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We investigate the escape dynamics of oligochaeta Lumbriculus variegatus by confining them to a
quasi-2D circular chamber with a narrow exit passage. The worms move by performing undulatory
and peristaltic strokes and use their head to actively probe their surroundings. We show that
the worms follow the chamber boundary with occasional reversals in direction and with velocities
determined by the orientation angle of the body with respect to the boundary. The average time
needed to reach the passage decreases with its width before approaching a constant, consistent with
a boundary-following search strategy. We model the search dynamics as a persistent random walk
along the boundary and demonstrate that the head increasingly skips over the passage entrance for
smaller passage widths due to body undulations. The simulations capture the observed exponential
time-distributions taken to reach the exit and their mean as a function of width when starting from
random locations. Even after the head penetrates the passage entrance, we find that the worm does
not always escape because the head withdraws rhythmically back into the chamber over distances
set by the dual stroke amplitudes. Our study highlights the importance of boundary following and
body strokes in determining how active matter escapes from enclosed spaces.

I. INTRODUCTION

Motile organisms navigate complex natural habitats
with heterogeneous structure and physical boundaries in
search of food and shelter [1–6]. While light and sound
are widely used to navigate complex environments by
higher organisms [7], mechanosensation can be the pri-
mary sense used to navigate dark subterranean environ-
ments. Organisms overcome obstacles that are too large
to push aside by finding openings that allow passage.
How organisms achieve this from local knowledge of to-
pography can shed light not only on strategies learned by
the organisms through evolution, but allow one to iden-
tify the general physical principles in play [8]. This un-
derstanding can be useful in designing autonomous sys-
tems optimized to operate in such environments, or even
assess the physical properties of the medium [9–12].

The diffusion of bacteria and other self-propelled or-
ganisms through disordered porous media have been
studied with experiments and active filament models [13–
16]. It is well established that microswimmers can align
and move along boundaries due to hydrodyanmic inter-
actions leading them to aggregate, rather than moving
around uniformly, depending on the topology of the en-
vironment [17–24]. However, interactions mediated by
the interstitial medium can be less important in larger
organisms, and direct contact by touching needs to occur
to identify features. At the most rudimentary level, such
an interaction with a solid boundary can be considered as
steric. Depending on its rotational diffusion and shape,
the organism can still remain trapped at the boundary or
reflect freely from the surface [25]. Even in microorgan-
isms, cilia and flagella are known to directly detect sur-
faces in swimming eukaryotes [26–29]. And, mechanosen-
sory neurons are known to guide nematode C. elegans as
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they move in soil [30]. Many large organisms, such as
cockroaches [31, 32], ants [33], fish [34], rodents [35], and
humans [36] have been noted to exhibit boundary follow-
ing behavior when they come into contact with boundary
walls. This thigmotactic behavior involves moving along
the edges of surfaces, such as walls or other boundaries,
often in a repetitive pattern influenced by sensory feed-
back, and environmental cues. Dorgan, and collaborators
have investigated the burrowing dynamics of various an-
nelid and opheliid organisms in muddy and sandy envi-
ronments [37–39]. They demonstrated how these organ-
isms interact with their surroundings to create and main-
tain their burrows. Nonetheless, how exactly steric inter-
actions can be employed to find passages and efficiently
navigate randomly structured medium is not widely ex-
plored, not least due to the difficulty in observing or-
ganisms in such environments. Further questions arise
whether the body strokes used in achieving motion and
collisional contact with the boundary can interfere with
identifying boundary features. The study of motile or-
ganisms where the entire body and its shape are tracked
are few and can lead to deeper understanding of strate-
gies used to navigate through tight spaces.

The freshwater oligochaete Lumbriculus variegatus is
commonly found across temperate regions in North
America and Europe in sediment beds at the bottom of
water bodies, and is increasingly employed as a labora-
tory model due to its well-established biological facts,
macroscopic size, and easy maintenance [40–45]. Their
long slender limbless body is representative of many or-
ganisms which move underground, and has also been used
to study collective dynamics and physicochemical behav-
ior [46–48]. These worms have sensory nerves all over
their bodies that help them respond to threats and de-
tect obstructions in their path. Unless provoked, they
typically move in the direction of their head, employing
transverse undulatory and peristaltic strokes depending
on the rheology of the medium [5].
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FIG. 1. (a) A schematic of the circular enclosure with an exit passage with radius R and exit width W. θh is the angular
position of the head from the center O, ψb is the body orientation angle with the normal, and lw is the length of the worm.
(b) The motion of the worm in the corresponding experimental system is illustrated by superposed images taken at 1 frame
per second. The worm can be observed to stay close to the boundary. (c) The tracked trajectories of head (blue), centroid
(red), and tail (green) of the worm as it follows the boundary. (d) The probability distribution P (r) of radial positions r of the
worm’s head (rh), centroid (rc), and tail (rt) in the chamber from the center (R = 10 mm; W = 2 mm). (e) The distribution
of body orientation angle ψb. The data averaged over 20 trials are plotted in (d) and (e).

Here, we examine the dynamics of L. variegatus as
they move inside a transparent water-filled chamber con-
nected to an exit passage which is much smaller than
their lengths, but also much wider than their widths. We
visualize and track their dynamics as they move around
the chamber and escape through the exit passage repeat-
edly. Their motion is studied by measuring the body
orientation and detailed interaction of the various parts
of their body with the boundary and passage. We find
that the worm does not explore the chamber uniformly,
but rather follows the chamber boundary guided by the
interaction of its head with the boundary and its en-
tire body orientation. Then, we focus on the time scales
needed to find the passage and escape as a function of
the exit width, and illustrate the importance of the body
fluctuations on success rate. A minimal boundary search
random walk model is developed to capture aspects of
the observed behavior.

II. METHODS

Figure 1(a) schematically shows the system consist-
ing of a horizontal circular chamber with a narrow exit
passage in which we study the escape dynamics. In prac-
tice this is accomplished by laser cutting out two circu-
lar chambers of equal radius R from an Acrylic sheet of
thickness h = 1.5 mm and connecting them with a nar-
row straight passage of length L and widthW . This sheet
is then sandwiched between removable top and bottom

transparent sheets to confine the worm to quasi-2D while
fully immersed in a water bath.

We perform experiments with L. variegatus of length
lw=20 ±5 mm, diameter dw ≈ 100µm and systems with
R = 10 mm and L = 35 mm to reduce the number of
experimental parameters. These worms move typically
with speeds vw ≈ 2 mm/s, with longitudinal peristaltic
strokes with amplitude AL ≈ 1 mm and time period
TL ≈ 0.6 s, and transverse undulatory strokes with am-
plitude AT ≈ 1.4 mm and time period TT ≈ 12 s [5].
Further details on maintaining them are similar to those
in Ref. [5]. The effect of system geometry on escape
rate is investigated by using W = 0.25 mm, 0.5 mm,
1 mm, 2 mm, 3 mm, 4 mm, and 5 mm. Thus, W varies
from being less than, to greater the stroke amplitudes,
while being always much greater than the worm diam-
eter, and much less than L. Since the chamber floor
is horizontal, this range of W leads to an entropic bar-
rier for escape, rather than a physical one. L. variegatus
were obtained from Carolina Biological Supply Company
(https://www.carolina.com) on October 3, 2017. The
worms are sustained according to suppliers’ specifications
in a freshwater aerated aquarium in a laboratory under
ambient lighting with a HVAC system which maintains
the temperature at 24±2◦C. The transferring of the worm
into the observation chamber was performed with a plas-
tic pipette which disturbed the worms minimally.

The worm and the enclosure are imaged with a
megapixel digital camera from above with back illumi-
nation which causes the worm and system boundaries to
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appear dark against a bright background. The overall
intensity of these lights is not different from the ambi-
ent lab lighting. The entire body including the head and
tail is tracked by image processing [5] over the 30 minutes
time duration of a typical trial. Figure 1(a) further shows
the coordinates used to denote the worm’s position and
orientation w.r.t. the x-axis located at the chamber cen-
ter. The axis origin is located at cell center and directed
toward the center of the exit passage, the distance of the
worm’s head from the chamber center rh, its angular po-
sition θh from the x-axis, and body orientation angle ψb
relative to the normal to the surface are also denoted in
Fig. 1(a).

III. RESULTS

A. Motion in the chamber

When a worm is placed inside a chamber, it begins to
move after a typical acclimatization time of a few sec-
onds, and explores the system by interacting with the
boundary, locating the passage between the two cham-
bers, and passing back and forth several times between
the chambers (see Movie S1). Thus, focusing on the
worm after its initial acclimatization time, we have a sys-
tem as represented by Fig. 1(a), where the worm moves
around a chamber till it locates the passage, and exits
into the other chamber, where the process repeats itself.
We observe the motion of the worm over at least 30 min-
utes, and perform at least 50 trials for each W to obtain
statistically significant information on the time taken by
the worm to find and enter the passage. The water was
typically replaced after 2 to 3 trails to maintain the water
quality.

Figure 1(b) shows superimposed images of the worm
as it moves around the chamber and exits through the
passage. We plot the corresponding tracked path of the
worm’s head, tail, and centroid in Fig. 1(c), and observe
that the head appears to be in almost constant contact
with the boundary. The tail and the centroid in con-
trast stay away from the boundary. Fig. 1(d) shows a
plot of the measured probability distribution of the ra-
dial position of the head rh, tail rt, and centroid rc of the
worm while moving in the chamber, averaging over data
from 20 trials over approximately 1107 seconds. Even
over this larger sample set, we observe that the head
spends a significant fraction of time near the boundary,
while the tail wanders more broadly within the cham-
ber. Further, one observes that the centroid is typically
located at rc/R ≈ 0.6, showing that the worm is not uni-
formly distributed inside the chamber even over extended
periods, and rh/R ≈ 1 shows the worm spends most of
the time exploring the boundary.

Plotting the probability distribution of the angle ψb
that the body makes with the normal to the bound-
ary at the head location in Fig. 1(e), we find that it
is not uniform, but rather has two peaks, broadly dis-

(a)

(d)

(g)

(b)

(e)

(h)

(k)

(c)

(f)

(i)

(l)(j)

FIG. 2. Examples of the radial position of the head rh (a-
c), angular position of the head θh (d-f), body orientation ψb
(g-i) and head orientation ψh (j-l) as a function of time t.
The worm moves clockwise (a), clockwise and then switches
to counterclockwise (b), and as it changes direction several
times (c). The direction of motion changes when ψb changes
sign, but appears uncorrelated with ψh, which fluctuates more
widely.Inset to (g): Schematic shows the body orientation
angle ψb and head orientation angle ψh

.

tributed with means at approximately ψb = −34 degrees
and 30 degrees. Considering the width of their distribu-
tion, these angles as well as the peak of rc in P (r), de-
note that the worm typically moves clockwise or counter-
clockwise around the boundary circular chamber, while
its centroid is located at a constant distance from the
boundary. Thus, while L. variegatus have sensory nerves
all over their body, and react to touch by recoiling and
moving away rapidly [41], they appear to primarily use
their prostomial nerves to probe physical obstacles and
move forward. The rest of the body appears to react
essentially passively to the forces experienced when it
touches boundaries.

B. Boundary interactions

To gain a deeper understanding of the interaction of
the worm with the boundary, we plot three examples of
the radial position of the head from the chamber center
rh in Fig. 2(a-c), its corresponding angular position θh in
Fig. 2(d-f), body orientation angle ψb in Fig. 2(g-i). We
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also plot the head orientation angle ψh that the head sub-
tends with the normal to the boundary in Fig. 2(j-l). In
all three examples, the position and the orientation of the
worm is plotted from when it first touches the boundary
till it approaches/enters the exit passage. In each exam-
ple, rh remains close to R, except for very short periods,
when it is not in contact as the head moves rapidly away
and then towards the boundary.

Figure 3(a, b) shows the distribution of distances
along the boundary traveled by the worm’s head when
it is in contact with the boundary dc (using a criteria
R − rh < 0.3dw to define contact,) and when it travels
while not in contact with the boundary dnc. We ob-
serve that the distributions corresponding to these dis-
tances travelled along the surface while in contact, and
while not in contact, can be described by exponential
functions, P (dc) = 1

〈dc〉 exp (−dc/〈dc〉) and P (dnc) =
1
〈dnc〉 exp (−dnc/〈dnc〉), respectively, with 〈dc〉 = 1.95 mm

and 〈dnc〉 = 1.46 mm. We also plot the probability of the
distance travelled by the head in the radial direction ∆rh
while not in contact with the boundary in Fig. 3(c). It
is also described with an exponential function P (∆rh) =

1
〈∆rh〉 exp (−∆rh/〈∆rh〉), with 〈∆rh〉 = 1.14 mm.

We interpret these observed distributions of head
travel distances as arising due to the dual strokes used
by the worm to move with amplitudes AL and AT . The
worm performs rapid peristaltic strokes along the length
of its body, and somewhat slower transverse undulatory
strokes with larger amplitudes [5]. Depending on their
oscillation phases, the head may slide along as it comes
in contact with the boundary, or lose contact with the
surface over a distance related to the worm’s longitudi-
nal oscillation amplitude AL and transverse oscillation
amplitude AT .

Turning to the overall motion of the worm along the
boundary, the plot of θh in Fig. 2(d) shows that the worm
on average always rotates counter-clockwise in this case,
whereas, the worm changes direction once in Fig. 2(e),
and more than once in Fig. 2(f). Further, ψb plotted
in Fig. 2(g-i) can be observed to be negative, positive,
or approximately zero, depending on if θh is on aver-
age increasing, decreasing, or broadly constant, respec-
tively. Additionally, rapid small scale fluctuations can
be observed over short time scales in each of these plots.
These rapid fluctuations have to do with the motion of
the head which changes direction over a wider range than
the body, even while in contact with the boundary as is
seen in the plots of ψh in Fig. 2(j-l). Thus, while ψh
can be observed to fluctuate widely as the head can even
point away from the surface over the same time instants,
ψb can be seen to fluctuate far less and appears to be
more important in determining the direction of motion.
These fluctuations in the head movement have been pre-
viously reported in a quasi-2D setup [49].

Comparing the graphs of θh and ψb for the same trial,
we observe a correlation between the overall slope of θh
over a few seconds time interval and the sign of ψb, i.e.

the data appears to indicate that the direction of motion
of the worm along the boundary and its relative inclina-
tion to it appear to be correlated. To probe this relation
between the direction of the worm’s motion and its orien-
tation, we calculate θ̇h = ∆θh

∆t over a small time interval

∆t = 1 s. Plotting θ̇h as a function of ψb in Fig. 4(a) over
20 trials, where both counterclockwise and clockwise mo-
tion are observed, the data can be observed to broadly
increase with increasing ψb. Whereas, obtaining θ ih, the
angle between the displacement of the head over the time
frames immediately before it contacts the boundary and
the normal at the point of contact with the boundary,
and plotting θ̇h versus θ ih in Fig. 4(b), we observe a scat-
ter of points. This confirms that the direction of motion
is uncorrelated with the angle that the head subtends
with the normal to the boundary. (Only data for one
representative trial is plotted for clarity of presentation.)

Then, averaging over each of the various trials, we plot
the average of vb = θ̇hR versus sin(〈ψb〉) in Fig. 4(c), not-
ing that the data can be described by a linear fit. This
linear fit shows that the more the worm is aligned with
the boundary, the faster it moves. Now, if we assume
that the tangential speed is unaffected when the worm
body collides with the boundary, then, we may expect a
relation 〈vb〉 = vw sin(〈ψb〉), and thus slope can be iden-
tified with the unhindered swimming speed of the worm
vw. From the fit, we find vw = 2.02 mm/s, which is con-
sistent with worm speeds in unbounded environments [5].

C. Time to Reach Passage and Passage Width
Dependence

Building on the understanding of the interaction of the
worm with the boundary, we next examine the time scale
over which the worm reaches the exit. We measure the
time τh taken by the head to enter the exit passage after
entering a chamber, and plot these distributions in Fig. 5
for various passage width W . In each case, τh is broadly
distributed and appears to follow an exponential distri-
bution. Plotting the mean time 〈τh〉 averaged over the
50 trials for each W in Fig. 6(a), we observe that it de-
creases somewhat, initially, before becoming essentially
constant.

If the worm moves without switching directions as it
moves around the boundary, then one may expect the
time τh over which the worm finds the exit passage to

be given by τh =
Rθ0h

vw sinψb
, where θ0

h is the angular po-

sition where the head first contacts the boundary while
moving clockwise. If the worm moves counter clockwise,

τh =
R(θ0h−2π)
vw sinψb

. Assuming vw = 3 mm/s, and an average

ψb = 32 deg., one can estimate a time τh ≈ 40 s while the
worm moves fully around the chamber. Since the dis-
tributions of τh shown are longer time scales, the worm
must typically change directions at least a few times as
it searches for an exit passage.
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(b)(a) (c)

FIG. 3. (a) The distribution of distance dc over which the worm travels while it is in contact with the boundary. (b) The
distribution of distance dnc over which the worm travels when it loses contact with the boundary. (c) The distributions of radial
distance traveled by the head ∆rh when not in contact with the boundary. The distributions can be described by exponential
functions with means of order of the dual stroke amplitudes AL and AT .

(a) (b) (c)

FIG. 4. (a) The angular speed of the worm is correlated with incident body orientation angle. (b) Angular speed of the worm

θ̇h after a collision as a function of head incident angle. No correlations are evident. (c) The mean tangential boundary velocity
〈vb〉 as a function of sin(〈ψb〉). A line fit given by 〈vb〉 = vw sin(〈ψb〉) is shown. The fitted value vw = 2.02 mm/s, corresponds
to the unobstructed speed of the worm.

In order to find the typical time scales over which the
worm travels in the clockwise and counterclockwise di-
rections, we calculate the angular correlation function
over time Cθ(t) = 〈sgn(θ̇h(t + to)) sgn(θ̇h(to))〉, where
〈..〉 indicates averaging over initial times to. Figure 7(a)
shows a plot of Cθ(t) where it is observed to decay over
a time scale of tper ≈ 27 s. Thus, the worm travels in
a given direction for a longer time interval compared to
its body undulations, and a few changes in directions
can be expected statistically while the worm systemati-
cally explores the boundary. If the worm’s body switches
direction as in the situations shown in Fig. 2(h) and
Fig. 2(i), the time taken increases with increasing number
of switches, giving rise to the longer and wider distribu-
tions of τh seen in Fig. 5.

D. Boundary search model to locate exit passage

In order to understand the time scales over which the
worm finds the exit, and the observed variations as a
function of its width, we develop a simplified model of its
dynamics. Because the worm head plays a dominant role
in interacting with the boundary, and it stays near the
boundary, we assume that the dynamics can be captured
by examining the projected displacement of head along
the boundary. Then, we consider the motion along the
boundary, when the head is in contact with the boundary,

and also when it loses contact with the boundary as being
a slip and hop. These slip and hop distances are drawn
randomly from an exponential distribution correspond-
ing to their measured distributions shown in Fig. 3(a,
b), respectively. The direction is reversed at random,
approximately 30% of the times following the observa-
tion that the worm preserves its direction of motion of
a time-scale tper. Because the experimental geometry is
in fact quasi-2D, we take this into account in the simula-
tion by using an effective passage width ws =

√
W 2 + h2

in performing these simulations, where W is the width
of the channel and h is the thickness of the chamber.
Further, we approximate the worm’s initial position θ0

h
on the chamber boundary to have a flat distribution. In
the experiments, θ0

h is observed to have a systematically
higher probability of coming in contact with the bound-
aries near the passages, i.e. soon after the worms enter
the chamber (see Fig. 7(b)).

Figure 5 shows the numerically calculated distribution
of time τh, taken to reach the exit, compared with the
corresponding measurements from our experiments. We
find that they are also exponentially distributed with de-
cay constants increasing slowly with W , consistent with
the trends observed in the experiments. Comparing the
mean time 〈τh〉 observed in the simulations with those in
the experiments in Fig. 6(a), we observe not only good
agreement with the overall magnitude of time needed to
reach the exit, but also the slightly greater time needed
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(e)(a)

(b) (f)

(g)

(d) (h)

(c)

Experiment Simulation

FIG. 5. The measured distribution of time τh taken by the
head to enter the exit passage for W = 0.5 mm (a), 1 mm
(b), 3 mm (c), and for 5 mm (d). The distributions plotted in
the right column correspond to the simulations corresponding
to the 1D boundary search model, and are observed to show
similar exponential distributions.

to enter passages that are narrower compared to AT . The
increasing trend with W , occurs because the worm can
skip over the passage while not in contact with boundary
as it moves around the chamber. We compare the aver-
age times that we observe the worm hops over the passage
over a 30 minutes trial, and compare it with the simu-
lations in Fig. 6(b). Excellent quantitative agreement is
observed, further validating our model.

Thus, we find that the worm follows the boundary,
doing a persistent random walk in search of the exit, and
as a result takes a similar time scale to find the exit,
except for widths which are narrower than the distance
over which it loses contact with the wall. As we see next,
the body undulations which are a natural consequence of
its locomotion strokes, can have a further effect on the
actual escape time of the worm not only at small exit

(a)

(b)

FIG. 6. (a) The mean time to reach the exit passage as
a function of passage width W . The overall trends are con-
sistent with measured rate at which the worm’s head enters
the exit. Simulation parameters vw = 2.02 mm/s, mean slid-
ing length 1.96 mm, mean hopping distance 1.47 mm, are
taken from the experiment, and the random direction change
is 45% of the times. (b) The number of times worm skips
over the passage ns decreases with increasing passage width.
The shaded regions correspond to varying the rate of random
direction change from 35% to 55%.

widths, but wider exits as well.

E. Effect of Body Undulations on Escape Rate

Figure 8 shows the success rate of the worm exiting the
chamber through the passage once its head has entered
into the exit passage, given by the percentage of times
that the center of mass of the worm enters the passage,
after the head enters the passage. While systematic vari-
ation with exit width is difficult to glean given the statis-
tical variation, it is clear that the worm travels through
the passage only about 60% of the times. i.e., the worm
fails to recognize that it has entered the passage around
40% of the times, resulting in failed opportunities to es-
cape, and leading to escape times which are in fact nearly
twice as long as compared to 〈τh〉.

To understand why, we analyze the fraction of times
F (xp) a worm reaches a given penetration distance xp
into the passage along the x-axis, when it fails to es-



7

(a)

(b)

FIG. 7. (a) The angular correlation function Cθ(t) of speed

θ̇h versus time t. The estimate time scale of persistence mo-
tion along boundary is tper ≈ 27 s. (b) The distribution of
θ0h where worm’s head initially contacts the boundary after
entering the chamber.

FIG. 8. The success rate of worm escape through the passage
after its head enters the exit passage.

cape through the exit passage. Figure 9 shows the
plot of F (xp) for various passage widths W . In each
case, we observe that the worm’s head typically enters
the passage for a very short distance before returning
back into the chamber. In particular, we can describe
F (xp) as a sum of an exponential decaying function
and a constant (F (xp) = α exp (−xp/〈xp〉), which corre-
sponds to a small but constant probability for the worm
turning back in a passage, rather than proceeding for-
ward. By fitting, we find the exponential decay constant
β = 1/〈xp〉 = 0.60 mm−1, 0.50 mm−1, 0.42 mm−1, and
0.36 mm−1, for W = 0.5 mm, 1 mm, 3 mm, and 5 mm,
respectively. Thus, the penetration into the passage in-
creases somewhat with W , but still appears to be of order

(a)

(d)

(b)

(c)

FIG. 9. The distribution of penetration depth xp, reach
by worm before returning back into the chamber for varying
widths W = 0.5 mm, 1 mm, 3 mm, and 5 mm. Most of
the failed attempts to escape even after entering the passage
correspond to the worm’s body undulations which leads to
the withdrawal of its head involuntarily from the passage.

of the stroke amplitudes.

Consequently, we attribute the missed opportunities
to escape through the exit passage to the undulations of
the body used in locomotion, whereby the worm’s head
enters the exit passage and then subsequently withdraws
back into the chamber. To understand this behavior fur-
ther, we examine the dynamics of the worm in each case
where the worm failed to escape through the passage for
W = 0.5 mm, 1 mm, and 3 mm. While a total of 79, 98,
and 222 failed entries, respectively, were recorded, the
percentage of times the worm had no contact with the
wall when failing to fully exit increased from about 2%
to about 20% with increasing width. Whereas, the worm
came in contact with the boundaries during the elonga-
tion phase of its peristaltic stroke, 93%, 87%, and 53%
of the times, respectively, before its head withdraws back
into the chamber, leading to failed escapes. Thus, 99%
of the reason why the worm fails to fully enter the exit
passage in the case of the narrowest channel, and about
73% in the case of the wider (W = 3 mm) channel can
be directly attributed to its natural undulations. In the
remaining cases, it appears that the worm comes into
contact with the boundaries, but fails to recognize that
it is in the exit channel. This appears to indicate that
more than one contact is required within a stroke cycle
before the worm recognizes that it is inside a passageway.
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IV. CONCLUSIONS

In summary, by constructing transparent quasi-2D
chambers that enable us to track the motion of the entire
shape of the worm over time, we have shown that Lum-
briculus variegatus use a boundary following strategy to
navigate enclosed spaces. Although the worms have sen-
sory nerves all over their body, we find that the worm
primarily uses prostomial nerves located in its head to
actively probe the boundary. We then show with sta-
tistical analysis that the worm’s direction of motion is
determined by the orientation of its entire body, rather
than its head. While the time to find the exit passage
would increase linearly with passage width, if the worm
were to explore the chamber ballistically, we show that
the worm’s head enters the passage roughly over the same
time scale even as the width of the exit passage is var-
ied over an order of magnitude. A slightly greater time
is needed to find the passages at the narrowest widths
because the swimming strokes lead the worms to lose
contact with the boundary and skip over the passage
opening. This observation further provides evidence that
the worm locates the boundaries and exit passage due
to steric interactions during contact, and that long range
interactions mediated by hydrodynamic flows are not im-
portant to its search strategy. The thigmotaxis or hiding
behavior of these worms does not appear to have an effect
on finding the exit passage, under the conditions studied.

We further show that we can capture the time scales
over which the worm reaches the exit using a one-
dimensional persistent random walk model of its trajec-
tory along the boundary. This model captures the mean
time taken and their distributions as the worm does not
always search the boundary in one direction, but also
randomly reverses directions to retrace its path. This

enables the worm to find a passage which it may have
missed without fully circling the enclosure because it is
not always in contact with the boundary while probing
for a path forward. This can be noted to be especially im-
portant when the passages have small widths compared
to the mean longitudinal peristaltic and transverse un-
dulation amplitudes. The strokes can further lead the
worm to miss the exit passage even after its head enters
the passage, as they can cause it to withdraw its head
back into the chamber. While our persistent random
walk model is able to capture the escape time dynamics
of the worm’s head, a more elaborate two-dimensional
active model which takes into account the undulatory
and peristaltic strokes of the worm is needed to further
capture the detailed dynamics of the entire body.

Our study shows an efficient strategy employed by a
flexible limbless intruder to actively search on a surface
for openings using only sensory nerves located at one end
of its body. While boundary following has been shown
in microscopic motile organisms including sperm, bacte-
ria, algae and nematodes [17, 18, 21, 23, 26], our study
provides a thorough examination of the body shape and
strokes and demonstrate their importance on the naviga-
tion strategies employed by organisms using the sense of
touch. The one-dimensional boundary search model in-
troduced here is quite general and may be applicable to
other animal systems where boundary following by direct
contact is important [32].
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