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It is well established that physical aging of amorphous solids is governed by a marked change
in dynamical properties as the material becomes older. Conversely, structural properties such as
the radial distribution function exhibit only a very weak age dependence, usually deemed negligible
with respect to the numerical noise. Here we demonstrate that the extremely weak age-dependent
changes in structure are in fact sufficient to reliably assess the age of a glass with the support of
machine learning. We employ a supervised learning method to predict the age of a glass based on the
system’s instantaneous radial distribution function. Specifically, we train a multilayer perceptron
for a model glassformer quenched to different temperatures, and find that this neural network can
accurately classify the age of our system across at least four orders of magnitude in time. Our
analysis also reveals which structural features encode the most useful information. Overall, this
work shows that through the aid of machine learning, a simple structure-dynamics link can indeed
be established for physically aged glasses.

I. INTRODUCTION

The structural, dynamical and mechanical properties
of a material change as it gets older, i.e. it ages [1–9].
Physical aging is particularly well studied for glasses due
to their slow relaxation dynamics [10–14]. One of the
most common methods to study the aging dynamics of a
glass consists of a temperature quench toward a lower
temperature [15–18]. After the quench, as the mate-
rial seeks to recover equilibrium at the new temperature,
the relaxation time of the system will increase with its
age [10, 19–21]. The physical aging in glassy systems
can thus be understood as a gradual approach towards
increasingly lower-energy equilibrium states [13]. It is
also well known that, besides a rapid short-time change,
the structural properties change only extremely weakly
with time [22–27]. In contrast, the dynamical properties
exhibit significant changes over multiple orders of mag-
nitude in time as shown in Fig. 1 and the Supplementary
Material [28]. It is therefore customary to characterize
the aging behavior of a system by means of its dynami-
cal properties. At the same time, it remains unclear how
these strong dynamical changes of an aging glass are con-
nected to its almost constant structure [24].

To bridge this gap, Cubuck et al. [29] have recently de-
veloped a pioneering approach which demonstrates that
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machine learning techniques can in fact successfully cor-
relate structure and dynamics in glassy systems. Cubuck
et al. have introduced a machine learning microscopic
structural quantity, so-called softness, which character-
izes the local structure around each particle. Based
on this approach, several recent works [30–41] have ex-
tended our conceptual understanding of glassy liquids
by convincingly demonstrating that machine learning is
able to accurately connect structural properties with the
corresponding dynamics. In particular, standard ma-
chine learning tools like support vector machines have
been able to compute the relaxation time through soft-
ness [42] and collective effects like fragility [36] and low-
temperature defects [43]. More sophisticated models
like graph neural networks [44] give accurate predic-
tions of dynamic propensity, but similar results can be
achieved by simpler models with accurate structural in-
dicators [45]. It is thus evident that machine learning is
a powerful tool to study glassy systems and, as suggested
by Schoenholz et al. [42], it is plausible that it could also
be used to shed new light on aging behavior.
Still, it is a priori not clear whether this level of com-

plexity, both in the machine-learning model and in the
input set, is strictly necessary to predict the age of a
system from structural properties. Indeed, an analysis
of the softness suggests that the radial distribution func-
tion’s first peak contributes the most to predicting rear-
rangements [30]. Since the radial distribution function
does change weakly with age, one could argue that a
traditional approach, which could consist of selecting the
radial distribution function’s values that change the most
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with age and applying linear regression [46–48], might al-
ready be sufficient to extract the age of a system. How-
ever, such a traditional approach would only be expected
to work if the uncertainty in the data is sufficiently small,
e.g. in the thermodynamic limit, while in reality a system
is typically finite-sized and thus susceptible to noise.

Here our goal is to classify the age of a glassy system
based solely on a snapshot, i.e. an instantaneous parti-
cle configuration of a finite-sized system. In particular,
we compute the radial distribution function at every age
and we use this simple feature as input for a neural net-
work. We find that a neural network that is trained and
tested at a fixed quenching temperature can distinguish
between a young and an old glass with 94% − 97% ac-
curacy. We compare our machine learning method with
a traditional approach, confirming the superiority of the
first. The traditional approach involves manual selection
of features that–on average–exhibit the most significant
changes with age. However, due to noise, these features
yields significantly less reliable age predictions compared
to those obtained using features selected through a ma-
chine learning approach.

In order to analyze our machine learning results in
more detail, we perform both a Principal Component
Analysis (PCA) and a Shapley Additive Explanation
(SHAP). These methods reveal the principal components
or the structural features that most strongly encode the
age, also allowing us to infer the age of the system from
only a subset of the structural data. Finally, we explore
the role of the quenching temperature, also proving that
a neural network trained with a set of multiple quench-
ing temperatures generalizes well when tested at a new
temperature. Though we primarily focus on passive sys-
tems, we also verify our model for active systems. Ul-
timately, we conclude that a machine learning approach
purely based on simple structural properties can reliably
infer the age of a glassy system.

II. METHODS

A. Simulation model

We study a two-dimensional (2D) binary mixture of
Brownian particles. The overdamped equations of mo-
tion for each particle i are given by

γ ṙi =
∑
j ̸=i

fij +
√
2DT η (1)

where ri = (xi, yi) represents the particle’s spatial coor-
dinates and the dot denotes the time derivative. The
translational diffusion constant is denoted as DT =
kBT/γ and the thermal noise is represented by indepen-
dent Gaussian stochastic processes η = (ηx, ηy) with zero
mean and variance δ(t− t′), where kB is the Boltzmann
constant, T the temperature, and γ the friction coeffi-
cient. Lastly, fij = −∇iV (rij) is the interaction force
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FIG. 1. Age dependence in structural and dynamical proper-
ties. Snapshots after a temperature quench for waiting time
(a) tw = 1 and (b) tw = 1000. (c) Radial distribution func-
tion for A particles gAA(r) and (d) mean-square displacement
⟨δr2(tw, t + tw)⟩ at fixed quenching temperature Tq = 0.375
for waiting times tw = 1, 10, 100, 1000.

between particles i and j, where rij = |ri − rj | and V
is a Lennard-Jones potential [49] with a cutoff distance
rij = 2.5σij . In order to prevent crystallization we use
the 2D binary Kob-Andersen mixture [50]: A = 65%,
B = 35%, ϵAA = 1, ϵBB = 0.5ϵAA, ϵAB = 1.5ϵAA,
σAA = 1, σBB = 0.88σAA and σAB = 0.8σAA. We set
the number density to ρ = 1.2, the number of particles
to N = 10 000 and DT = 1. Results are in reduced

units, where σAA, ϵAA,
σ2
AAγ
ϵAA

, and ϵAA

kB
are the units of

length, energy, time, and temperature, respectively. Sim-
ulations have been performed using LAMMPS [51] by
solving Eq. 1 via the Euler-Maruyama method [52] with
a step size δt = 10−4.
As additional verification of our method we also study

the aging behavior of an active glass. For this we use the
active Brownian particle (ABP) model, which combines
thermal motion with a constant self-propulsion speed
[53–58]. To obtain the equation of motion for ABPs,
in Eq. 1 we need to add the self-propulsion term. This
term is defined as f ni, where f/γ is the constant self-
propulsion speed along a direction ni = (cos θi, sin θi),
θi is the rotational coordinate, and f is the magnitude
of the active force. The rotational coordinate obeys
θ̇i =

√
2Dr ηθ, where Dr is the rotational diffusion co-

efficient and ηθ is a Gaussian stochastic process. The
persistence time, τr, is defined as the inverse of the rota-
tional diffusion coefficient and determines the decay time
of a particle’s orientation [59]. Finally, we choose to focus
on a relatively large system with N = 10 000 particles,
but we verified that our machine learning approach also
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performs well for a smaller system with N = 1000 (Sup-
plementary material [28]).

B. Aging

For our data set, we prepare 20 independent config-
urations and let each of them equilibrate at the initial
temperature Ti. In this work we consider Ti = 1, which
corresponds to the liquid phase, but similar results can
in principle be obtained for other initial temperatures.
Moreover, the dataset consists of 20 independent config-
urations since these are sufficient to obtain good perfor-
mance. After the equilibration process we apply a quench
to the final temperature Tq that is lower than the glass
transition temperature Tg (for this system Tg ≈ 0.4 [60–
62]). We use quenching temperatures between Tq = 0.1
and Tq = 0.375 and collect data for waiting times be-
tween 0 and 104. It is well known that the relaxation
time as a function of the waiting time follows a power law
[15]. We therefore split the data into 5 different classes
following a logarithmic scale, as shown in Tab. I. Each
class consists of 900 different waiting times tw that we
also refer to as ages, except for class 0 which consists of
only the single age tw = 0. In order to have the same
amount of data in each class, we save the particle’s con-
figurations every ts time units, with ts specified in Table
I.

For each age, we compute the radial distribution func-
tion gi(r) averaged over the number of particles, where
i ∈ {AA,BB,AB} indicates the interaction pairs. It has
been shown that the radial distribution function’s first
peak is one of the most important features to predict re-
arrangements [30]. To verify whether this also applies
to the age classification, we compare the results when
the radial distribution function includes or excludes the
first peak, corresponding to gi(r) with σi ≤ r < 3σi and
gi(r

′) with σi + 0.15 ≤ r′ < 3σi + 0.15, respectively. In
this paper, we will refer to the radial distribution func-
tion without the first peak as ĝi(r). To compute ĝi(r)
or gi(r) we use a bin width of δr = 0.05, resulting in 40
data points for each of the three partial radial distribu-
tion functions gi(r). These 120 structural properties will
be used as an input for our machine learning model. The
dataset is randomly divided into a training and a test set
that includes 70% and 30% of the data, respectively. To
verify that this model also works for an active particle
system, we study ABPs with an active force f = 0.5, a
persistence time τr = 1, and a quenching temperature
Tq = 0.25. We chose these parameters such that the re-
laxation times of the active and passive systems are of
the same order of magnitude [62].

C. Classification model

To carry out the age classification task we use a mul-
tilayer perceptron [63, 64] as implemented in Scikit-learn

class age ts

0 tw = 0 10−4

1 100 ≤ tw < 101 10−2

2 101 ≤ tw < 102 10−1

3 102 ≤ tw < 103 100

4 103 ≤ tw < 104 101

TABLE I. Description of the dataset. Data are collected from
age 0 to age 104 and then divided in 5 different classes. The
left column shows the label given to each class, the central
column the ages that belong to each class, and the right col-
umn the time interval ts used to collect data.

[65]. This neural network (NN) is composed of multi-
ple layers of interconnected neurons. In the first layer,
i.e. the input layer, the neurons receive the input vector,
while the output layer yields the output signals or clas-
sifications with an assigned weight. The hidden layers
optimize the weights until the neural network’s margin
of error is minimal [66].
In this work we will use two different NN architectures

consisting of either four or twelve hidden layers. In both
cases, all hidden layers have 100 nodes except for the
last two which have 50 and 30 nodes, respectively. The
ADAM algorithm has been used to update the weights
[67].
To evaluate the model we compute the f1-score

f1-score = 2
precision · recall
precision + recall

where the precision is the sum of true positives across all
classes divided by the sum of both true and false positives
over all classes, and the recall is the sum of true positives
across all classes divided by the sum of true positives and
false negatives across all classes. The f1-score reaches its
largest value of 1 when the model has perfect precision
and recall and its lowest value of 0 if either the precision
or the recall is equal to zero. The list of hyperparame-
ters used for the multilayer perceptron is reported in the
supplementary material [28].

D. Feature selection: traditional approach, SHAP
analysis, and PCA

A key aspect of our work is to establish whether ma-
chine learning is truly of added value when inferring the
age of a finite system, as opposed to a more traditional
approach. Some signatures of aging in the g(r) have al-
ready been observed [22–25], and a traditional approach
would focus on the features that change the most with
age, that usually include the first peak. If the age de-
pendence of these features is linear or polynomial, we
could apply a simple algorithm, e.g., linear regression, to
make predictions. To verify if this approach is efficient,
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we compute

⟨δgi(tw, r)⟩ =

〈
gi(tw, r)− gi(tw = 1, r)

gi(tw = 1, r)

〉

where i ∈ {AA,BB,AB}, σi ≤ r < 3σi and ⟨. . . ⟩ denotes
an average over twenty independent configurations. The
variation ⟨δgi(tw, r)⟩ tells us how much the radial dis-
tribution function at age tw changes compared to g(r)
obtained for a very young glass, i.e. tw = 1. To se-
lect the features that are changing the most, we measure
δ = max(⟨δgi(tw, r)⟩)−min(⟨δgi(tw, r)⟩) and select those
with the higher δ.
We then compare this traditional approach to our ma-

chine learning strategy. The machine-learning model cal-
culates its predictions using all the available data, but we
can also identify which features have a stronger influence
on the neural network’s prediction. We can then verify
if these features correspond to those selected with the
traditional approach. Moreover, in order to gain more
insight into the machine learning model’s prediction, we
perform a SHAP analysis [68] that calculates the relative
contribution of each feature to the prediction. Briefly,
the SHAP explanation method computes Shapley val-
ues incorporating concepts from cooperative game the-
ory. The goal of this analysis is to distribute the total
payoff among players taking into account the importance
of their contribution to the final outcome. In this con-
text, the feature values are the players, the model is the
coalition, and the payoff is the model’s prediction.

Finally, we perform a PCA analysis [69]. PCA is a
valuable tool for condensing multidimensional data with
correlated variables into new variables that represent lin-
ear combinations of the original ones. Essentially, PCA
serves as a means to reduce the dimensionality of high-
dimensional data. Through the identification of variables
exhibiting significant variances, we can uncover the inher-
ent characteristics within the data. The first component
corresponds to the projection axis that maximizes the
variance in a certain direction, while the second prin-
cipal component is an orthogonal projection axis that
maximizes the variance along the next-leading direction.
This process can be iterated to identify additional com-
ponents.

We will explain in the next sections how machine learn-
ing approaches outperform the traditional approach for
the system under study, demonstrating that machine
learning can be more efficient in inferring the age of a
material from simple static properties when noise is in-
herently present in the data.

III. RESULTS AND DISCUSSION

A. Fixed quenching temperature

Let us first focus on the situation where both the train-
ing and prediction have been carried out for a single

Tq class f1-score score
Passive system

0 1
1 0.99

0.1 2 0.97 0.97
3 0.96
4 0.98
0 1
1 0.98

0.25 2 0.92 0.94
3 0.91
4 0.97
0 1
1 0.97

0.375 2 0.93 0.95
3 0.94
4 0.96

Active system
0 1
1 0.96

0.25 2 0.92 0.93
3 0.91
4 0.92

TABLE II. Classification performance of the neural networks
S in the passive and active case. The passive neural networks
are trained and tested with Tq = {0.1, 0.25, 0.375}, while the
active NN is trained and tested with Tq = 0.25, an active force
f = 0.5, and a persistence time τr = 1. The model has gi(r)
as input, with σi ≤ r < 3σi. In the left column we show the
Tq at which each S is trained, then we show the class label
and its corresponding f1-score, and finally in the last column
we provide the overall score obtained in the test set.

quenching temperature Tq. This allows us to finely tune
the machine-learning model. In the following, networks
that are trained with a single quenching temperature will
be referred to as ’S’. In Sec. III B we compare these mod-
els with a more generalized machine-learning model that
is trained for a broad range of quenching temperatures.

1. Age prediction

To infer the age of a glass, we use a NN that only uses
the instantaneous radial distribution functions gi(r) (120
features in total) as input. We train three different neural
networks S, composed by four hidden layers, and trained
and tested at quenching temperatures Tq = 0.1, 0.25 and
0.375, respectively. We have verified that our bigger al-
ternative NN with twelve hidden layers does not improve
the performances (see supplementary material [28]). In
Table II, we show the f1-score for each class and the over-
all score computed in the test set. Table II shows that
the f1-score for each class is always higher than 0.9, re-
gardless of the quenching temperature. From this excel-
lent score across all age categories it is clear that, even
if the waiting time dependence of the radial distribution
function is considered weak, a NN trained exclusively on
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FIG. 2. The f1-score as a function of the number of features Nf used in the machine-learning model. The blue dashed line
corresponds to the f1-score showed in Table II obtained with the full dataset (120 features). The orange squares represent
the f1-score obtained with the principal components selected by PCA, the pink dots correspond to the f1-score obtained with
the most important features selected with a SHAP analysis, and finally the light blue triangles represent the f1-score gained
using the features that change the most on average. (a) Quenching temperature Tq = 0.1. The SHAP analysis shows that
the six most important features are: gAA(1.05), gAA(1.65), gAB(1.35), gAA(1.80), gAA(1.75), gAB(1.30). The six features that
are changing the most on average are: gAA(1.00), gBB(2.00), gAB(1.25), gBB(2.05), gAA(1.60), gAB(1.40). (b) Quenching
temperature Tq = 0.25. The SHAP analysis shows that the six most important features are: gAA(1.00), gAA(1.65), gAB(1.60),
gAB(1.55), gBB(1.80), gAA(1.05). The six features that are changing the most on average are: gAA(1.00), gAB(1.55), gBB(1.00),
gBB(2.25), gAB(1.40), gBB(1.05).(c) Quenching temperature Tq = 0.375. The SHAP analysis shows that the six most important
features are: gBB(1.50), gAA(1.00), gAA(2.45), gAB(1.60), gBB(1.55), gBB(1.45). The six features that are changing the most
on average are: gBB(1.00), gBB(1.55), gBB(1.05), gBB(1.50), gBB(2.35), gBB(2.30).
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FIG. 3. Variation of the radial distribution function,
⟨δgi(tw, r)⟩, as a function of age tw. The symbols represent
the six features that change the most on average for a sys-
tem at Tq = 0.1. In the inset the red diamonds show the
feature that changes the most, ⟨δgAA(1.00)⟩, with its corre-
sponding standard deviation, and the blue dots correspond to
the most important feature according to the SHAP analysis,
⟨δgAA(1.05)⟩, and its standard deviation.

this structural property is able to distinguish between a
young and an old glass with remarkable accuracy.

To verify whether our machine learning approach can
also classify the age of an active system, we train and test
a model S with the data of dense ABPs. In Tab. II we

show the f1-score corresponding to an aging active system
(f = 0.5, τr = 1) at quenching temperature Tq = 0.25.
As in the passive case, the f1-scores exceed 0.9 for all age
categories across four decades in time. Thus, the neural
network also performs well for active glasses when trained
and tested at the same temperature. This is consistent
with recent works [62, 70] demonstrating that an active
system’s aging behavior shares several similarities with
a passive glass, notably the power-law growth of the al-
pha relaxation time as a function of the waiting time. In
particular, this explains why our machine-learning mod-
els for passive and active systems have a similar predic-
tive performance. Finally, while we focused on a two-
dimensional system, we have verified that this model also
works for a three-dimensional system [28].

2. Traditional approach versus machine learning

In the previous section we have shown that a NN
trained with 120 static features can reliably predict the
age of the system at a given temperature. Here we ex-
plore whether all these features are necessary to train a
well-performing model, since a subset of features might
already efficiently encode the age of the material. To this
end, we sort all gi(r) features in order of importance; The
order is determined either from a traditional approach
that simply looks for the values of gi(r) changing the
most with age, a machine-learning-based SHAP analy-
sis, or a PCA analysis which extracts the most important
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components (see Sec. IID). For these three sortings, we
can then train a NN with only the most important fea-
tures and establish how the age can be most efficiently
predicted from minimal structural information.

To compare the traditional approach with machine
learning, we train neural networks S with a different
number of features Nf , where Nf ∈ {1, 2, 3, 4, 5, 6}. In
Fig. 2 we show the f1-score as a function of Nf for both
the traditional and machine techniques, namely SHAP-
based feature selection and PCA. Each panel corresponds
to a different quenching temperature. It can be seen that
for all considered temperatures, the predictions restricted
to the features selected by SHAP are better than the tra-
ditional approach, demonstrating that machine-learning-
based feature selection is superior to the traditional
’human learning’ approach in this case. Furthermore,
PCA outperforms both the conventional method and the
SHAP analysis. Importantly, however, the variance asso-
ciated with the number of principal components ranging
from one to six is below 0.5, meaning that the first six
components do not contain all the information within
the dataset (see Supplementary Material [28]). Conse-
quently, this suggests that the dimensionality-reduced
dataset from PCA does not comprehensively represent
the entire dataset.

Even though the f1-score for a restricted model is al-
ways lower than that for the full model with 120 features
(see Fig. 2), both PCA and SHAP restricted to Nf = 6
can be considered good classifiers, since their f1-scores are
always greater than 0.76 and 0.80, respectively. However,
the list of the six optimal features with both SHAP and
PCA changes with the quenching temperature, while the
full model leads to a f1-score higher than 0.9 regardless of
the quenching temperature. Thus, while fewer features
can indeed be used to obtain good predictions, this comes
at the price of performing a new PCA or SHAP analysis
for the full model at each temperature, and hence the full
model can be deemed more efficient overall.

Let us now inspect the feature selection more closely to
determine why the machine-learning-based selection out-
performs the traditional approach. To compare the most
important features selected by these two approaches, the
focus of the remainder of this section will be on the SHAP
analysis and the traditional approach. We note that one
could also perform a more in-depth analysis of the main
PCA components, but due to their relatively small vari-
ance, we prefer to focus on SHAP instead.

A key point in support of machine learning is its abil-
ity to perform well for noisy data, i.e. in the presence of
fluctuations that are inevitable in experimental or sim-
ulation data of finite-sized systems. Figure 3 shows the
six features that change the most on average for a system
with quenching temperature Tq = 0.1. From this plot it
is clear that gAA(1.00) is the feature that varies the most
with age. In particular, an older system corresponds to a
larger value of ⟨δgAA(1.00)⟩. Therefore, one could argue
that this feature alone should be sufficient to predict the
age of the system. However, Fig. 2(a) shows that the

f1-score obtained from a NN trained with only gAA(1.00)
(light blue point at Nf = 1) is lower than 0.5, while
the one corresponding to a single SHAP-selected feature
(pink point at Nf = 1) is greater than 0.6. This single
most important feature according to SHAP is gAA(1.05),
which the machine-learning model selects even if it does
not change much with age (inset Fig. 3). The reason
for this choice, also highlighted in the inset of Fig. 3, is
that the standard deviation associated to ⟨δgAA(1.00)⟩ is
much larger than the one obtained for ⟨δgAA(1.05)⟩. Fur-
thermore, in the supplementary material [28], we present
the results achieved by subtracting the mean radial dis-
tribution function of the complete dataset from the ra-
dial distribution function at different ages, denoted as
gi(r) − ⟨gi(r)⟩ with i ∈ AA,BB,AB, at Tq = 0.375 for
a single snapshot. This analysis confirms results similar
to those reported in Fig. 3, and we do not observe any
additional significant effects.

From this analysis we can conclude that, according to
SHAP, the features that have the biggest influence on the
model’s prediction are not necessarily those that change
the most with age, but rather features that change mono-
tonically with age and have a relatively small standard
deviation. Overall, we see that the noise associated with
an instantaneous configuration is usually too large to
make reliable age predictions based on features selected
with the traditional approach. Therefore, we conclude
that in order to properly classify the age of a glass from
a single snapshot, a machine learning approach is pre-
ferred, since it is better equipped to handle noise.

B. Quenching temperature dependence

1. Age prediction with a generalized model

We now aim to build a general model that is able to
classify the age of the system at any quenching tem-
perature regardless of the Tq used in the training. The
first attempt to achieve this goal consists of determining
whether the model S, introduced in the previous section
IIIA, can correctly classify unseen data at different tem-
peratures. Therefore, we test each neural network S with
Tqtest = 0.11, 0.12, 0.15, 0.17, 0.2, 0.23, 0.3, 0.32, 0.35. Our
results show that the model S trained with the partial ra-
dial distribution functions without the first peaks, ĝi(r),
generalizes better than when trained with the full ra-
dial distribution functions gi(r) [28]. This is not only
due to the strong temperature dependence of the main
peaks, but also to the fact that those data points are ex-
tremely noisy (as shown in Sec. IIIA 2). For this reason,
in this section we will focus on the results correspond-
ing to neural networks trained with ĝi(r). Moreover, we
have found that this model can extrapolate reasonably
well only when the difference between Tqtrain

and Tqtest

remains sufficiently small. Since this model cannot be
used to predict the age of the system at an arbitrary
quenching temperature, we examine whether the perfor-
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FIG. 4. The f1-score as a function of the quenching
temperature used to test the model Tqtest . The purple
line shows the neural network M trained with Tqtrain =
0.1, 0.15, 0.2, 0.25, 0.35, 0.375, the red line represents Mhigh

trained with Tqtrain = 0.25, 0.35, 0.375 and the blue line in-
dicates Mlow trained for Tqtrain = 0.1, 0.15, 0.2. Each dot
corresponds to the f1-score obtained in the test set when
Tqtest ̸= Tqtrain . The temperatures used in the test set are
Tqtest = 0.1, 0.11, 0.12, 0.15, 0.17, 0.2, 0.23, 0.25, 0.27, 0.3, 0.32.
The inset shows the f1-score when the networks M, Mhigh

and Mlow are tested with Tqtest = Tqtrain .

mance of our model further improves when it is trained
with a set of multiple (in our case three or six) different
quenching temperatures.

To this end we use a new neural network with twelve
hidden layers, referred to as ’M’, that is trained with
Tqtrain

= 0.1, 0.15, 0.2, 0.25, 0.35, 0.375, and subsequently
tested with Tqtest = 0.11, 0.12, 0.17, 0.23, 0.27, 0.3, 0.32.
We have also verified that for this dataset a NN with
twelve hidden layers generalizes better compared to a
smaller network (see supplementary material [28]), and
that using Tq and ĝi(r) as input yields the best perfor-
mance. The purple line in Fig. 4 shows the f1-score of
our most general model M as a function of Tqtest . It
can be seen that the f1-score in the test set is always
higher than 0.76. Therefore, this model is able to inter-
polate reasonably well for unseen data. Specifically, for
0.11 ≤ Tqtest ≤ 0.17 we find that 0.76 ≤ f1-score ≤ 0.82,
while, when 0.23 ≤ Tqtest ≤ 0.32 the model has 0.87 ≤
f1-score ≤ 0.91. Our neural network M thus performs
better for the higher quenching temperatures, i.e. when
Tqtest ≥ 0.23.

To better understand this behavior and to test if
different aging regimes exist, we split the training set
into two parts: One for low temperatures Mlow, with
Tqtrain

= 0.1, 0.15, 0.2, and one for higher quenching tem-
peraturesMhigh, with Tqtrain

= 0.25, 0.35, 0.375. In both
cases we use a NN with four hidden layers, because for
these two datasets this performs better than a larger NN.
From Fig. 4 we can see that Mhigh (red curve) performs
well (f1-score ≥ 0.86) for Tqtest ≥ 0.23. For these Tqtest

values the f1-score is very similar to the one obtained

with M. This means that for high temperatures even
a small network trained with a smaller set of quenching
temperatures is able to generalize to quenching temper-
atures close to those used in the training set. However,
when Mhigh is tested with Tqtest < 0.23 the correspond-
ing f1-score is lower than 0.7. For these temperatures
Mhigh systematically overestimates the age of the system
(see supplementary material [28]). For lower quenching
temperatures, instead, Mlow (blue curve) has a f1-score
higher than 0.7 when it is tested with Tqtest ≤ 0.25. In
this case this NN performs worse compared to M, but
Mlow is able to generalize in a larger range of Tqtest com-
pared to S trained with Tqtrain

= 0.1 (reported in the
Supplementary material [28]). In order to have higher
performances, the low temperature regime needs a big-
ger set of Tqtrain

and a bigger NN. Moreover, similarly to
Mhigh, Mlow has a f1-score lower than 0.7 when tested
with Tqtest > 0.23. In this case, Mlow underestimates
the age of the system (see supplementary material [28]).
As we shall discuss in the following section, the over-
or underestimation of Mhigh and Mlow in unseen tem-
perature ranges might be related to the true underlying
physics, as the rate of aging depends on the quenching
temperature.

The inset of Fig. 4 shows that when we test the three
neural networks (M, Mhigh, and Mlow) with Tqtest =
Tqtrain

, the f1-score is always higher than 0.93, i.e., all
models yield excellent predictions when tested for the
temperatures they were trained for. From Fig. 4, we can
conclude that a NN trained with quenching temperatures
Tqtrain = Tq1 , . . . , Tqm performs well when tested with
Tq1 ≤ Tqtest ≤ Tqm . Schoenholtz et al. [42] have shown
that the history-dependent dynamics in glassy systems
can be quantified by the softness and that this property
can be used to predict tw even for systems at different
temperatures. Our results show that a simpler model,
based only on the radial distribution function, can pre-
dict the age of a system at any temperature if the NN is
trained on a set of multiple quenching temperatures.

Finally, we have also verified that the modelM trained
with passive data can correctly classify the age of an un-
seen active system (f = 0.5 and Tq = 0.25) with an f1-
score equal to 0.85. This remarkably good performance
can be rationalized as follows. In the steady state, an ac-
tive system can be mapped onto a passive system using
an effective temperature, while during aging the effective
temperature will change with the age of the system [62].
In this context each class will correspond to a different ef-
fective temperature, and for this reason the NN trained
on a passive system with multiple quenching tempera-
tures has high performances when tested on an active
system.

2. Physical interpretation of the most important features

Lastly, we aim to identify which features have a big-
ger impact on model M’s predictions and how to in-
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<latexit sha1_base64="G7RijeEeV7kzltrrFWYpCQM1re8=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguiY8jxItHTOSRACG9QwMTZh+Z6TUhGz7Ar/CqJ2/Gq5/hwX9xQQ4K1qlS1Z2uLjdU0pBtf1qptfWNza30dmZnd2//IHt41DBBpAXWRaAC3XLBoJI+1kmSwlaoETxXYdMd38z85gNqIwP/niYhdj0Y+nIgBVAi9bK5QmcExIe9uFqdFp3S5cVZoZfN2yV7Dr5KnAXJswVqvexXpx+IyEOfhAJj2o4dUjcGTVIonGY6kcEQxBiG2E6oDx6abjwPP+WnkQEKeIiaS8XnIv7eiMEzZuK5yaQHNDLL3kz8z2tHNLjuxtIPI0JfzA6RVDg/ZISWSSvI+1IjEcySI5c+F6CBCLXkIEQiRklNmaQPZ/n7VdIolxy75NyV85XzRTNpdsxOWJE57IpV2C2rsToTbMKe2DN7sR6tV+vNev8ZTVmLnRz7A+vjG2jilzI=</latexit><latexit sha1_base64="G7RijeEeV7kzltrrFWYpCQM1re8=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguiY8jxItHTOSRACG9QwMTZh+Z6TUhGz7Ar/CqJ2/Gq5/hwX9xQQ4K1qlS1Z2uLjdU0pBtf1qptfWNza30dmZnd2//IHt41DBBpAXWRaAC3XLBoJI+1kmSwlaoETxXYdMd38z85gNqIwP/niYhdj0Y+nIgBVAi9bK5QmcExIe9uFqdFp3S5cVZoZfN2yV7Dr5KnAXJswVqvexXpx+IyEOfhAJj2o4dUjcGTVIonGY6kcEQxBiG2E6oDx6abjwPP+WnkQEKeIiaS8XnIv7eiMEzZuK5yaQHNDLL3kz8z2tHNLjuxtIPI0JfzA6RVDg/ZISWSSvI+1IjEcySI5c+F6CBCLXkIEQiRklNmaQPZ/n7VdIolxy75NyV85XzRTNpdsxOWJE57IpV2C2rsToTbMKe2DN7sR6tV+vNev8ZTVmLnRz7A+vjG2jilzI=</latexit><latexit sha1_base64="G7RijeEeV7kzltrrFWYpCQM1re8=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguiY8jxItHTOSRACG9QwMTZh+Z6TUhGz7Ar/CqJ2/Gq5/hwX9xQQ4K1qlS1Z2uLjdU0pBtf1qptfWNza30dmZnd2//IHt41DBBpAXWRaAC3XLBoJI+1kmSwlaoETxXYdMd38z85gNqIwP/niYhdj0Y+nIgBVAi9bK5QmcExIe9uFqdFp3S5cVZoZfN2yV7Dr5KnAXJswVqvexXpx+IyEOfhAJj2o4dUjcGTVIonGY6kcEQxBiG2E6oDx6abjwPP+WnkQEKeIiaS8XnIv7eiMEzZuK5yaQHNDLL3kz8z2tHNLjuxtIPI0JfzA6RVDg/ZISWSSvI+1IjEcySI5c+F6CBCLXkIEQiRklNmaQPZ/n7VdIolxy75NyV85XzRTNpdsxOWJE57IpV2C2rsToTbMKe2DN7sR6tV+vNev8ZTVmLnRz7A+vjG2jilzI=</latexit><latexit sha1_base64="G7RijeEeV7kzltrrFWYpCQM1re8=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguiY8jxItHTOSRACG9QwMTZh+Z6TUhGz7Ar/CqJ2/Gq5/hwX9xQQ4K1qlS1Z2uLjdU0pBtf1qptfWNza30dmZnd2//IHt41DBBpAXWRaAC3XLBoJI+1kmSwlaoETxXYdMd38z85gNqIwP/niYhdj0Y+nIgBVAi9bK5QmcExIe9uFqdFp3S5cVZoZfN2yV7Dr5KnAXJswVqvexXpx+IyEOfhAJj2o4dUjcGTVIonGY6kcEQxBiG2E6oDx6abjwPP+WnkQEKeIiaS8XnIv7eiMEzZuK5yaQHNDLL3kz8z2tHNLjuxtIPI0JfzA6RVDg/ZISWSSvI+1IjEcySI5c+F6CBCLXkIEQiRklNmaQPZ/n7VdIolxy75NyV85XzRTNpdsxOWJE57IpV2C2rsToTbMKe2DN7sR6tV+vNev8ZTVmLnRz7A+vjG2jilzI=</latexit>

ĝBB(1.75)
<latexit sha1_base64="v3QP0VZRWQ1n9XEeQ0mbPMMxM7E=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguicEjwYtHTOSRACG9QwMTZh+Z6TUhGz7Ar/CqJ2/Gq5/hwX9xQQ4K1qlS1Z2uLjdU0pBtf1qpjc2t7Z30bmZv/+DwKHt80jRBpAU2RKAC3XbBoJI+NkiSwnaoETxXYcud3Mz91gNqIwP/nqYh9jwY+XIoBVAi9bO5QncMxEf9uFabFZ1S5eqi0M/m7ZK9AF8nzpLk2RL1fvarOwhE5KFPQoExHccOqReDJikUzjLdyGAIYgIj7CTUBw9NL16En/HzyAAFPETNpeILEX9vxOAZM/XcZNIDGptVby7+53UiGl73YumHEaEv5odIKlwcMkLLpBXkA6mRCObJkUufC9BAhFpyECIRo6SmTNKHs/r9OmmWS45dcu7K+erlspk0O2VnrMgcVmFVdsvqrMEEm7In9sxerEfr1Xqz3n9GU9ZyJ8f+wPr4Bm2jlzU=</latexit><latexit sha1_base64="v3QP0VZRWQ1n9XEeQ0mbPMMxM7E=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguicEjwYtHTOSRACG9QwMTZh+Z6TUhGz7Ar/CqJ2/Gq5/hwX9xQQ4K1qlS1Z2uLjdU0pBtf1qpjc2t7Z30bmZv/+DwKHt80jRBpAU2RKAC3XbBoJI+NkiSwnaoETxXYcud3Mz91gNqIwP/nqYh9jwY+XIoBVAi9bO5QncMxEf9uFabFZ1S5eqi0M/m7ZK9AF8nzpLk2RL1fvarOwhE5KFPQoExHccOqReDJikUzjLdyGAIYgIj7CTUBw9NL16En/HzyAAFPETNpeILEX9vxOAZM/XcZNIDGptVby7+53UiGl73YumHEaEv5odIKlwcMkLLpBXkA6mRCObJkUufC9BAhFpyECIRo6SmTNKHs/r9OmmWS45dcu7K+erlspk0O2VnrMgcVmFVdsvqrMEEm7In9sxerEfr1Xqz3n9GU9ZyJ8f+wPr4Bm2jlzU=</latexit><latexit sha1_base64="v3QP0VZRWQ1n9XEeQ0mbPMMxM7E=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguicEjwYtHTOSRACG9QwMTZh+Z6TUhGz7Ar/CqJ2/Gq5/hwX9xQQ4K1qlS1Z2uLjdU0pBtf1qpjc2t7Z30bmZv/+DwKHt80jRBpAU2RKAC3XbBoJI+NkiSwnaoETxXYcud3Mz91gNqIwP/nqYh9jwY+XIoBVAi9bO5QncMxEf9uFabFZ1S5eqi0M/m7ZK9AF8nzpLk2RL1fvarOwhE5KFPQoExHccOqReDJikUzjLdyGAIYgIj7CTUBw9NL16En/HzyAAFPETNpeILEX9vxOAZM/XcZNIDGptVby7+53UiGl73YumHEaEv5odIKlwcMkLLpBXkA6mRCObJkUufC9BAhFpyECIRo6SmTNKHs/r9OmmWS45dcu7K+erlspk0O2VnrMgcVmFVdsvqrMEEm7In9sxerEfr1Xqz3n9GU9ZyJ8f+wPr4Bm2jlzU=</latexit><latexit sha1_base64="v3QP0VZRWQ1n9XEeQ0mbPMMxM7E=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguicEjwYtHTOSRACG9QwMTZh+Z6TUhGz7Ar/CqJ2/Gq5/hwX9xQQ4K1qlS1Z2uLjdU0pBtf1qpjc2t7Z30bmZv/+DwKHt80jRBpAU2RKAC3XbBoJI+NkiSwnaoETxXYcud3Mz91gNqIwP/nqYh9jwY+XIoBVAi9bO5QncMxEf9uFabFZ1S5eqi0M/m7ZK9AF8nzpLk2RL1fvarOwhE5KFPQoExHccOqReDJikUzjLdyGAIYgIj7CTUBw9NL16En/HzyAAFPETNpeILEX9vxOAZM/XcZNIDGptVby7+53UiGl73YumHEaEv5odIKlwcMkLLpBXkA6mRCObJkUufC9BAhFpyECIRo6SmTNKHs/r9OmmWS45dcu7K+erlspk0O2VnrMgcVmFVdsvqrMEEm7In9sxerEfr1Xqz3n9GU9ZyJ8f+wPr4Bm2jlzU=</latexit>

ĝAB(1.95)
<latexit sha1_base64="cFNisb147QplEZJ+ugrNglBXZ6o=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguiVFvqBePmMgjAUJ6hwYmzD4y02tCNnyAX+FVT96MVz/Dg//ighwUrFOlqjtdXW6opCHb/rRSK6tr6xvpzczW9s7uXnb/oG6CSAusiUAFuumCQSV9rJEkhc1QI3iuwoY7upn6jQfURgb+PY1D7Hgw8GVfCqBE6mZzhfYQiA+68dX1pOiULs9OCt1s3i7ZM/Bl4sxJns1R7Wa/2r1ARB76JBQY03LskDoxaJJC4STTjgyGIEYwwFZCffDQdOJZ+Ak/jgxQwEPUXCo+E/H3RgyeMWPPTSY9oKFZ9Kbif14rov5FJ5Z+GBH6YnqIpMLZISO0TFpB3pMaiWCaHLn0uQANRKglByESMUpqyiR9OIvfL5N6ueTYJeeunK+czptJs0N2xIrMYeeswm5ZldWYYGP2xJ7Zi/VovVpv1vvPaMqa7+TYH1gf328vlzY=</latexit><latexit sha1_base64="cFNisb147QplEZJ+ugrNglBXZ6o=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguiVFvqBePmMgjAUJ6hwYmzD4y02tCNnyAX+FVT96MVz/Dg//ighwUrFOlqjtdXW6opCHb/rRSK6tr6xvpzczW9s7uXnb/oG6CSAusiUAFuumCQSV9rJEkhc1QI3iuwoY7upn6jQfURgb+PY1D7Hgw8GVfCqBE6mZzhfYQiA+68dX1pOiULs9OCt1s3i7ZM/Bl4sxJns1R7Wa/2r1ARB76JBQY03LskDoxaJJC4STTjgyGIEYwwFZCffDQdOJZ+Ak/jgxQwEPUXCo+E/H3RgyeMWPPTSY9oKFZ9Kbif14rov5FJ5Z+GBH6YnqIpMLZISO0TFpB3pMaiWCaHLn0uQANRKglByESMUpqyiR9OIvfL5N6ueTYJeeunK+czptJs0N2xIrMYeeswm5ZldWYYGP2xJ7Zi/VovVpv1vvPaMqa7+TYH1gf328vlzY=</latexit><latexit sha1_base64="cFNisb147QplEZJ+ugrNglBXZ6o=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguiVFvqBePmMgjAUJ6hwYmzD4y02tCNnyAX+FVT96MVz/Dg//ighwUrFOlqjtdXW6opCHb/rRSK6tr6xvpzczW9s7uXnb/oG6CSAusiUAFuumCQSV9rJEkhc1QI3iuwoY7upn6jQfURgb+PY1D7Hgw8GVfCqBE6mZzhfYQiA+68dX1pOiULs9OCt1s3i7ZM/Bl4sxJns1R7Wa/2r1ARB76JBQY03LskDoxaJJC4STTjgyGIEYwwFZCffDQdOJZ+Ak/jgxQwEPUXCo+E/H3RgyeMWPPTSY9oKFZ9Kbif14rov5FJ5Z+GBH6YnqIpMLZISO0TFpB3pMaiWCaHLn0uQANRKglByESMUpqyiR9OIvfL5N6ueTYJeeunK+czptJs0N2xIrMYeeswm5ZldWYYGP2xJ7Zi/VovVpv1vvPaMqa7+TYH1gf328vlzY=</latexit><latexit sha1_base64="cFNisb147QplEZJ+ugrNglBXZ6o=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguiVFvqBePmMgjAUJ6hwYmzD4y02tCNnyAX+FVT96MVz/Dg//ighwUrFOlqjtdXW6opCHb/rRSK6tr6xvpzczW9s7uXnb/oG6CSAusiUAFuumCQSV9rJEkhc1QI3iuwoY7upn6jQfURgb+PY1D7Hgw8GVfCqBE6mZzhfYQiA+68dX1pOiULs9OCt1s3i7ZM/Bl4sxJns1R7Wa/2r1ARB76JBQY03LskDoxaJJC4STTjgyGIEYwwFZCffDQdOJZ+Ak/jgxQwEPUXCo+E/H3RgyeMWPPTSY9oKFZ9Kbif14rov5FJ5Z+GBH6YnqIpMLZISO0TFpB3pMaiWCaHLn0uQANRKglByESMUpqyiR9OIvfL5N6ueTYJeeunK+czptJs0N2xIrMYeeswm5ZldWYYGP2xJ7Zi/VovVpv1vvPaMqa7+TYH1gf328vlzY=</latexit>

ĝAA(1.60)
<latexit sha1_base64="jtgE4Zxo03rmI39rJ0BD/qKvvA4=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguB/UI8eIRE3kkQEjv0MCE2Udmek3Ihg/wK7zqyZvx6md48F9cVg6K1qlS1Z2uLjdU0pBtf1iZtfWNza3sdm5nd2//IH941DJBpAU2RaAC3XHBoJI+NkmSwk6oETxXYdudXi/89j1qIwP/jmYh9j0Y+3IkBVAiDfKFUm8CxMeDuF6fl53KhX1WGuSLdsVOwf8SZ0mKbInGIP/ZGwYi8tAnocCYrmOH1I9BkxQK57leZDAEMYUxdhPqg4emH6fh5/w0MkABD1FzqXgq4s+NGDxjZp6bTHpAE7PqLcT/vG5Eo6t+LP0wIvTF4hBJhekhI7RMWkE+lBqJYJEcufS5AA1EqCUHIRIxSmrKJX04q9//Ja1qxbErzm21WDtfNpNlx+yElZnDLlmN3bAGazLBZuyRPbFn68F6sV6tt+/RjLXcKbBfsN6/AGENly0=</latexit><latexit sha1_base64="jtgE4Zxo03rmI39rJ0BD/qKvvA4=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguB/UI8eIRE3kkQEjv0MCE2Udmek3Ihg/wK7zqyZvx6md48F9cVg6K1qlS1Z2uLjdU0pBtf1iZtfWNza3sdm5nd2//IH941DJBpAU2RaAC3XHBoJI+NkmSwk6oETxXYdudXi/89j1qIwP/jmYh9j0Y+3IkBVAiDfKFUm8CxMeDuF6fl53KhX1WGuSLdsVOwf8SZ0mKbInGIP/ZGwYi8tAnocCYrmOH1I9BkxQK57leZDAEMYUxdhPqg4emH6fh5/w0MkABD1FzqXgq4s+NGDxjZp6bTHpAE7PqLcT/vG5Eo6t+LP0wIvTF4hBJhekhI7RMWkE+lBqJYJEcufS5AA1EqCUHIRIxSmrKJX04q9//Ja1qxbErzm21WDtfNpNlx+yElZnDLlmN3bAGazLBZuyRPbFn68F6sV6tt+/RjLXcKbBfsN6/AGENly0=</latexit><latexit sha1_base64="jtgE4Zxo03rmI39rJ0BD/qKvvA4=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguB/UI8eIRE3kkQEjv0MCE2Udmek3Ihg/wK7zqyZvx6md48F9cVg6K1qlS1Z2uLjdU0pBtf1iZtfWNza3sdm5nd2//IH941DJBpAU2RaAC3XHBoJI+NkmSwk6oETxXYdudXi/89j1qIwP/jmYh9j0Y+3IkBVAiDfKFUm8CxMeDuF6fl53KhX1WGuSLdsVOwf8SZ0mKbInGIP/ZGwYi8tAnocCYrmOH1I9BkxQK57leZDAEMYUxdhPqg4emH6fh5/w0MkABD1FzqXgq4s+NGDxjZp6bTHpAE7PqLcT/vG5Eo6t+LP0wIvTF4hBJhekhI7RMWkE+lBqJYJEcufS5AA1EqCUHIRIxSmrKJX04q9//Ja1qxbErzm21WDtfNpNlx+yElZnDLlmN3bAGazLBZuyRPbFn68F6sV6tt+/RjLXcKbBfsN6/AGENly0=</latexit><latexit sha1_base64="jtgE4Zxo03rmI39rJ0BD/qKvvA4=">AAACB3icbVDLTgJBEJzFF+IL5ehlIphgYsguB/UI8eIRE3kkQEjv0MCE2Udmek3Ihg/wK7zqyZvx6md48F9cVg6K1qlS1Z2uLjdU0pBtf1iZtfWNza3sdm5nd2//IH941DJBpAU2RaAC3XHBoJI+NkmSwk6oETxXYdudXi/89j1qIwP/jmYh9j0Y+3IkBVAiDfKFUm8CxMeDuF6fl53KhX1WGuSLdsVOwf8SZ0mKbInGIP/ZGwYi8tAnocCYrmOH1I9BkxQK57leZDAEMYUxdhPqg4emH6fh5/w0MkABD1FzqXgq4s+NGDxjZp6bTHpAE7PqLcT/vG5Eo6t+LP0wIvTF4hBJhekhI7RMWkE+lBqJYJEcufS5AA1EqCUHIRIxSmrKJX04q9//Ja1qxbErzm21WDtfNpNlx+yElZnDLlmN3bAGazLBZuyRPbFn68F6sV6tt+/RjLXcKbBfsN6/AGENly0=</latexit>

ĝBB(1.80)
<latexit sha1_base64="f8yrF+b9o6WzyHyPxQVOk9/XD8I=">AAACB3icbVDLTgJBEJz1ifhCOXqZCCaYGLLLRY4ELx4xkUcChPQODUyYfWSm14Rs+AC/wquevBmvfoYH/8Vd5KBgnSpV3enqckMlDdn2p7WxubW9s5vZy+4fHB4d505OWyaItMCmCFSgOy4YVNLHJklS2Ak1gucqbLvTm9RvP6A2MvDvaRZi34OxL0dSACXSIJcv9iZAfDyI6/V5ySlX7cviIFewy/YCfJ04S1JgSzQGua/eMBCRhz4JBcZ0HTukfgyapFA4z/YigyGIKYyxm1AfPDT9eBF+zi8iAxTwEDWXii9E/L0Rg2fMzHOTSQ9oYla9VPzP60Y0qvZj6YcRoS/SQyQVLg4ZoWXSCvKh1EgEaXLk0ucCNBChlhyESMQoqSmb9OGsfr9OWpWyY5edu0qhdrVsJsPO2DkrMYddsxq7ZQ3WZILN2BN7Zi/Wo/VqvVnvP6Mb1nInz/7A+vgGZ2CXMQ==</latexit><latexit sha1_base64="f8yrF+b9o6WzyHyPxQVOk9/XD8I=">AAACB3icbVDLTgJBEJz1ifhCOXqZCCaYGLLLRY4ELx4xkUcChPQODUyYfWSm14Rs+AC/wquevBmvfoYH/8Vd5KBgnSpV3enqckMlDdn2p7WxubW9s5vZy+4fHB4d505OWyaItMCmCFSgOy4YVNLHJklS2Ak1gucqbLvTm9RvP6A2MvDvaRZi34OxL0dSACXSIJcv9iZAfDyI6/V5ySlX7cviIFewy/YCfJ04S1JgSzQGua/eMBCRhz4JBcZ0HTukfgyapFA4z/YigyGIKYyxm1AfPDT9eBF+zi8iAxTwEDWXii9E/L0Rg2fMzHOTSQ9oYla9VPzP60Y0qvZj6YcRoS/SQyQVLg4ZoWXSCvKh1EgEaXLk0ucCNBChlhyESMQoqSmb9OGsfr9OWpWyY5edu0qhdrVsJsPO2DkrMYddsxq7ZQ3WZILN2BN7Zi/Wo/VqvVnvP6Mb1nInz/7A+vgGZ2CXMQ==</latexit><latexit sha1_base64="f8yrF+b9o6WzyHyPxQVOk9/XD8I=">AAACB3icbVDLTgJBEJz1ifhCOXqZCCaYGLLLRY4ELx4xkUcChPQODUyYfWSm14Rs+AC/wquevBmvfoYH/8Vd5KBgnSpV3enqckMlDdn2p7WxubW9s5vZy+4fHB4d505OWyaItMCmCFSgOy4YVNLHJklS2Ak1gucqbLvTm9RvP6A2MvDvaRZi34OxL0dSACXSIJcv9iZAfDyI6/V5ySlX7cviIFewy/YCfJ04S1JgSzQGua/eMBCRhz4JBcZ0HTukfgyapFA4z/YigyGIKYyxm1AfPDT9eBF+zi8iAxTwEDWXii9E/L0Rg2fMzHOTSQ9oYla9VPzP60Y0qvZj6YcRoS/SQyQVLg4ZoWXSCvKh1EgEaXLk0ucCNBChlhyESMQoqSmb9OGsfr9OWpWyY5edu0qhdrVsJsPO2DkrMYddsxq7ZQ3WZILN2BN7Zi/Wo/VqvVnvP6Mb1nInz/7A+vgGZ2CXMQ==</latexit><latexit sha1_base64="f8yrF+b9o6WzyHyPxQVOk9/XD8I=">AAACB3icbVDLTgJBEJz1ifhCOXqZCCaYGLLLRY4ELx4xkUcChPQODUyYfWSm14Rs+AC/wquevBmvfoYH/8Vd5KBgnSpV3enqckMlDdn2p7WxubW9s5vZy+4fHB4d505OWyaItMCmCFSgOy4YVNLHJklS2Ak1gucqbLvTm9RvP6A2MvDvaRZi34OxL0dSACXSIJcv9iZAfDyI6/V5ySlX7cviIFewy/YCfJ04S1JgSzQGua/eMBCRhz4JBcZ0HTukfgyapFA4z/YigyGIKYyxm1AfPDT9eBF+zi8iAxTwEDWXii9E/L0Rg2fMzHOTSQ9oYla9VPzP60Y0qvZj6YcRoS/SQyQVLg4ZoWXSCvKh1EgEaXLk0ucCNBChlhyESMQoqSmb9OGsfr9OWpWyY5edu0qhdrVsJsPO2DkrMYddsxq7ZQ3WZILN2BN7Zi/Wo/VqvVnvP6Mb1nInz/7A+vgGZ2CXMQ==</latexit>

FIG. 5. SHAP-based interpretation of the multilayer per-
ceptron predictions. Here we analyze the neural network M
with twelve hidden layers that has Tq and ĝi(r) as input and
is trained with Tqtrain = 0.1, 0.15, 0.2, 0.25, 0.35, 0.375. (a)
SHAP beeswarm plot that shows how the most important
features impact the model’s output. The x position of the
dots is determined by the SHAP values of the features and
color is used to display the original value of the features. Par-
tial dependence plot for (b) Tq and (c) ĝAA(1.65). The x-axis
is the value of the feature and the y-axis is the average value
of the model output when we fix Tq or ĝAA(1.65) to a given
value. Each class has a label that goes from 0, young glass
with tw = 0, to 4, old glass with 103 ≤ tw ≤ 104. The in-
set of panel (c) shows the waiting time tw as a function of
ĝAA(1.65). Here we show the actual data for a passive system
quenched at Tq = 0.35.

terpret the machine learning approach from a physical
point of view. For this identification, we choose to em-
ploy a SHAP analysis, but it is important to mention
that a comparable analysis could also be carried out us-
ing methods like PCA. The results of this analysis for
our most general model trained on all quenching tem-
peratures (purple line in Fig. 4) are presented in Fig.
5. In particular, Fig. 5(a) shows the SHAP beeswarm
plots which indicate the six most important features and
how the values of these features influence the model’s
predictions. The quenching temperature Tq is seen to
be the most important feature and the colors in Figure
5(a) show that the model interprets low values of Tq as
a young glass and high values of Tq as an old glass.
To better understand this behavior, we have also plot-

ted the partial dependence of Tq in Fig. 5(b). In this

plot the quenching temperature is handled independently
from the other features, allowing us to precisely pinpoint
how changing Tq impacts the model’s predictions. In
agreement with Fig. 5(a), this plot shows that accord-
ing to the NN a low Tq is more likely to correspond to a
young glass. At first glance this interpretation may look
incorrect since the dataset consists of the same amount
of ages for each temperature. However, at any fixed wait-
ing time tw, a system quenched to a higher Tq is always
closer to its steady state compared to a system at a lower
quenching temperature, because its temperature jump is
smaller. Therefore, for any given tw, the system at a
higher Tq is effectively older than the one quenched to a
lower Tq. This analysis shows that the NN understands
that glasses quenched at higher temperatures age faster.
Therefore, the misclassification of Mhigh and Mlow at
low and high temperatures (as shown in Sec. III B 1), re-
spectively, might be due to the model’s ability to learn
that the rate of aging depends on the quenching temper-
ature.
Finally, let us look at the most important structural

feature for model M’s predictions. In Fig. 5(a) it is
shown that the most important structural feature is
ĝAA(1.65), i.e., the point just before the second peak of
ĝAA. As discussed in Sec. III B 1, the main peak of the
radial distribution function strongly depends on temper-
ature and is affected by noise. Therefore, we excluded the
first peak from the dataset. Our work does not necessar-
ily imply that the main peak is unimportant, and indeed
Schoenholz et al. [30] have shown that the radial distri-
bution function’s first peak gives 77% accuracy to predict
rearrangements. Rather, our work shows that even with-
out the main peak, and focusing only on a seemingly
small feature as ĝAA(1.65), we can reliably classify the
age. Thus, even a region where the correlation between
particles is low contains enough information to classify
the system’s age. Moreover, in Fig. 5(c) we show that
the NN interprets large values of ĝAA(1.65) as an old
glass. This feature interpretation is in agreement with
the data, as shown in the inset of Fig. 5(c).

IV. CONCLUSIONS

In summary, this proof-of-principle study demon-
strates that a simple supervised machine learning method
can accurately classify the age of a glass undergoing a
temperature quench, relying only on partial radial distri-
bution functions (obtained from an instantaneous config-
uration, averaged over all particles). The performance
of our machine learning algorithm is extremely accu-
rate when the quenching temperature Tq used during
training is equal to the one used in the test set (model
S), and the model also generalizes well to datasets con-
sisting of multiple quenching temperatures (model M).
This good performance for various temperatures indi-
cates the robustness of our method. Extrapolation to
unseen temperatures outside the training window is also
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reasonable, provided that the temperature difference is
not too large. When extrapolating to significantly lower
or higher temperatures, however, we find that our neural
network tends to systematically under- or overestimate
the age of the glass, respectively. This breakdown of
the model extrapolation could be ultimately driven by
a different physical behavior, as it is well known that
higher-temperature glasses effectively age faster.

To establish which features in the radial distribution
functions best encode the age of a glassy configuration,
we have compared a traditional approach based on phys-
ical intuition with a machine learning-based analysis em-
ploying SHAP or PCA. The traditional approach man-
ually seeks the values of the radial distribution func-
tions that–on average–change the most with age, while
the SHAP method extracts the most important features
from a trained neural network. This comparison reveals
that machine learning methods strongly outperform the
more traditional one. The reason for this is the inevitable
statistical noise in the data. Indeed, the fluctuations in
the radial distribution functions can vary significantly
among different configurations, and the machine-learning
model is able to adequately filter out these statistical
fluctuations. However, the list of key features selected
by SHAP or the principal components selected by PCA
changes with the quenching temperature (see Supplemen-
tary Material [28]). It follows that in order to identify the
most important structural features, one should in princi-
ple train a neural network at each Tq with the full dataset
and later perform a SHAP analysis or PCA to identify
the key features. Since there is usually no cost associated
to using a larger number of features, overall we conclude
that a model trained with the full data set (120 features)
is the most efficient approach.

For our most general machine-learning model (model
M), we have also employed SHAP to explain the predic-
tions. This analysis shows that the two most important
features are the quenching temperature Tq and the par-
tial radial distribution function ĝAA(1.65). Interestingly,
the model is thus able to learn that the rate of aging
depends on the quenching temperature and, surprisingly,
that ĝAA(1.65), the point just before the radial distribu-
tion function’s second peak, contains enough information
to predict the system’s age.

While we have focused on the age classification of a

passive glass, we have verified that this machine-learning
model works remarkably well even for an active glass
composed of active Brownian particles. Our results show
that model M trained with passive data can correctly
classify the age of an active system. Therefore, this
method could also be used to map the aging behavior of
an active glass onto a passive glass at different quenching
temperatures [62].
A potential next step of this work could involve incor-

porating additional structural descriptors to further in-
vestigate the relationship between structure and dynam-
ics in aged glasses. Since in recent years, Smooth Overlap
of Atomic Positions (SOAP) parameters have proven to
be effective in encoding atomic structures [38, 71, 72],
one could explore training a machine learning algorithm
using these parameters as input.
Our work demonstrates that, even though the radial

distribution function of an aging glass is usually consid-
ered to remain constant with age, the age dependence,
albeit subtle, is already fully encoded in this simple struc-
tural property. We thus argue that machine learning
methods can be of true added value compared to tra-
ditional physical approaches, since they can uncover pre-
viously unseen correlations that would be difficult if not
impossible to detect with the human eye. Owing to the
simplicity and computational efficiency of our approach,
we envision that our machine-learning method can be
used in a variety of applications, e.g. to quickly distin-
guish a system that has already reached its steady state
from a system that is still aging. This could be particu-
larly attractive for studies in which physical aging is an
undesirable and difficult problem, such as equilibration
of deeply supercooled liquids; With our model, it would
be possible to verify whether a supercooled liquid has
reached equilibrium from a single snapshot.
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