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We investigate the nonequilibrium critical behavior of the contact process with deterministic aperiodic tem-
poral disorder implemented by choosing healing or infection rates according to a family of aperiodic sequences
based on the quasiperiodic Fibonacci sequence. This family allows us to gauge the temporal fluctuations via a
wandering exponent ω and put our work in the context of the Kinzel–Vojta–Dickman criterion for the relevance
of temporal disorder to the critical behavior of nonequilibrium models. By means of analytic and numerical
calculations, the generalized criterion is tested in the mean-field limit.

I. INTRODUCTION

Nonequilibrium phase transitions [1] offer an interesting
extension of ideas developed in the context of equilibrium crit-
ical phenomena to problems in which time plays a central role.
This is the case of problems featuring absorbing states [2],
such as turbulence in liquid crystals [3], reaction-diffusion
processes [4], and extinction phenomena in biology [5].

A paradigmatic model for these problems is the contact pro-
cess [6], which can be formulated as describing the dynamics
of an epidemics. The model assumes that individuals fixed at
the vertices of a fully occupied lattice can be either infected or
healed. Infected individuals transmit the infection to its near-
est neighbors at a rate λ, and become healed at a rate µ. It is
now well established that, for a fixed healing rate µ, there is
a critical value λc of the infection rate λ separating and ac-
tive phase (λ > λc), in which the epidemics persists indefi-
nitely, from an inactive (absorbing) phase (λ < λc), in which
the epidemics stops after a finite time (see, e.g., Refs. 1, 7 and
references therein).

Remarkably, concepts of equilibrium phase transitions,
such as scaling invariance and universality class, are quite
useful to describe the non-analyticity of this nonequilibrium
phase transition. This is because fluctuations of the order pa-
rameter field (the density of infected individuals ρ) are self
similar at the transition. This means that the length ξ and
time ξt scales of this fluctuations diverge when approaching
the critical point. More precisely,

ξt (ε)∼ |ε|−ν‖ , (1)

where ε = λc−λ is the distance from criticality, and ν‖ is the
correlation-time critical exponent. Likewise, ξ∼ |ε|−ν⊥ . The
other critical exponents of interest to our work are the order-
parameter exponent β, which is defined from

ρ(ε)∼ (−ε)β , (2)

and δ [8, 9], the critical exponent defining the power-law re-
laxation of the density at the critical point,

ρc (t)∼ t−δ. (3)

In general, we expect ξt to be related to the time needed for the

asymptotic behavior to set in, so that ρ(ε)∼ ξ
−β/ν‖
t ∼ ρc (ξt) ,

and we conclude that

δ =
β

ν‖
. (4)

In the mean-field limit, we have ν‖ = β = δ = 1. In 1D, these
exponents are ν‖ ≈ 1.73, β≈ 0.28, and δ≈ 0.16 [10].

As in equilibrium, disorder may also have profound effects
in nonequilibrium phase transitions, with the additional aspect
that disorder ingredients may be present over space as well as
over time. In ecological models, for instance, spatial disorder
represents the variation of environmental conditions across the
terrain, whereas temporal disorder represents fluctuations in
environmental conditions over time.

In the contact process, disorder can be implemented by al-
lowing the rates λ and µ to vary over the sites of the lattice
or over time. The contact process with spatial disorder has
been extensively studied (see, e.g., Refs. 8, 9, 11–15), and
only recently the effects of temporal disorder has attracted at-
tention [16–24].

Prominent among the latter investigations are Refs. 17, 18,
21, which explore how the critical behavior of the contact
process is affected by random temporal disorder, both uncor-
related [17, 18] and correlated [21] disorder. These works
show that the introduction of temporal disorder induces an
infinite-noise critical point, in which density fluctuations in-
crease without limit with time. As a result, the ensemble typ-
ical and arithmetic averages of the population density behave
quite differently. As time increases, the former becomes much
less than the latter (which is dominated by rare events).

Disorder is introduced in the model in the following way:
we consider consecutive time intervals of same duration ∆tn.
To the nth time interval, we assign an infection λn and heal-
ing µn rate which are uniform throughout the lattice. In the
random case, the parameters (λn,µn) are chosen from a prob-
ability distribution. Here, in the aperiodic case, (λn,µn) =
(λA,µA) or (λB,µB) depending on whether the nth letter of a
word A or B. This word is obtained employing the generalized
Fibonacci sequence. Starting with the letter A, we apply the
inflation rules A→ ABk and B→ A, where Bk denotes k con-
secutive letters B. For k = 1, we recover the original Fibonacci
sequence.

Although deterministic, the iterated sequence has no period
and is characterized by intrinsic temporal fluctuations growing
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as ∼ tω, with the so-called wandering exponent ω dependent
on the value of k.

In close analogy with Luck’s [25] generalization of the Har-
ris criterion [26] for the relevance of spatial disorder on phase
transitions in thermodynamic equilibrium, it is possible to de-
rive a perturbative criterion for the relevance of aperiodic tem-
poral disorder on the nonequilibrium case. Near criticality
(|ε| � 1) and along the characteristic time scale ξt , fluctua-
tions of ε are of order ξω

t [see Eq. (A11) in Appendix A], so
that the corresponding average fluctuations are

δε∼ ξω
t

ξt
∼ |ε|(1−ω)ν‖ . (5)

Aperiodic temporal disorder is a relevant perturbation to the
clean critical theory if δε� |ε|, which, thus, leads to the cri-
terion

(1−ω)ν‖ < 1. (6)

Notice that for uncorrelated random temporal disorder we
have ω = 1

2 and the inequality (6) reduces to the temporal
version of the Harris–Luck criterion, ν‖ < 2, formulated by
Kinzel [27] and by Vojta and Dickman [28]. In fact, these
last authors also investigated the case of correlated random
temporal disorder characterized by a power-law correlations
with an exponent γ, finding out that in this case the criterion
for instability of the critical behavior in the presence of dis-
order becomes γν‖ < 2. As γ is related to the Hurst expo-
nent by γ = 2− 2H [21], the criterion can also be written as
(1−H)ν‖ < 1. Comparing with Eq. (6), we see that, for de-
terministic aperiodic temporal disorder, the wandering expo-
nent ω plays the role that the Hurst exponent plays for random
correlated temporal disorder.

In this paper, our aim is to test the stability criterion (6)
in the mean-field limit of the contact process, which allows
for extensive analytical work to be performed, enabling us
to obtain results for the long-time behavior and the critical
exponents of the model. In Section II, we sketch the mean-
field treatment, writing a recurrence equation for the density
of infected agents at the beginning of each time interval and
analytically determining the criticality condition. In Section
III, we describe a renormalization-group (RG) treatment that
allows us to present analytical results for some critical expo-
nents, which turn out to depend on k. Numerical calculations
needed to extract further information are described in Section
IV. There are also two appendices, describing some technical
details.

II. MEAN-FIELD LIMIT

In this Section we consider the mean-field limit of the con-
tact process with aperiodic temporal disorder. As ν‖ = 1
in mean-field, the generalized Harris criterion (6) says that
aperiodic temporal disorder is a relevant perturbation when
ω>ω∗= 0. As shown in Appendix A, ωk=1 <ωc, ωk=2 =ωc,
and ωk>2 > ωc. Thus, changing k from 1 to 3 gives us the rare
opportunity to test the criterion (6) in all possible situations
(irrelevant, marginal, and relevant) by analytical means.
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Figure 1. (a) Plot of ρn = ρ(tn) vs. n (with tn = n∆t) for k = 2 and
λA < µ < λB. (b) Implementing the RG treatment of the dynamics,
which consists in grouping all consecutive time intervals with the
same rn. (c) As a result of the grouping, the effective system has
parameters r̃ and ∆̃t.

During the time interval between tn−1 and tn = tn−1 +∆tn,
the density of active sites can be described by the logistic
equation [1, 7, 17, 18]

dρ

dt
= (λn−µn)ρ−λnρ

2, (7)

in which λn and µn are respectively the infection and healing
rates during that time interval, which lasts a time ∆tn. It is
immediate to integrate Eq. (7) to obtain, for tn−1 ≤ t ≤ tn,

1
ρ(t)

=
e(µn−λn)(t−tn−1)

ρn−1
+

λn

[
e(µn−λn)(t−tn−1)−1

]
µn−λn

, (8)
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with the notation ρn ≡ ρ(tn). Imposing continuity of ρ(t) at
t = tn leads to the recursion relation

ρ
−1
n = rnρ

−1
n−1 + sn, (9)

with

rn = e(µn−λn)∆tn and sn =
rn−1

µn−λn
λn. (10)

Notice that for µn > λn we have rn > 1, while for µn < λn we
have 0 < rn < 1; as for sn, it is always non-negative. Thus, as
expected, ρn decreases when µn > λn and increase only when
µn < λn, as illustrated in Fig. 1a.

Iterating the recursion relation in Eq. (9) yields ρ−1
n =

Rnρ
−1
0 +Sn,in which

Rn =
n

∏
i=1

ri and Sn = sn +
n−1

∑
i=1

si

n

∏
j=i+1

r j. (11)

The term Sn is responsible for preventing ρn from becoming
greater than 1. On the other hand, the fate of the infection
when ρn� 1 lies essentially on the term Rn, which, defining

〈λ〉n =
1
tn

n

∑
i=1

λi∆ti and 〈µ〉n =
1
tn

n

∑
i=1

µi∆ti, (12)

can be written as

Rn = e(〈µ〉n−〈λ〉n)tn . (13)

Clearly, we have two different regimes as n→ ∞. If 〈µ〉n >
〈λ〉n, then Rn grows without limit and ρn approaches zero,
indicating an inactive phase. On the other hand, if 〈µ〉n < 〈λ〉n,
then Rn approaches zero and ρn remains finite, indicating an
active phase. Thus, the limiting case 〈µ〉n = 〈λ〉n signals the
critical point. The behavior of the system exactly at the critical
point is governed by the fluctuations in the rates λn and µn,
which depend on the precise way in which they are chosen.

For simplicity and without loss of generality, from now on
we assume a constant duration of each time interval, ∆tn ≡ ∆t,
and set µA = µB = µ. Thus, 〈µ〉n = µ and

〈λ〉N =
1
N

N

∑
i=1

λi =
NA

N
λA +

NB

N
λB, (14)

in which NA and NB are the numbers of letters A and B in the
generalized Fibonacci sequence of length N. The fraction of
letters in the infinite word (see Appendix A) are

xA ≡ lim
N→∞

NA

N
= ζ

−1
+ ,

and xB ≡ 1− xA, with

ζ± =
1±
√

1+4k
2

. (15)

The critical point limN→∞ 〈λ〉N = limN→∞ 〈µ〉N can, there-
fore, be recast as

xAλA + xBλB = µ. (16)

Assuming λA < λB, it is clear from Eq. (16) that at the critical
point we must have λA < µ < λB. Thus, sufficiently close to
the critical point, ρ(t) will decrease or increase during the nth
time interval depending on whether λn = λA or λn = λB. A
plot of ρn vs n has the form illustrated in Fig. 1a for k = 2. The
regions in which ρ increases have a duration equal to k time
intervals, while the regions in which ρ decreases last either 1
or k+1 time intervals.

III. RG TREATMENT

We are interested in describing the asymptotic behavior
close to the critical point. Since ρ(t)� 1 in that case, then we
can disregard the term sn in Eq. (9). This is very helpful be-
cause only the knowledge of {rn} determines completely the
critical behavior of the system. In log-variables, Eq. (9) be-
come an “aperiodic” walk (instead of a random walk) where
the steps of the walker is lnrn. Our task now is to determine
the properties of this walker.

It is convenient to group consecutive intervals having the
same parameters {λn}= λ into a single interval with that pa-
rameter λ and larger duration as depicted in Fig. 1. There-
fore, instead of considering rn equal to rB = e(µ−λB)∆t or
rA = e(µ−λA)∆t in Eq. (9), we need to deal with rn being equal
to r+0 = rk

B, r−0 = rA, and r−−0 = rk+1
A . This is because intervals

in which λn = λB only appear in a sequence of k B-intervals
in a row. On the other hand, the A-intervals either appear
as a single one, or in a sequence of k+ 1 intervals in a row.
In addition, we have to consider non-uniform time intervals
∆t+0 = k∆t, ∆t−0 = ∆t, and ∆t++

0 = (k+1)∆t, respectively.
In sum, each effective time interval in the regrouped sys-

tem is characterized by a pair of effective parameters
(
r̃, ∆̃t

)
given by

(
r++

0 ,∆t++
0

)
,
(
r−0 ,∆t−0

)
, or
(
r−−0 ,∆t−−0

)
as shown in

Fig. 1c. As explicitly shown in Fig. 2a, there are three types
(A, B, and C) of intervals to consider.

The reason of the superscripts “±” is because we are as-
suming that λA < µ < λB, so that + (−) means an interval in
which ρ increases (decreases): r++

0 < 1 < r−0 < r−−0 . The rea-
son for the subscript “0” is to call attention that these are the
bare values. As will become clear below, renormalized val-
ues acquire a subscript j denoting the number of times it was
renormalized.

Following Ref. 17, we now formulate an RG treatment
to iteratively determine the set of effective parameters r̃ and
∆̃t describing the long-time behavior of ρ(t) � 1. In the
initial stage of the RG treatment, this set corresponds to{(

r++
0 ,∆t++

0

)
,
(
r−0 ,∆t−0

)
,
(
r−−0 ,∆t−−0

)}
. At any given stage,

we identify the effective parameter ln r̃ closest to 0, which
characterizes those effective time intervals during which the
density varies the least, and use Eq. (9) to eliminate all those
time intervals, generating a new configuration of effective
time intervals and defining a new stage of the RG scheme,
see Fig. 2b. Importantly, as we checked numerically, in each
stage j of this decimation procedure the temporal sequence of
effective time intervals is always the same (except for minor
boundary effects). Precisely, the effective parameters in the
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(a)

(b)

Figure 2. Pictorial representation of the RG scheme for k = 2. (a) The initial grouping stage gives rise to three types of effective time intervals,
labeled A, B and C and characterized by different effective parameters (see main text). The density of active/infected sites increases in B-type
intervals and decreases in A- and C-type intervals. (b) Apart from boundary defects, effective intervals generated in the next stage, labeled by
Ã, B̃ and C̃, follow the same sequence as the time intervals A, B and C.

jth stage are lnr++
j

lnr−j
lnr−−j

= M

 lnr++
j−1

lnr−j−1
lnr−−j−1

= M j

 lnr++
0

lnr−0
lnr−−0

 , (17)

 ∆t++
j

∆t−j
∆t−−j

= M

 ∆t++
j−1

∆t−j−1
∆t−−j−1

= M j

 lnr++
0

lnr−0
lnr−−0

 , (18)

with

M =

 k+1 k 0
0 0 1
k 0 k+1

 , (19)

as long as, in each stage, the constraint

r++
j < 1 < r−j < r−−j (20)

is fulfilled. This always happens at the critical point, but
slightly off criticality it eventually fails as discussed later.

As shown in Appendix B, lnr++
j

lnr−j
lnr−−j

=

 η0 +η
−
0 Ξ

j
−+η

+
0 Ξ

j
+

η1 +η
−
1 Ξ

j
−+η

+
1 Ξ

j
+

η2 +η
−
2 Ξ

j
−+η

+
2 Ξ

j
+

 (21)

and  ∆t++
j

∆t−j
∆t−−j

=

 τ0 + τ
−
0 Ξ

j
−+ τ

+
0 Ξ

j
+

τ1 + τ
−
1 Ξ

j
−+ τ

+
1 Ξ

j
+

τ2 + τ
−
2 Ξ

j
−+ τ

+
2 Ξ

j
+

 , (22)

where

Ξ± = ζ±+ k = ζ
2
± (23)

are two of the eigenvalues of M (the remaining one equals to
1), and ζ± is given in Eq. (15). Expressions for the coefficients
ηx

i and τx
i are also presented in Appendix B.

Since Ξ+ > Ξ− > 0, the long-time behavior is, thus, gov-
erned by the coefficients of Ξ

j
+, namely η

+
i and τ

+
i , i ∈

{0,1,2}. This is true only away from criticality since η
+
i =

γ
+
i [µ− (xAλA + xBλB)] , with γ

+
i > 0 a k-dependent constant

(see Appendix B), i.e., η
+
i is proportional to the distance to

criticality Eq. (16). Therefore, in the active phase η
+
i < 0,

r++
j , r−j and r−−j become smaller and smaller as the RG

scheme is iterated [see Eq. (21)] and, eventually, r−−j becomes
smaller than 1. At this stage, labeled j = j∗, the constraint
(20) is no fulfilled and the RG must be interrupted. The value
of j∗ can be estimated by solving the equation

lnr−−j∗ = η2 +η
−
2 Ξ

j∗
− +η

+
2 Ξ

j∗
+ = 0. (24)

Sufficiently close to criticality, we expect j∗� 1. For k = 1,
Ξ− < 1 and, thus,

Ξ
j∗
+ =− η2

η
+
2
∼ ε
−1 (k = 1) , (25)

with ε ≡ µ− xAλA− xBλB being the distance from criticality.
For k = 2, Ξ− = 1 and, thus,

Ξ
j∗
+ =−

η2 +η
−
2

η
+
2

∼ ε
−1 (k = 2) . (26)

Finally for k > 2, Ξ− > 1 and, thus,

j∗ ≈
ln
(
−η
−
2 /η

+
2

)
ln(Ξ+/Ξ−)

∼ ln(1/ε)

ln(Ξ+/Ξ−)
. (27)

The next step of our reasoning is to realize that the quantity
∆t−−j∗ plays the role of a characteristic time scale (when the
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critical RG flow breaks down), i.e., the correlation time ξt ∼
∆t−−j∗ . From Eq. (22), we then conclude that

ξt ∼ ∆t−−sε
∼ Ξ

j∗
+ . (28)

It is now clear the usefulness of Eqs. (25)–(27). From Eq. (1),

we find that ν‖ = 1 for k≤ 2, and ν‖ =
lnΞ+

ln Ξ+
Ξ−

=
ln
(

1+
√

1+4k
2

)
ln
(√

1+4k+1√
1+4k−1

) for

k > 2. Using the fact that Ξ± = ζ2
± and invoking the definition

of the wandering exponent ω = ln |ζ−|/ lnζ+ [see Eq. (A12)],
we conclude that

ν‖ = max
{

1,
1

1−ω

}
. (29)

For k < 2 the correlation time exponent takes the same value
ν‖ = 1 as in the uniform limit λA = λB, as expected from the
criterion (6). For the marginal case k = 2, ν‖ also follows the
clean value. In this case, the criterion cannot say if aperiodic
temporal disorder is a relevant perturbation or not. Finally,
for k > 2, the criterion (6) ensures that the clean theory is
relevant (ωk>2 > ωc) and, thus, a new universality class must
take place. This is indeed the case as the correlation time
exponent acquire different values from the clean theory.

We evaluated the critical exponent β governing the behav-
ior of the density near criticality by numerical means (see
Sec. IV), as we could not find a way around the difficulties
in analytically estimating the asymptotic density. To high ac-
curacy, we find that β = 1 for all k. From Eq. (4), then

δ =
1
ν‖

= min{1,1−ω} . (30)

We now compare our findings for deterministic aperiodic
temporal disorder with those for random disorder. In Ref. 21
it was shown that

ν‖ =
2
γ
, δ =

γ

2
, β = 1, (31)

where γ is the exponent of the power-law correlation between
disorder variables. As previously mentioned, γ = 2− 2H
where H is the so-called Hurst exponent, which measures the
long-term memory of a time series. To our purposes, the iden-
tification between H and ω follows from the following. The
wandering exponent quantifies how the variance of a given
letter in a word of size N grows with N. Precisely, see Ap-
pendix A, the variance ∼ N2ω. If this word were the time se-
ries of correlated random variables, the variance would grow
∼ N2H as this is the definition of the Hurst exponent.

In sum, by identifying the wandering exponent ω to H in
our results (29) and (30), we then recover Eq. (31). This fasci-
nating result allows us to pinpoint the precise fluctuation gov-
erning the relevance of the disorder on this nonequilibrium
phase transition, regardless whether disorder is of random cor-
related character or aperiodically deterministic.

IV. NUMERICAL RESULTS

We numerically iterated Eq. (9) for k = 1, k = 2, k = 3 and
various choices of the parameters µ, λA and λB, focusing on

the neighborhood of the critical point. In order to make it
easier to identify the asymptotic behavior, we also performed
averages of the results over many aperiodic samples with the
same number of time intervals. These samples are defined by
randomly choosing the initial time interval among the posi-
tions of a very large generalized Fibonacci sequence. With
this choice, all samples are representative of the infinite se-
quence and, if the calculation is performed up to a sufficiently
large time, no two samples are likely to be equal. We ini-
tialize all samples with the same nonzero value of the density
of infected sites, which, as we checked, has no effect on the
average long-time behavior.

Besides looking at the time dependence of the average den-
sity over all samples, 〈ρ(t)〉, we also analyzed the dynamical
evolution of the critical noise, quantified both by σρ(t), the
standard deviation of ρ(t) at time t for all available samples,
and by σlnρ (t), the corresponding quantity for 〈lnρ(t)〉. As
shown below, the ratios σρ (t)/〈ρ(t)〉 and σlnρ(t)/〈lnρ(t)〉
offer insight on the asymptotic behavior under temporal disor-
der inducing fluctuations characterized by different wandering
exponents ω.

A. Case k = 1

Plots of 〈ρ(t)〉 in the active phase and at the critical point
are shown in Fig. 3a. It is clear that the behavior is quite sim-
ilar to that of the uniform limit, as illustrated by the fact that
all curves closely follow those obtained for a uniform system
with the same average parameters as the corresponding ape-
riodic system. At the critical point, the behavior of 〈ρ(t)〉 is
perfectly compatible with a power law t−δ, with δ = β/ν‖ = 1
as in the uniform model. In fact, as shown in Fig. 3b, all
curves can be collapsed onto the same scaling form

ρ(t;ε) = |ε|β f
(
t |ε|ν‖

)
, (32)

with β = ν‖ = 1, in which f
(
t |ε|ν‖

)
is a scaling function tak-

ing a constant value if t � |ε|−ν‖ ∼ ξt . For definiteness, we
fixed both µ and λA and use λB as a tuning parameter to cross
the transition at the critical value

λ
∗
B =

µζ+−λA

ζ+−1
, (33)

which is obtained from Eq. (16). In that case, the distance
from criticality is defined as

ε≡ 1− λB

λ∗B
. (34)

The behavior of the ratios σρ (t)/〈ρ(t)〉 and
σlnρ(t)/〈lnρ(t)〉 at criticality is shown in Fig. 4. These
plots can be understood by noticing that for k = 1 and at large
times, ρi (t) ∼Cit−1, in which i labels a given sample and all
Ci are approximately the same, given the fact that fluctuations
are small. Thus, denoting by σC the standard deviation of the
Ci, we have

〈ρ(t)〉 ∼ 〈Ci〉
t

, σρ (t)∼
σC

t
, (35)



6

1×103 3×103 1×104 3×104 1×105

t

1×10−3

3×10−4

1×10−4

6×10−5

ρ=t−δ

−9.0
ln|ε|

9.0
9.5
10.0
10.5

ln
ξ t

ξ ∼|ε|

ρ

−8.5 −8.0 −7.5 −7.0

t
−ν∥

ν∥ ≈ 1

ρ

(a)

100 101 102 103

t/|ε| ν− ∥

100

6×10−1

2×100

3×100

ρ/
|ε|

β

λB
1.80920
1.80938
1.80956
1.80974
1.80992

1.81010
1.81028
1.81046
1.81065

(b)

Figure 3. (a) The main plot shows 〈ρ(t)〉 vs t in the active phase,
for k = 1 with µ = 1, λA = 1/2 and distances to criticality from ε =
9× 10−4 to ε = 0, top to bottom. Symbols indicate estimates for
the characteristic time ξt , whose log-log dependence on the distance
to the critical point is shown in the inset. The estimates come from
determining, for each curve, the time at which the average density
reaches a value 10% above its asymptotic value. (b) Rescaled plots
of the average density, showing data collapse following Eq. (32).
Here, β = δ = ν‖ = 1 are the values of the clean theory.

so that

σρ (t)
〈ρ(t)〉

∼ 〈Ci〉
σC

, (36)

and the ratio σρ (t)/〈ρ(t)〉 should approach a constant at large
times. Likewise, denoting by σlnC the standard deviation of
lnCi,

〈lnρ(t)〉= 〈lnCi〉− ln t, σlnρ = σlnC,

so that

σlnρ (t)
〈lnρ(t)〉

∼ σlnC

〈lnCi〉− ln t
,

and the ratio σlnρ(t)/〈lnρ(t)〉 should exhibit a weak time de-
pendence at large times. These expectations are fully compat-
ible with the numerical results shown in Fig. 4.

104
t

σ ρ
/ρ

−0.02

λA/λB
0.041
0.118
0.217

0.345
0.521

105 106

100

3×100

3×10‒1

104 105 106
t

σ l
nρ
/ln

ρ

−0.04
−0.06
−0.08
−0.10
−0.12
−0.14
−0.16

Figure 4. Plots of linear (left) and logarithmic (right) noise ratios at
criticality for k = 1 and different modulation strengths λA/λB. For
a given modulation strength, the critical value of µ is determined by
using Eq. (16).

(a)

(b)

Figure 5. (a) The main plot shows ρ(t) vs t for a single sam-
ple with k = 2, µ = 1, λA = 9/10 and distances to criticality given
by ε = −10−3 (upper red curve), ε = 0 (middle black curve), and
ε = 10−3 (lower green curve). The inset shows the long-time be-
havior of ρ(t) at criticality, illustrating the slight increase in relative
fluctuations over time (for clarity, points are not connected by lines).
The thick blue curve is the function ρ = 1/t. (b) Plots of linear (left)
and logarithmic (right) noise ratios at criticality for k = 2 and differ-
ent modulation strengths λA/λB.

B. Case k = 2

Now we analyze the marginal case k = 2, which has a wan-
dering exponent ω = 0. Figure 5a shows 〈ρ(t)〉 for different
values of ε. At the critical point the power-law 〈ρ(t)〉 ∼ t−δ



7

(a)

(b)

Figure 6. (a) The main plot shows ρ(t) vs t for a single sample
with k = 3, µ = 1, λA = 9/10 and distances to criticality given by
ε = −5× 10−3 (upper red curve), ε = 0 (middle black curve), and
ε = 2× 10−3 (lower green curve). The inset shows the long-time
behavior of ρ(t) exactly at criticality, illustrating the strong increase
in relative fluctuations over time. (b) Rescaled plots of the average
density for k = 3, with µ = 1 and λA = 1/2, showing data collapse
following Eq. (32). Here, β = 1 and ν‖ ≈ 1.46 [see Eq. (29)].

is still valid with δ = 1 as for k = 1, but fluctuations are
stronger. This is also noticeable from the behavior of the
ratio σρ (t)/〈ρ(t)〉 at criticality, shown in Fig. 5b. At long
times, the ratio no longer approaches a constant, but slightly
increases as a power law with an exponent that depends on the
ratio λA/λB. However, we cannot exclude the possibility of a
logarithmic growth with a ratio-dependent coefficient. This
nonuniversality is characteristic of marginal fluctuations. On
the other hand, the ratio σlnρ(t)/〈lnρ(t)〉 behaves similarly to
the case k = 1, approaching zero at long times. This suggests
that, as time increases, the relative width of the distribution of
ρi (t) becomes larger, but that of lnρi (t) becomes smaller.

C. Case k = 3

Finally, we study the case k = 3 in which aperiodic tem-
poral disorder is a relevant perturbation to the clean critical
behavior. Here, the wandering exponent is ω ≈ 0.317 > ωc
[see criterion (6)]. For a single sample, density fluctuations

Figure 7. Linear (main plot) and logarithmic (inset) noise ratios at
criticality for k = 3 and different modulation strengths λA/λB.

increase very strongly as a function of time at criticality, as
shown in the inset of Fig. 6a. When averaged over many sam-
ples, the behavior is compatible with Eq. (32) with β = 1 and
ν‖ ≈ 1.46, in agreement with the RG prediction in Eq. (29),
as shown in Fig. 6b.

As for the ratios σρ (t)/〈ρ(t)〉 and σlnρ(t)/〈lnρ(t)〉 at crit-
icality, we can see from Fig. 7 that σρ (t)/〈ρ(t)〉 follows a
power-law with an exponent compatible with the wandering
exponent ω corresponding to k = 3. (Although not shown, we
checked that the analogous behavior is also observed for other
larger values of k.) Furthermore, the ratio σlnρ(t)/〈lnρ(t)〉
tends to oscillate around a constant at long times. This in-
dicates that, as time increases, the relative width of the dis-
tribution of ρi (t) becomes larger, while that of lnρi (t) re-
mains constant. This should be compared with the behavior
observed under random temporal disorder [17, 21], for which,
at criticality, σlnρ(t) ∼ |lnρi| ∼ t(2−γ)/2 ∼ tH , also leading to a
constant ratio σlnρ(t)/〈lnρ(t)〉 at long times. Thus, our results
indicate that, in the mean-field limit, any wandering exponent
ω > 0 leads to “infinite-noise” critical behavior at long times.

V. CONCLUSIONS

We have investigated the mean-field limit of the contact
process in the presence of deterministic aperiodic temporal
disorder induced by generalized Fibonacci sequences. These
sequences have fluctuations which grows with time as ∼ tω,
with a wandering exponent ω that depends of the parameter k
of the generalized sequences. More importantly, the value of
ω can be tuned such that aperiodic temporal disorder can be
a irrelevan, a marginal, or a relevant perturbation to the clean
critical behavior. For ω<ωc (k < 2), the long-time scaling be-
havior of the clean model remains unaltered, with relative den-
sity fluctuations decreasing over time. For ω = ωc (k = 2), the
aperiodic disorder induces density fluctuations which grow
slightly over time, but the critical exponents remain unaltered.
Finally, for ω > ωc (k > 2), as in the case of random tempo-
ral disorder, the long-time behavior is dominated by diverging
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density fluctuations, and the critical behavior of the system is
in the so-called “infinite-noise” universality class.

Nevertheless, contrary to the random case, aperiodic tem-
poral disorder does not give rise to active (temporal) Griffiths
phases. In the random case, these phases exist due to long
(and rare) incursions of the system in the inactive phase, even
though the system is in the active phase. These incursions al-
low the density to fall below any threshold value associated
with the inverse population size. Thus, the system may reach
the absorbing state even in the limit of an arbitrarily large pop-
ulation. The underlying inflation symmetry of the generalized
Fibonacci sequences does not allow the formation of those
long rare regions. However, sufficiently close to criticality,
finite regions give rise to large fluctuations of the density at
long times. This is illustrated in the upper red curve of the
main plot in Fig. 6a.

The long-time behavior described above is in full agree-
ment with the generalized criterion stated in Eq. (6). Such
criterion can be further tested for the contact process in fi-
nite dimensions, as well as for other nonequilibrium mod-
els [20, 24, 29]. It would also be interesting to investigate
the effect of aperiodic temporal disorder on systems exhibit-
ing first-order nonequilibrium phase transitions [19, 22, 23].
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Appendix A: Properties of the generalized Fibonacci sequence

For the generalized Fibonacci sequence defined by the sub-
stitution rule A→ ABk and B→ A, the numbers N( j)

A and N( j)
B

of letters A and B in the finite sequence obtained after j itera-
tions of the rule are given by the matrix equation(

N( j)
A

N( j)
B

)
= Ω

j
(

1
0

)
, (A1)

in which we assume that the sequence is built starting from a
single letter A and Ω is the substitution matrix

Ω =

(
1 1
k 0

)
. (A2)

Diagonalizing Ω, we can write

Ω = U
(

ζ+ 0
0 ζ−

)
U−1, U =

(
ζ−/k ζ+/k

1 1

)
, (A3)

with

ζ± =
1±
√

1+4k
2

, (A4)

so that

Ω
j = U

(
ζ

j
+ 0
0 ζ

j
−

)
U−1, (A5)

leading to

N( j)
A =

ζ
j+1
+ −ζ

j+1
−√

4k+1
, N( j)

B = k
ζ

j
+−ζ

j
−√

4k+1
. (A6)

Taking into account that ζ+ > |ζ−|, the asymptotic fractions
of letters A and B are, respectively,

xA = lim
j→∞

N( j)
A

N j
=

1
ζ+

(A7)

and

xB = lim
j→∞

N( j)
B

N j
= 1− 1

ζ+
, (A8)

and thus,

N j = N( j)
A +N( j)

B ∼ ζ
j+2
+ . (A9)

On the other hand, the fluctuations in the number of letters
with respect to the asymptotic expectation values, gauged by

G j =
∣∣∣N( j)

A − xAN j

∣∣∣ , (A10)

are governed by

G j ≈
1√

4k+1

∣∣∣ζ j
− [ζ−− xA (ζ−− k)]

∣∣∣ ∝

∣∣∣ζ j
−

∣∣∣ ∝ Nω
j , (A11)

which defines the wandering exponent

ω =
ln |ζ−|
lnζ+

. (A12)

If ω < 0, the geometrical fluctuations get smaller as the se-
quence gets larger, and at long times the behavior should re-
cover that of the uniform limit. On the other hand, if ω > 0,
fluctuations become larger and larger. The case ω = 0 is
marginal and may give rise to nonuniversal behavior. For
the generalized Fibonacci sequence, we have ω =−1 < 0 for
k = 1, ω = 0 for k = 2, and ω≈ 0.317 > 0 for k ≥ 3.

Appendix B: Diagonalizing the matrix M

The matrix M in Eq. (19) can be written as

M = V

 1 0 0
0 Ξ− 0
0 0 Ξ+

V−1, (B1)

with Ξ± given by Eq. (23) and

V =

 −1 −ζ+/k −ζ−/k
1 Ξ+/k2 Ξ−/k2

1 1 1

 . (B2)
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Therefore,

M j = V

 1 0 0
0 Ξ

j
− 0

0 0 Ξ
j
+

V−1. (B3)

Using  lnr++
0

lnr−0
lnr−−0

=

 k (µ−λB)
µ−λA

(k+1)(µ−λA)

 (B4)

and  ∆t++
0

∆t−0
∆t−−0

=

 k
1

k+1

∆t (B5)

in Eqs. (17) and (18), we obtain Eqs. (21) and (22) with

η0 =
(µ−λA)− k (µ−λB)

k−2
=−η1 =−η2, (B6)

η
±
0 =∓∆

[(
Ξ±− k2)(µ−λA)+ k (ζ±+ kζ∓)(µ−λB)

]
,

(B7)

η
±
1 =∓∆ [(ζ±+ kζ∓)(µ−λA)+ k (ζ±− k)(µ−λB)] , (B8)

η
±
2 =∓∆{[Ξ±− k (k−1)ζ±] (µ−λA)

+ k
(
Ξ±− k2)(µ−λB)

}
, (B9)

τ0 =−
k−1
k−2

=−τ1 =−τ2, (B10)

τ
±
0 =∓∆

[(
Ξ±− k2)+ k (ζ±+ kζ∓)

]
, (B11)

τ
±
1 =∓∆(ζ±− k (k−1)) , (B12)

τ
±
2 =∓∆

[
(k+1)Ξ±− k (k−1)ζ±− k3] , (B13)

in which

∆
−1 = (k−2)

√
1+4k. (B14)

It is interesting to notice that

η
±
i = γ

±
i

(
µ− 1

ζ±
λA−

(
1− 1

ζ±

)
λB

)
, (B15)

where γ
±
0 = ±∆

(
ζ±
(
k2− k−1

)
− k
)
,

γ
±
1 = ±∆(k (k−1)−ζ±), and γ

±
2 =

±∆
(
k
(
k2−1

)
− (2k+1)ζ±− k2ζ∓

)
. It is easy to show

that η
+
i > 0 for k ≥ 0.

For k = 2, ηi, η
−
i , τi and τ

−
i are divergent. However, the

following useful quantities remain finite:

lim
k→2

(
η0 +η

−
0

)
=

2
9
(µ+4λA−5λB) , (B16)

lim
k→2

(
η1 +η

−
1

)
=

1
9
(µ−5λA−4λB) , (B17)

lim
k→2

(
η2 +η

−
2

)
=

1
9
(−5µ−11λA +16λB) , (B18)

lim
k→2

η
+
0 =

16
9

[
µ− 1

2
(λA +λB)

]
, (B19)

lim
k→2

η
+
1 =

8
9

[
µ− 1

2
(λA +λB)

]
, (B20)

lim
k→2

η
+
2 =

32
9

[
µ− 1

2
(λA +λB)

]
, (B21)

limk→2
(
τ0 + τ

−
0

)
= 2

9 , limk→2
(
τ1 + τ

−
1

)
= 1

9 ,

limk→2
(
τ2 + τ

−
2

)
= − 5

9 ,limk→2 τ
+
0 = 16

9 , limk→2 τ
+
1 = 8

9 ,

and limk→2 τ
+
2 = 32

9 .
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