
at EXZ

vHS ≈ −0.1. Also, the dY Z -orbital forms the “mix-
type” band, whose vHS energy is EY Z

vHS ≈ +0.1. In ad-
dition, the dX2−Y 2+d3Z2−R2 -orbital forms a pure-type
band with the vHS energy E′

vHS ≈ −0.05. Around M
point, the dXZ -orbital band near M point is almost kz-
independent, while other orbital bands exhibits small kz-
independences (about 0.1 ∼ 0.2) in the band calculation.

Figure S9 (b) shows the bandstructure with introduc-
ing the p-orbital shift ∆Ep = −0.2 eV. Its FS is shown
in Fig. 5 (b). Here, the dY Z-orbital (mix-type) band ap-
proaches EF along the M-M’ line, consistently with the
APRES measurement in Ref. [11].
Here, we derive the coefficients m1 and m2 defined as

M̄orb = m1φ̃ · η̃ + m2η̃1η̃2η̃3, where η̃i and φ̃i are the
order parameter of a specific d-orbital projected on the
conduction band. The results for dXZ -orbital are shown
in Figs. 5 (e)-(h) in the main text. (The weight of dΓ-
orbital (Γ = XZ, Y Z, etc) on the conduction band is
WXZ ≈ 0.7, WY Z ≈ 0.3, WX2−Y 2 ≈ W3Z2−R2 ≈ 0.4.)
We also calculate m1 and m2 when the order parameters
emerge on the dY Z , dX2−Y 2 , and d3Z2−R2 orbitals. The
obtained results are shown in Figs. S9 (a) (∆Ep = 0) and
(b) (∆Ep = −0.2), as function of the electron filling n.
(n = 31 corresponds to undoped CsV3Sb5.) It is found
that large m1 and m2 are obtained when the current
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FIG. S9: (a) Bandstructure of CsV3Sb5 model in the kz =
0 plane. Its FS is shown in Fig. 5 (a). The dXZ-orbital
band gives the pure-type FS, and the dY Z -orbital band gives
the mix-type FS. The dX2

−Y 2+d3Z2
−R2 -orbital band gives

another pure-type FS. Γ, M, M’ are introduced in Fig. 1
(b) in the main text. (b) Bandstructure with the p-orbital
shift ∆Ep = −0.2 eV. Its FS is shown in Fig. 5 (a). (c)(d)
Obtained m1 for the order parameters in the dY Z , dX2

−Y 2 ,
and d3Z2

−R2 orbitals for (c) ∆Ep = 0 model and (d) ∆Ep =
−0.2 model. (e)(f) Obtained m2 for the order parameters
in the dY Z , dX2

−Y 2 , and d3Z2
−R2 orbitals for (e) ∆Ep = 0

model and (f) ∆Ep = −0.2 model. In (c)-(f), the vHS filling

nΓ
vHS (Γ = XZ, Y Z,X2−Y 2) is shown. (Note that nX2

−Y 2

vHS =

n3Z2
−R2

vHS .)

and bond orders emerge on various d-orbitals. Thus, the
present study is valid for various types of current order
mechanisms, not restricted to Ref. [5].

I: Increment of Tc under uniaxial strain in 3Q BO

phase

In Ref. [12], it was proposed that CsV3Sb5 is located
at the quantum critical point of the current order (T 0

c ≈ 0
in the absence of the uniaxial strain. The field-induced
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(hz ∼ 9T) current order at Tc ∼ 20K would be explained
by the present theory. In addition, Ref. [12] reports
the strain induced increment of Tc in the absence of the
magnetic field. It was explained in Ref. [12] based on the
GL free energy analysis. Under the uniaxial strain, the
degeneracy of the current order transition temperature

at q = qm (m = 1 ∼ 3), T
(m)
c , is lifted. Then, Tc =

maxm T
(m)
c will be larger than the original T 0

c .

Here, we present that the strain induced change in
the 4th order GL terms causes additional significant
contribution to the increment of Tc. That is, the
BO-induced suppression of the current order is dras-
tically reduced by the strain. Considering the D6h

symmetry, we assume that the E1g symmetry strain
(ǫ, ǫ′) induces the shift of the vHS energy levels as
∆E ≡ (∆EA,∆EB,∆EC) = α(ǫ, 0,−ǫ) and ∆E′ ≡
(∆E′

A,∆E
′
B,∆E

′
C) = (α′/2)(ǫ′,−2ǫ′, ǫ′). Then, the 4th

order GL terms are given as

1,2,3
∑

m

{d(m)
1 φ4m + d

(m)
3 η4m + 2d

(m)
5 φ2mη

2
m}

+

1,2,3
∑

m

{d(o)2 φ2mφ
2
n + d

(o)
4 η2mη

2
n + d

(o)
6 (φ2mη

2
n + φ2nη

2
m)},

(S21)

where n = m+1 and o = m−1 mod 3. When ǫ = ǫ′ = 0,

d
(m)
l = dl for any m and l. Below, we show that each

d
(m)
l has large ǫ- and ǫ′-linear terms when n ∼ nvHS.

Here, we calculate the coefficients d
(m)
l in the three-

orbital model based on the Green function methods ex-
plained in the SI F. The used model parameters are
T = 0.01, g = 0.6, t′ = 0, and α = α′ = 1. We
first study the case of n = 2.56 (> nvHS), whose FS
at ǫ′ = 0.005 is shown in Fig. S10 (a). Figure S10 (b)

shows the obtained d
(m)
l normalized by its ǫ′ = 0 value,

as functions of ǫ′ for |ǫ′| ≤ 0.005. We also study the case
of n = 2.48 (< nvHS), whose FS at ǫ′ = 0.005 is shown
in Fig. S10 (c). Figure S10 (d) shows the normalized

d
(m)
l as functions of ǫ′. In both cases, the coefficients ex-

hibits sizable ǫ′-linear terms, by reflecting the large p-h
asymmetry of the kagome lattice model.

In contrast, the irreducible susceptibility with the cur-
rent form factor χ0

lm,lm(q) = −T ∑

k,n f
lm
q (k)∗Gll(k +

q, ǫn)Gmm(k, ǫn)f
lm
q (k) exhibit much smaller relative

change in the same range of ǫ′; ∼ 3% for n = 2.56 and
∼ 5% for n = 2.48. The form factor f̂q(k) is introduced
in the SI F. (The change in χ0

lm,lm(qi) modifies the sec-
ond order coefficient ac.) The change in the 3rd order

term is very small, which is O(ǫ2) when f
(m)
ij = ±ig(m)

ij .

Now, we consider the strain-induced change in the 4th
order free energy term. By considering the symmetry
property of the Feynman diagrams, ∆F due to ∆E ∝ ǫ
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FIG. S10: (a) FS for n = 2.56 with ǫ′ = 0.005 and (b) nor-

malized d
(m)
l (m = 1− 3; l = 1− 6) as functions of the strain

ǫ′ for ∆E′ = α′(ǫ′/2,−ǫ′, ǫ′/2) with α′ = 1. Their ǫ′-linear
terms give g′l in Eq. [S23]. At ǫ = 0, (d1, d2, d3, d4, d5, d6) =
(26.09, 62.52, 11.09, 33.97, 14.09, 42.23). (c) FS for n =

2.48 with ǫ′ = 0.005 and (d) obtained d
(m)
l as func-

tions of the strain ǫ′. At ǫ′ = 0, (d1, d2, d3, d4, d5, d6) =
(52.40, 19.41, 15.09, 16.60, 21.02, 16.87). In both (b) and (d),

the relations d
(1)
l = d

(2)
l (l = 1 − 6) and ∂ǫ′d

(3)
l = −2∂ǫ′d

(1)
l

holds. The relation ∂ǫ′d
(m)
5 ∼ −∂ǫ′d

(m)
6 means that g′5 and g′6

have the same sign. Interestingly, ∂ǫ′d
(m)
l for n > nvHS in (b)

and that for n < nvHS in (d) have opposite signs. The used
parameters are T = 0.01 and v = 0.6.

is given as

∆F (ǫ) = g1(φ
4
1 − φ42) + g3(η

4
1 − η42)

+2g5(φ
2
1η

2
1 − φ21η

2
2)

+g2(φ
2
3φ

2
1 − φ22φ

2
3) + g4(η

4
3η

2
1 − η22η

2
3)

+g6(η
4
3φ

2
1 + η41φ

2
3 − η22φ

2
3 − η23φ

2
2), (S22)

where gl are ǫ-linear. gl and d
(m)
l are related as ǫ ·

(∂ǫd
(1)
l , ∂ǫd

(2)
l , ∂ǫd

(3)
l ) = gl(1,−1, 0) for l=odd, and =

−gl(1,−1, 0) for l=even. Also, ∆F ′ due to ∆E′ ∝ ǫ′

is given as

∆F ′(ǫ′) = g′1(φ
4
1 + φ42 − 2φ23) + g′3(η

4
1 + η42 − 2η43)

+2g′5(φ
2
1η

2
1 + φ22η

2
2 − 2φ23η

2
3)

+g′2(φ
2
2φ

2
3 + φ23φ

2
1 − 2φ21φ

2
2)

+g′4(η
2
2η

2
3 + η23η

2
1 − 2η21η

2
2)

+g′6(φ
2
2η

2
3 + φ23η

2
2 + φ23η

2
1 + φ21η

2
3 − 2φ21η

2
2 − 2φ22η

2
1),

(S23)

where g′l are ǫ′-linear. g′l and d
(m)
l are related as ǫ′ ·

(∂ǫ′d
(1)
l , ∂ǫ′d

(2)
l , ∂ǫ′d

(3)
l ) = g′l(−1,−1, 2) for l=odd, and

= −g′l(−1,−1, 2) for l=even.
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Here, we consider the possible 3Q BO-current coex-
isting state motivated by the experiment in Ref. [12].
As explained in Ref. [5], in the case of |φ| ≫ |η| at
ǫ = ǫ′ = 0, the 3Q BO φ0 = (φ0, φ0, φ0)/

√
3 coexists

with the current order η ∝ (η1, η2,−η1 − η2) due to the
energy gain by the 3rd GL terms with b1b2 < 0. (The re-
lation b1b2 < 0 is general [5].) Then, the BO-current co-
existing state is nematic. Here, we set η = (η, 0,−η)/

√
2

(or η = (η,−2η, η)/
√
6) without loss of generality.

Hereafter, we calculate the change in the current order
transition temperature ∆T̄c(ǫ) (∝ ǫ) under the 3Q BO
phase. (Below, we set b1 = −b2 for simplicity to obtain
the analytic expression.) When η = 0, we obtain the
square of the i-th component of φ as (φi)

2 = (φ0)2/3 +
uiψ

2 (u1 = u2 = −1 and u3 = 2), where ψ2 = [(2g1 +
g2)/(2d1 − d2)](φ

0)2 (∝ ǫ). We consider |η|2 ∼ O(ǫ) by
assuming T ∼ Tc. Then, the change in the free energy by
∆E of order O(η2) is obtained as ∆F = −[(2g5 + g6) +
D(2g1 + g2)]((φ

0)2/6) · η2, where D ≡ (2d5 − d6)/(2d1 −
d2). In the present numerical study, D ∼ 1 and (2g5 +
g6) ≈ (2g1 + g2). (Exactly speaking, D = 1.36 (0.29) for
n = 2.56 (2.48).)
In the BO phase at ǫ = 0, the original 2nd order GL

coefficient ac is changed by φ0 6= 0 as

āc(0) = ac + 2(d5 + d6)((φ0)2/3)

∝ T − T̄c(0), (S24)

where |φ0| & Tb when T ≪ Tb. For finite ǫ, it is changed
by ∆F (ǫ) as

āc(ǫ) = āc(0)− [(2g5 + g6) +D(2g1 + g2)]((φ
0)2/6)

∝ T − T̄c(ǫ), (S25)

The current order appears in the BO phase when Eq.
[S26] becomes negative. Therefore, T̄c will increase in
proportion to ǫ if (2g5 + g6) > 0. (If (2g5 + g6) < 0, Tc
increases when η ∝ (0, η,−η).)
In the same way, āc(ǫ) is modified by ∆F ′(ǫ′) as

āc(0)− [(2g′5 + g′6) +D(2g′1 + g′2)]((φ
0)2/6). (S26)

Note that g′5 = −ǫ′∂ǫ′d(1)5 and g′6 = ǫ′∂ǫ′d
(1)
6 has the same

sign according to Fig. S10, which is naturally expected
analytically.

Considering the drastic ǫ′-dependence of d
(m)
l obtained

in Fig. S10 (a), in collaboration with the change in ac
already discussed in Ref. [12], sizable strain-induced in-
crement of the current order transition temperature Tc
reported in Ref. [12] will be realized in the present mech-
anism.

In the case of f
(m)
ij = ±ig(m)

ij , gl and g
′
l coincide with

l=even and l=odd, respectively. Then, D = 1 and (2g5+
g6) = (2g1 + g2). The main results are valid even in this
case.
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