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Effective chaos for the Kirchhoff equation on tori

Pietro Baldi, Filippo Giuliani, Marcel Guardia, Emanuele Haus

Abstract

We consider the Kirchhoff equation on tori of any dimension and we construct solutions
whose Sobolev norms oscillates in a chaotic way on certain long time scales. The chaoticity is
encoded in the time between oscillations of the norm, which can be chosen in any prescribed
way. This phenomenon, that we name as effective chaos (it occurs over a long, but finite,
time scale), is consequence of the existence of symbolic dynamics for an effective system.
Since the first order resonant dynamics has been proved to be essentially stable, we need
to perform a second order analysis to find an effective model displaying chaotic dynamics.
More precisely, after some reductions, this model behaves as two weakly coupled pendulums.

Contents

1 Introduction and main result 2

1.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Main ideas of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Effective dynamics for the Kirchhoff equation 7

2.1 A quasilinear partial normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The effective system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The truncated effective system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The truncated effective system with two triplets 12

3.1 Meaningfulness condition for the solutions . . . . . . . . . . . . . . . . . . . . . . 13
3.2 First integrals and a linear change of coordinates . . . . . . . . . . . . . . . . . . 13
3.3 The Hamiltonian structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Normalization of coefficients by rescaling . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Large Fourier frequency as a perturbation parameter . . . . . . . . . . . . . . . . 17

4 Chaos for two weakly coupled pendulums 18

4.1 Partially hyperbolic periodic orbit . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Transverse intersection of invariant manifolds . . . . . . . . . . . . . . . . . . . . 23
4.3 Symbolic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Back to the truncated effective system 26

5.1 Positivity of the superactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Initial data in the normal form ball . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Construction of a compatible initial datum . . . . . . . . . . . . . . . . . . . . . 29
5.4 Joining the two amplitude parameters . . . . . . . . . . . . . . . . . . . . . . . . 31

1

http://arxiv.org/abs/2303.00688v1


6 Approximation argument 34

6.1 Motion of the Sobolev norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Back to the solutions of the Kirchhoff equation . . . . . . . . . . . . . . . . . . . 40

1 Introduction and main result

We consider the Kirchhoff equation

∂ttu−∆u
(
1 +

∫

Td

|∇u|2 dx
)
= 0 (1.1)

on the torus T
d, T := R/2πZ, in any dimension d ≥ 1 (periodic boundary conditions), where

the unknown u = u(t, x), x ∈ T
d, is a real-valued function.

Equation (1.1) was first introduced by Kirchhoff [26] in 1876, to model nonlinear transverse
oscillations of strings and plates (d = 1, 2). It is a quasilinear wave equation, with cubic, nonlocal
nonlinearity and Hamiltonian structure. Given its physical relevance, equation (1.1) has been
largely studied along the years; nonetheless, its study is still challenging, because several basic
questions remain open.

While it has long been known (Dickey [12], Arosio-Panizzi [1]) that the Cauchy problem

for (1.1) is locally wellposed with initial data (u(0), ∂tu(0)) in the Sobolev space H
3

2 (Td,R) ×
H

1

2 (Td,R), it is still an open problem whether the solutions with initial data of any given Sobolev
regularity are global in time or not. In particular, it is not even known if C∞ (or even Gevrey)
initial data of small amplitude produce solutions that are global in time. For initial data in
analytic class, instead, global wellposedness is known since the work of Bernstein [6] in 1940.

Moreover, below the regularity threshold H
3

2 ×H 1

2 , neither local wellposedness nor illposed-
ness have been established. A partial, interesting result in this direction has been recently
obtained by Ghisi and Gobbino [13].

More general questions regard the lifespan of the solutions and their behavior as time evolves,
at least close to the equilibrium u = 0. First of all, as a consequence of the linear theory, for
initial data of size ε in H

3

2 ×H 1

2 , the existence of the solution is guaranteed at least for a time of
the order ε−2. Since (1.1) is a quasilinear equation, it is not a priori obvious that one can obtain
better estimates. For instance, in the well-known example by Klainerman and Majda [27] all
nontrivial space-periodic solutions of size ε blow up in a time of order ε−2. On the other hand,
in the papers [3], [4], [5], using techniques from the normal form theory, it is proved that for the
Kirchhoff equation the situation is more favorable. More precisely, in [3], performing one step
of quasilinear normal form, it is proved that the lifespan of all solutions of small amplitude is
at least of order ε−4. This is a consequence of the fact that the only resonant cubic terms that
cannot be erased in the first step of normal form give no contribution to the energy estimates.
In [4] the second step of quasilinear normal form is computed, and it is proved that there are
resonant terms of degree five that cannot be erased and that give a nontrivial contribution to
the time evolution of Sobolev norms.

This is a starting point for describing interesting long-time dynamics for the Kirchhoff equa-
tion. The qualitative behavior of solutions of the Kirchhoff equation over long-time scales is
poorly understood, even for small, compactly Fourier supported initial data, which obey to
finite dimensional systems.

Broadly speaking, for the dynamics of small data we can look for two different types of
regimes:
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• Stable regime: this is the case in which the long-time behavior of Fourier modes resembles
the dynamics of the linearized equation, namely the energy of the modes remains almost
constant over long time. We mention [5] where stable motions of equation (1.1) are ob-
tained for a suitable set of nonresonant initial data, for which the effect of the resonant
terms of degree five remain small on a longer timescale of order ε−6. We also mention [2]
and [11], where the existence of invariant tori is proved for a forced version of (1.1).

• Unstable regime: in this case the nonlinear terms lead to a new type of dynamics, very
different from the linear one. Of particular interest is understanding how the nonlinear
effects create exchanges of energy among different modes.

Concerning the unstable regime, some remarkable results in literature regard the “energy
cascade” for nonlinear Schrödinger equations, where the energy travels from low to high modes
(or vice versa), in strong connection with the weak turbulence theory. Such phenomenon, which
can be measured in terms of an arbitrarily large growth of Sobolev norms, was considered by
Bourgain one of the most important problems in Hamiltonian PDEs, see [8], and also [10, 19,
20, 21, 22].

In the unstable regime, other interesting dynamical behaviors are also based on the mecha-
nism of energy exchange among Fourier modes. Such exchanges can be recurrent (i.e., periodic
or quasi-periodic in time) or chaotic. Recurrent energy exchanges are obtained, for instance,
in [15, 16, 17, 23, 24]. To the best of our knowledge, the only paper in literature in which
chaotic exchanges of energy are constructed for PDEs is [14]. In [14] the authors consider cubic
wave and beam equations and prove the existence of solutions essentially Fourier supported on
a finite number of resonant modes that exchange energy among themselves in a chaotic way.
The chaoticity reflects in the fact that it is possible to provide energy exchanges among modes
at a sequence of prescribed times (randomness of exchanging time) or among modes belonging
to a prescribed resonant tuple (randomness of active and inactive modes).

Both in [14] and in the present paper the existence of chaotic solutions is due to the presence
of chaotic dynamics for the normal form of the equation, up to a certain degree. More precisely,
the normalized system leaves invariant a finite dimensional subspace; then the chaotic behavior
arises from the existence of a Smale horseshoe, which gives rise to symbolic dynamics. The orbits
of the normalized system are globally defined in time, and the chaotic behavior is displayed for
an infinitely long time. However, this does not imply the existence of chaotic solutions of the
full PDE for an infinitely long time. The chaotic behavior for the full PDE is obtained by
proving the vicinity of certain solutions of it to the chaotic orbits of the normalized system,
and this approximation only holds over a long, but finite, time interval. We call this behavior
effective chaoticity, in the sense that the dynamics behaves as chaotic in rather long time scales
(in analogy to the stability over long time scales, often called effective stability in Hamiltonian
dynamics).

1.1 Main result

We denote by N0 the set {0, 1, 2, . . .} of nonnegative integers. The next theorem, which shows
the existence of solutions of the Kirchhoff equation displaying chaotic-like, small amplitude,
oscillations in the Sobolev norms, is the main result of the paper.

Theorem 1.1. There exist universal positive constants M, τ, ε∗, C, r0, b,K,K0 with the following
property. Let d ≥ 1. For every sequence (mj)j∈N0

= (m0,m1,m2, . . .) of integers such that

3



mj ≥M for all j ∈ N0, there exists a sequence

0 = s0 < s̄0 < s1 < s̄1 < s2 ≤ s̄2 < . . . , sj+1 = sj + τ(mj + θj), 0 ≤ θj < 1,

such that for every ε ∈ (0, ε∗] there exists a solution u(t, x) of the Kirchhoff equation (1.1) on
T
d, global in time, with finite Fourier support, whose norm

N (t) :=
(
‖u(t)‖2

H
3
2 (Td)

+ ‖∂tu(t)‖2
H

1
2 (Td)

) 1

2

satisfies
N (t) ≤ Cε ∀t ∈ R

and it oscillates around the central value Aε := ε + ε2r0 with oscillations described in terms of
the amplitude Bε := ε2r0 and the error δε :=

1
10Bε as

−δε ≤ N (t)−Aε ≤ Bε + δε ∀t ∈ Ij = [tj , t̄j], max
t∈Ij

N (t)−Aε ≥ Bε − δε,

−Bε − δε ≤ N (t)−Aε ≤ δε ∀t ∈ Ej = [t̄j , tj+1], min
t∈Ej

N (t)−Aε ≤ −Bε + δε,

where

tj =
sj
bε3

, t̄j =
s̄j
bε3

,

for all intervals Ij, Ej contained in the time interval [0, Tε], where

Tε = Kε−3 log(ε−1).

One has Ij, Ej ⊂ [0, Tε] for all j = 0, . . . , N , where the integer N satisfies

N∑

j=0

mj ≤ K0 log(ε
−1).

In other words, Theorem 1.1 says that, around the equilibrium u = 0, the Kirchhoff equation
possesses solutions whose norm N (t) exhibits oscillations that follow any prescribed sequence of
times on the time interval [0, Tε], and the number N of oscillations within that interval, or more
generally the sum of the time lengths of the oscillations, is arbitrarily large for ε small enough.
These oscillations can also be seen as a chaotic-like modulation of a stable motion, meaning that
the oscillating solutions are of size ε, they are ε2-close to effectively stable solutions (over long
time scales), but they exhibit chaotic-like exchanges of size ε2 between the amplitude of different
Fourier modes.

Remark 1.2. The solution u(t, x) in Theorem 1.1 is Fourier supported on the set {k ∈ Z
d :

|k| ∈ {α1, α2, α3, α4}}, where

α1 = m, α2 = m+ p, α3 = 2m+ p, α4 = 3m+ 2p,

and m, p are integers with 2 ≤ m < p and ratio σ = m/p ≤ σ∗, where σ∗ is a universal constant.
In fact, the ratio σ is the perturbation parameter we use in the entire construction. In

principle, the constant M in Theorem 1.1 depends on the ratio σ = m/p and it is of the order
M ∼ log(σ−1), see (4.15). Theorem 1.1 is stated after fixingm, p withm = 2 and p the minimum
integer such that p > 2 and 2/p ≤ σ∗.
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Remark 1.3. In Theorem 1.1 the Sobolev norm N (t) is used to describe the transfer of energy

between Fourier modes, because H
3

2 (Td) × H
1

2 (Td) is the space of the standard local well-
posedness for the Kirchhoff equation. Since the solution u(t, x) in Theorem 1.1 has a fixed,
finite Fourier support for all times, all the Sobolev norms of (u, ∂tu) are equivalent, and all are
equally able to describe the chaotic transfer of energy among the Fourier modes — all except
the norm of the energy space H1(Td) × L2(Td), which corresponds to a conserved quantity of
the approximating system that we use in the construction; see Remark 3.2.

Remark 1.4. The factor 1/10 in the definition of δε in Theorem 1.1 comes from an arbi-
trary choice. We could replace 1/10 by any other positive number; in that case, the constants
M,ε∗, C, r0, b,K,K0 must be chosen accordingly.

Remark 1.5. For simplicity, Theorem 1.1 and its proof are stated entirely in terms of nonneg-
ative times. However, with only minor changes, one proves that the result holds over the time
interval [−Tε, Tε].

Remark 1.6. Adapting the formulation of the symbolic dynamics for the approximating system
(see Proposition 4.7), one can prove an alternative version of Theorem 1.1, where the prescribed
random behavior of the norm N (t) is not only given by the sequence of the time lengths of its
oscillations, but also by any sequence (a0, a1, a2, . . .) with aj ∈ {0, 1} prescribing the ordered
sequence of “up” and “down” movements of N (t). In that case, N (t) still makes oscillations of
order ε2 around a central value of order ε, varying in a range, say, [ℓε, hε]; the difference with
respect to Theorem 1.1 is that, in the j-th time interval, N (t) get close to the low value ℓε, and
it remains in the slightly enlarged lower half of the range, if aj = 0, while N (t) get close to the
high value hε, and it remains in the slightly enlarged upper half of the range, if aj = 1.

In other words, around the equilibrium u = 0, the Kirchhoff equation possesses solutions
whose norm N (t) exhibits oscillations that follow any prescribed sequence of “up” and “down”
on the time interval [0, Tε].

Remark 1.7. The result in [3] shows that there are no transfers of energy of size ε between
Fourier spheres in a time interval of length ε−4. This could make one think that, on such a time
scale, between Fourier spheres there are no energy transfers at all. Theorem 1.1 shows that this
is not true; in particular, it proves the existence of chaotic transfers of energy of smaller size on
a shorter time scale, i.e., transfers of size ε2 on a time scale ε−3 log(ε−1).

1.2 Main ideas of the proof

The main steps of the proof of Theorem 1.1 can be summarized as follows:

1. Derive an effective resonant model for small solutions of (1.1). This reduced system is
obtained by using normal form arguments and introducing some “macroscopic” variables
describing the collective behavior of Fourier frequencies with the same modulus.

2. Show that, choosing carefully a finite set of Fourier frequencies, one can make the effective
system nearly integrable.

3. Prove the existence of chaotic dynamics (a Smale horseshoe) for the effective system.

4. Show that certain solutions of the Kirchhoff equation (1.1) follow closely those in the Smale
horseshoe of the effective system for a sufficiently long time interval.
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The effective system is obtained with a normal form analysis. To this end, in Section 2, we
perform two steps of quasilinear normal form (following [3, 4]), and introduce a set of special
variables, found in [4], which allow to reduce the dimension of the problem without losing
information on the time evolution of the Sobolev norm of the solution. Thus, the resulting
reduced model can be seen as a “macroscopic” effective system, where we do not distinguish the
evolution of the energy of each single Fourier mode.

The reduction to a finite dimensional effective system is done in Section 3. We restrict
the Fourier support to two coupled resonant triplets. The space of functions supported on these
modes is invariant for equation (1.1), thanks to the particular form of its nonlinearity. Relying on
symmetries of the problem, we are able to further reduce the model to obtain a four dimensional
system.

The next step is to construct chaotic motions for such a system. Since we rely on perturbative
techniques, we want the system to be nearly integrable; this is obtained by choosing resonant
triplets with Fourier modes as explained in Remark 1.2. In particular, the system behaves as a
pair of weakly coupled pendulums.

Then, in Section 4, we apply the classical Poincaré-Melnikov theory [29] to prove that the
system has a hyperbolic periodic orbit with transverse homoclinic orbits. By the classical Smale-
Birkhoff Theorem, this implies the existence of a Smale horseshoe, which is a hyperbolic invariant
set with symbolic dynamics. Note that the set is invariant and therefore one can describe the
dynamics of its orbits for all times.

Finally, it remains to translate the dynamics of the effective system to the original equation
(1.1). We prove that there exist solutions of the full PDE that follow closely those of the
effective system. Even if the approximation argument is done through a Gronwall estimate
(see Section 6), this is a rather delicate procedure. Indeed, since we have performed several
reductions, rescalings, and two steps of normal form, we have to ensure that the solutions of the
Kirchhoff equation shadowing those of the effective system satisfy all the required constraints
over a sufficiently long time scale. This final part of the proof is done in Sections 5 and 6.

The general strategy of the proof is similar to the one developed in [14] for the cubic wave
and beam equations. The proof of Theorem 1.1, however, is based on a higher order normal
form analysis, which is needed to consider systems which are integrable at first order. This is the
typical situation for PDEs on one-dimensional spatial domains. Indeed, resonant Hamiltonian
monomials of low degree, which provide the dominant dynamics close to the origin, usually do
not change drastically the Fourier actions (and so, the Sobolev norms). Main examples are given
by the KdV, Klein-Gordon and Schrödinger equations and pure gravity water waves equation in
infinite depth, under Dirichlet or periodic boundary conditions. This is somewhat the case also
for equation (1.1), even if the spatial domain is the torus Td of any dimension d ≥ 1, and even
if the integrability property of the equation at the cubic order only holds for the macroscopic
variables. This makes the implementation of the above strategy rather delicate. One of the
issues in performing this kind of analysis is that interesting instability phenomena only occur
after a longer time.

Another relevant difference with respect to the equations considered in [14] is that equation
(1.1) is quasilinear, namely the nonlinearity contains derivatives of the same order as the linear
part. This fact is not trivial, because, even if one is able to construct normal form transformations
for the quasilinear equation (1.1) (as done in [3, 4]), here one has to be able to provide a result of
approximation between the effective model and the full PDE for a long-time scale. This requires
to consider an equation for the difference of a special orbit of the effective system and a solution
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of (1.1). This equation is quasilinear itself and presents a time-dependent linear part. For such
equation one has to provide a result of long-time stability.

Another difference with respect to [14] regards a quantitative aspect in the energy exchange
between Fourier frequencies: in [14] a large portion of the energy transfers between Fourier
frequencies having similar modulus; here, on the contrary, a very small portion of the energy
transfers between Fourier frequencies of modulus α1, α2, α3, α4 (see Remark 1.2), where α2, α3, α4

are much larger than α1.
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2 Effective dynamics for the Kirchhoff equation

In this section we recall how the “macroscopic” quantities Sλ, Bλ in (2.12) are derived from the
Kirchhoff equation (1.1), starting with the normal form procedure.

2.1 A quasilinear partial normal form

Written as a first order evolution equation, (1.1) becomes

{
∂tu = v,

∂tv =
(
1 +

∫
Td |∇u|2dx

)
∆u.

(2.1)

It is proved in [3] and [4] (see also the shorter, unified description in the Appendix A of [5])
that system (2.1) can be transformed, after two steps of a quasilinear, partial normal form
procedure, into another system, where the cubic and the quintic terms are in normal form (up
to harmless terms that do not contribute to energy estimates). More precisely, it is proved that,
renaming (ũ, ṽ) the original, “physical” variables of system (2.1), with the change of variable
(ũ, ṽ) = Φ(u, v), system (2.1) becomes

∂t(u, v) =W (u, v), (2.2)

where
W (u, v) = (1 + P(u, v))

(
D1(u, v) + Z3(u, v) + Z5(u, v)

)
+W≥7(u, v). (2.3)

The unknown (u, v) for the transformed system (2.2) is a pair of complex conjugate functions
with zero average over T

d. The term (1 + P(u, v)) is a scalar multiplicative factor, close to 1,
depending on (u, v), and it is a function of time, independent of the space variable x. Also, D1

is the linear operator D1(u, v) := (−i|Dx|u, i|Dx|v), where |Dx| is the Fourier multiplier eik·x 7→
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|k|eik·x, k ∈ Z
d. Next, Z3 is the cubic resonant operator Z3(u, v) = ((Z3)1(u, v), (Z3)2(u, v))

with components

(Z3)1(u, v) := − i

4

∑

j,k∈Zd\{0}
|j|=|k|

uju−j|j|2vkeik·x, (Z3)2(u, v) :=
i

4

∑

j,k∈Zd\{0}
|j|=|k|

vjv−j |j|2ukeik·x,

where uj , vj are the Fourier coefficients of u, v. The entire term (1+P(u, v))(D1(u, v)+Z3(u, v))
gives no contribution to the energy estimates. The term Z5 is the resonant quintic operator
Z5(u, v) = ((Z5)1(u, v), (Z5)2(u, v)), where

(Z5)1(u, v) =
i

32

∑

j,ℓ,k∈Zd\{0}
|j|=|ℓ|

uju−jvℓv−ℓuke
ik·x|j|2|ℓ|2

( 1

|j|+ |k| −
(1− δ

|k|
|ℓ| )

|ℓ| − |k|
)

+
3i

32

∑

j,ℓ,k∈Zd\{0}
|k|=|j|+|ℓ|

uju−juℓu−ℓvke
ik·x|j||ℓ||k|

+
i

16

∑

j,ℓ,k∈Zd\{0}
|j|=|k|

uju−juℓv−ℓvke
ik·x|j|2|ℓ|

(
6 +

|ℓ|
|ℓ|+ |j| +

|ℓ|(1 − δ
|j|
|ℓ| )

|ℓ| − |j|
)

+
3i

16

∑

j,ℓ,k∈Zd\{0}
|k|=|j|−|ℓ|

uju−jvℓv−ℓvke
ik·x|j||ℓ||k|, (2.4)

and (Z5)2(u, v) is obtained from (Z5)1(u, v) by complex conjugation. For the coefficients in (2.4)
we adopt the convention that 0

0 = 0, where δ is the usual Kronecker delta. The term W≥7(u, v)
in (2.3) contains only terms of homogeneity at least 7 in (u, v), and it is estimated in [4] and [5].

The map Φ that transforms (2.1) into (2.2) is obtained by composition, and it is

Φ = Φ1 ◦ Φ2 ◦ Φ3 ◦ Φ4 ◦ Φ5. (2.5)

The maps Φ1 and Φ2 are simply the linear operators that symmetrize and diagonalize the linear
part of system (2.1) (i.e., the linear wave equation), see (6.34). The map Φ3 is a nonlinear,
preparatory transformation, which is required because the problem is quasilinear. The map
Φ4 is the transformation of the first step of the normal form procedure, and Φ5 is the one of
the second step. The explicit expressions of Φ3 and Φ4 are given in [3] and the one of Φ5 in
[4]. Unlike Φ1 and Φ2, the transformations Φ3,Φ4,Φ5 are all close to the identity map. In the
present paper we do not use the explicit formula of Φ3,Φ4,Φ5, but only the following properties
of their composition.

For s ∈ R, let Hs
0(T

d,C) be the Sobolev space of zero average, complex-valued functions

Hs
0(T

d,C) := {u : Td → C : u0 = 0, ‖u‖s <∞}, ‖u‖2s :=
∑

k∈Zd\{0}

|uk|2|k|2s,

where uk, k ∈ Z
d, are the Fourier coefficients of u, and let

Hs
0(T

d, c.c.) := {(u, v) : u, v ∈ Hs
0(T

d,C), v = u} = {(u, u) : u ∈ Hs
0(T

d,C)},
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where the notation “c.c.” reminds that they are pairs of complex conjugate functions. Given
d ∈ N, let

m1 := 1 if d = 1; m1 := 2 if d ≥ 2. (2.6)

Lemma 2.1 (From Lemma 2.9 of [5]). There exist universal constants δ, C > 0 such that for all
(u, v) ∈ Hm1

0 (Td, c.c.) in the ball ‖u‖m1
≤ δ, for all k ∈ Z

d, the k-th Fourier coefficient fk = g−k
of (f, g) := (Φ3 ◦ Φ4 ◦ Φ5)(u, v) satisfies

|fk − uk| ≤ C‖u‖2m1
(|uk|+ |u−k|). (2.7)

From (2.7) it follows that ‖f−u‖s ≤ 2C‖u‖2m1
‖u‖s for all s ∈ R, and that the map Φ3◦Φ4◦Φ5

is well defined in the ball ‖u‖m1
≤ δ, with ‖f‖s ≤ ‖u‖s(1 + 2C‖u‖2m1

), s ∈ R.
Inequality (2.7) also implies the invariance of the Fourier support: if uk = u−k = 0 for some

k ∈ Z
d, then also fk = f−k = 0, and vice versa (since Cδ2 < 1/2).

Lemma 2.2 (From Lemma 2.3 in [5]). There exist universal constants δ1, C1, C0 > 0 with the
following properties. Let (u0, v0) ∈ Hm1

0 (Td, c.c.) and

‖u0‖m1
≤ δ1. (2.8)

Then the Cauchy problem of system (2.2) with initial condition

(u(0), v(0)) = (u0, v0) (2.9)

has a unique solution (u, v) ∈ C([0, TNF],H
m1

0 (Td, c.c.)) on the time interval [0, TNF]. The
solution satisfies

‖u(t)‖m1
≤ C1‖u0‖m1

≤ δ ∀t ∈ [0, TNF], TNF = C0‖u0‖−4
m1
, (2.10)

where δ is the constant in Lemma 2.1. As a consequence, for all t ∈ [0, TNF] the solution
(u(t), v(t)) remains in the ball ‖u(t)‖m1

≤ δ where Φ3 ◦ Φ4 ◦ Φ5 is well defined, the function

(ũ(t), ṽ(t)) := Φ(u(t), v(t)) (2.11)

(where Φ is the map in (2.5)) solves the original system (2.1) on the time interval [0, TNF], and
ũ(t) solves the Kirchhoff equation (1.1) on [0, TNF].

As the notation suggests, TNF is the existence time we obtain by the normal form procedure.
For more details on the map Φ and on the transformed vector field W (u, v) see [3], [4], [5].

2.2 The effective system

We recall the derivation of the effective system (or effective equation) from [4], [5]. Let

Γ := {|k| : k ∈ Z
d, k 6= 0} ⊆ {√n : n ∈ N} ⊂ [1,∞).

For any pair (u, v) ∈ L2(Td, c.c.) of complex conjugate functions, for any λ ∈ Γ we define

Sλ :=
∑

k∈Zd

|k|=λ

|uk|2 =
∑

k∈Zd

|k|=λ

ukv−k, Bλ :=
∑

k∈Zd

|k|=λ

uku−k, (2.12)

and note that
Sλ ≥ 0, Bλ ∈ C, |Bλ| ≤ Sλ.

The quantity Sλ is called the “superaction” of u on the sphere |k| = λ. Its evolution on the
time interval [0, TNF] remains confined between two multiples of its initial value, as is observed
in the next lemma.
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Lemma 2.3 (From Lemma 2.4 of [5]). Let (u0, v0) ∈ Hm1

0 (Td, c.c.), with u0 in the ball (2.8).
Let (u(t), v(t)) be the solution of the Cauchy problem (2.2), (2.9) on the time interval [0, TNF],
with TNF in (2.10), given by Lemma 2.2. For every t ∈ [0, TNF], let Sλ(t) be the sum defined in
(2.12). Then

C1Sλ(0) ≤ Sλ(t) ≤ C2Sλ(0) (2.13)

for all t ∈ [0, TNF], for all λ ∈ Γ, where C1, C2 > 0 are universal constants.

By (2.13), for every λ ∈ Γ, either Sλ(t) > 0 for all t ∈ [0, TNF], or Sλ(t) = 0 for all t ∈ [0, TNF].
Hence, we decompose Γ as the disjoint union of

Γ0 := {λ ∈ Γ : Sλ = 0}, Γ1 := {λ ∈ Γ : Sλ > 0}. (2.14)

It is observed in [4], [5] that, if (u(t), v(t)) solves (2.2) on some time interval, then, for every
λ ∈ Γ, calculating the Fourier coefficients of W (u, v) in (2.3) and taking the sum over all indices
k ∈ Z

d on the sphere |k| = λ, the corresponding quantities Sλ(t), Bλ(t) in (2.12) satisfies the
equations

∂tSλ =
3i

32

∑

α,β∈Γ
α+β=λ

(BαBβBλ −BαBβBλ)αβλ+
3i

16

∑

α,β∈Γ
α−β=λ

(BαBβBλ −BαBβBλ)αβλ+RSλ
,

∂tBλ = −2i(1 + P)
(
λ+

1

4
λ2Sλ

)
Bλ +RBλ

(2.15)

on the same time interval, where the terms RSλ
, RBλ

satisfies the following estimates.

Lemma 2.4 (Lemma 2.2 of [5]). Let (u, v) ∈ Hm1

0 (Td, c.c.) with ‖u‖m1
≤ δ, where δ is the

constant given by Lemma 2.1 and appearing in (2.10). Then, for all λ ∈ Γ, the terms RSλ
, RBλ

in (2.15) satisfy
|RSλ

| ≤ C‖u‖6m1
Sλ, |RBλ

| ≤ C‖u‖4m1
Sλ, (2.16)

where C > 0 is a universal constant.

Define

Zαβλ := BαBβBλ, ϑαβλ := Im(Zαβλ) =
BαBβBλ −BαBβBλ

2i
. (2.17)

If Sλ, Bλ satisfy system (2.15), then Sλ, Zαβλ satisfy

∂tSλ = − 3

16

∑

α,β∈Γ
α+β=λ

ϑαβλ αβλ+
3

8

∑

α,β∈Γ
β+λ=α

ϑβλα αβλ+RSλ
, (2.18)

∂tZαβλ = −2i(1 + P)
(
α+ β − λ+

1

4
(α2Sα + β2Sβ − λ2Sλ)

)
Zαβλ + R̃Zαβλ

,

where
R̃Zαβλ

:= RBαBβBλ +BαRBβ
Bλ +BαBβRBλ

.

For α + β = λ, isolating the first nontrivial contribution from terms of higher homogeneity
orders, one has

∂tZαβλ = − i

2
(α2Sα + β2Sβ − λ2Sλ)Zαβλ +RZαβλ

(2.19)
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where

RZαβλ
:= − i

2
P2(α

2Sα + β2Sβ − λ2Sλ)Zαβλ + R̃Zαβλ
. (2.20)

The remainder RSλ
in (2.18) has been bounded in Lemma 2.4. The remainder RZαβλ

in (2.20)
is estimated in the next lemma.

Lemma 2.5 (Lemma 2.5 of [5]). Assume the hypotheses of Lemma 2.4. Then for all α, β, λ ∈ Γ
with α+ β = λ the remainder RZαβλ

defined in (2.20) satisfies

|RZαβλ
| ≤ C‖u‖4m1

SαSβSλ, (2.21)

where C > 0 is a universal constant.

2.3 The truncated effective system

If we remove the remainders from equations (2.18) and (2.19), we obtain a system that we call
truncated effective system , which is

∂tSλ = − 3

16

∑

α,β∈Γ
α+β=λ

ϑαβλαβλ+
3

8

∑

α,β∈Γ
β+λ=α

ϑβλαβλα, (2.22)

∂tZαβλ = − i

2
ωαβλZαβλ, (2.23)

where
ωαβλ := α2Sα + β2Sβ − λ2Sλ. (2.24)

For all α, β, λ ∈ Γ such that α+ β = λ, let

rαβλ := Re (Zαβλ).

Since ωαβλ is real, the real and imaginary part of equation (2.23) is given by the system

∂trαβλ =
1

2
ωαβλϑαβλ, ∂tϑαβλ = −1

2
ωαβλrαβλ. (2.25)

The solutions (rαβλ(t), ϑαβλ(t)) of (2.25) remain on a circle, because they satisfy

∂t(|Zαβλ|2) = ∂t
(
r2αβλ + ϑ2αβλ

)
= 0. (2.26)

Thus |Zαβλ| is a prime integral of the truncated effective system (2.22)-(2.23). Therefore, if
Sλ, Zαβλ solve (2.22)-(2.23), then the real and imaginary part of Zαβλ satisfy

rαβλ(t) = ραβλ cos(ϕαβλ(t)), ϑαβλ(t) = ραβλ sin(ϕαβλ(t)), (2.27)

where
ραβλ = |Zαβλ| ≥ 0

is a constant, and ϕαβλ(t) is an angle. Moreover, plugging (2.27) into (2.25) gives the equation
for the evolution of the angle. Hence the truncated effective system (2.22)-(2.23) becomes

∂tSλ = −1

2

∑

α,β∈Γ
α+β=λ

cαβλ sin(ϕαβλ) +
∑

α,β∈Γ
β+λ=α

cβλα sin(ϕβλα), (2.28)

∂tϕαβλ = −1

2
(α2Sα + β2Sβ − λ2Sλ), (2.29)
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where

cαβλ :=
3

8
ραβλαβλ =

3

8
|Zαβλ|αβλ =

3

8
|Bα||Bβ||Bλ|αβλ (2.30)

is a constant. We note that (2.28) and (2.29) form a closed system for the variables Sλ, ϕαβλ.

3 The truncated effective system with two triplets

We consider the case in which the Fourier support Γ1 in (2.14) has only 4 distinct elements,
forming two resonant triplets with two elements in common, in the following way:

Γ1 = {α1, α2, α3, α4}, α1 < α2 < α3 < α4,

α1 + α2 = α3, α2 + α3 = α4, 2α1 6= α2. (3.1)

We can assume, without loss of generality, that the four elements of Γ1 are natural numbers.
Examples of such sets are any four consecutive elements of the Fibonacci sequence greater than
1, like {2, 3, 5, 8}, or, more generally, any set of the form

α1 := m, α2 := m+ p, α3 := 2m+ p, α4 := 3m+ 2p, (3.2)

where m, p are distinct positive integers with

2 ≤ m < p.

Lemma 3.1. Assume (3.1), (3.2). If α, β, λ ∈ Γ1 satisfy α + β = λ, then the ordered triplet
(α, β, λ) must be

(α1, α2, α3) or (α2, α1, α3) or (α2, α3, α4) or (α3, α2, α4),

and there are no other options.

Proof. For example, one has

α3 = α1 + α2 < α2 + α2 < α2 + α3 = α4,

therefore 2α2 /∈ Γ1, and the triplet (α2, α2, 2α2) is not admissible; the other cases can be checked
similarly.

To slightly shorten the notation, we denote

S1 := Sα1
, ϕ123 := ϕα1α2α3

, c123 := cα1α2α3
,

and so on. Hence, system (2.28)-(2.29) becomes

∂tS1 = c123 sin(ϕ123),

∂tS2 = c123 sin(ϕ123) + c234 sin(ϕ234),

∂tS3 = −c123 sin(ϕ123) + c234 sin(ϕ234),

∂tS4 = −c234 sin(ϕ234),

∂tϕ123 = −1

2
(α2

1S1 + α2
2S2 − α2

3S3),

∂tϕ234 = −1

2
(α2

2S2 + α2
3S3 − α2

4S4),

(3.3)

which is a system of 6 equations in 6 unknowns.
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3.1 Meaningfulness condition for the solutions

Our strategy is this: We want to find solutions of the truncated effective system (3.3) with a
prescribed, interesting dynamical behavior, and to show that the solution of the effective system
(2.18)-(2.19) is so close to the solution of the truncated effective system (3.3) that the dynamical
behaviors of the two solutions are very similar, on a sufficiently long interval of time. Later, in
Section 6, we show that there exists a solution of the original PDE (2.1) which is very close (up
to the change of coordinates Φ) to the solution of the effective system.

Hence, we look for solutions of the truncated effective system (3.3) that satisfy the natural
meaningfulness condition required by system (2.18)-(2.19), which is simply this: If a solution is
defined on a time interval [0, T ], then it must satisfy

Sn(t) > 0 ∀n = 1, 2, 3, 4, ∀t ∈ [0, T ]. (3.4)

So, we reject any solution of (3.3) such that some of the Sn becomes non-positive at some time
t (recall definitions (2.12) and (2.14)).

In the following analysis, we first ignore the constrain (3.4); later, we will select only solutions
satisfying it. Analogously, we first consider the coefficients c123, c234 as any two given constants;
later, we will go back to the identities (2.30).

3.2 First integrals and a linear change of coordinates

Given any linear combination E := µ1S1 + µ2S2 + µ3S3 + µ4S4 of S1, . . . , S4 with constant real
coefficients µ1, . . . , µ4, we have

∂tE = (µ1 + µ2 − µ3)c123 sin(ϕ123) + (µ2 + µ3 − µ4)c234 sin(ϕ234)

along the solutions of system (3.3). Hence any E with coefficients µ1, . . . , µ4 satisfying

µ1 + µ2 − µ3 = 0, µ2 + µ3 − µ4 = 0

is a first integral. We choose the two functionally independent first integrals

E1 := S1 + S3 + S4, E2 := S2 + S3 + 2S4. (3.5)

Remark 3.2. One has

α1E1 + α2E2 = α1(S1 + S3 + S4) + α2(S2 + S3 + 2S4) =

4∑

n=1

αnSn (3.6)

because α1 + α2 = α3 and α1 + 2α2 = α2 + (α1 + α2) = α2 + α3 = α4. Hence, when Sn are
given by (2.12), identity (3.6) implies that the Sobolev norm ‖u‖21

2

=
∑4

n=1 αnSn is also a first

integral of (3.3).

At each time t, the values S1(t), S2(t) can be obtained from E1, E2, S3(t), S4(t) by (3.5), i.e.,

S1(t) = E1 − S3(t)− S4(t), S2(t) = E2 − S3(t)− 2S4(t). (3.7)
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Hence system (3.3) can be reduced to a system of 4 equations in the 4 unknowns S3, S4, ϕ123, ϕ234,
obtained by replacing S1, S2 by (3.7) in the last two equations of (3.3). We get

∂tS3 = −c123 sin(ϕ123) + c234 sin(ϕ234),

∂tS4 = −c234 sin(ϕ234),

∂tϕ123 = −1

2
(α2

1E1 + α2
2E2) +

1

2
(α2

1 + α2
2 + α2

3)S3 +
1

2
(α2

1 + 2α2
2)S4,

∂tϕ234 = −1

2
α2
2E2 −

1

2
(α2

3 − α2
2)S3 +

1

2
(2α2

2 + α2
4)S4. (3.8)

We summarize the observations above in the following lemma.

Lemma 3.3. Let c123, c234 be any two constants. The following properties hold.

(i) Let (S1(t), S2(t), S3(t), S4(t), ϕ123(t), ϕ234(t)) be a solution of system (3.3) on some time
interval I. Then E1, E2 defined by (3.5) are constant in time and (S3(t), S4(t), ϕ123(t),
ϕ234(t)) solves system (3.8) on I.

(ii) Let E1, E2 be constants, and let (S3(t), S4(t), ϕ123(t), ϕ234(t)) be a solution of system (3.8)
on some time interval I. Define the functions S1(t), S2(t) by the identities (3.7). Then
(S1(t), S2(t), S3(t), S4(t), ϕ123(t), ϕ234(t)) solves system (3.3) on I.

We note that the sum of the first two equations in (3.8) does not contain the angle ϕ234.
Hence, we consider a linear change of variable that treats the sum S3 + S4 as a new variable.

Lemma 3.4. Let c123, c234 be any two constants. The following properties hold.

(i) Let E1, E2 be constants, and let (S3(t), S4(t), ϕ123(t), ϕ234(t)) be a solution of system (3.8)
on some time interval I. Define the functions x1(t), x2(t), y1(t), y2(t) by the change of
coordinates

ϕ123 = x1, ϕ234 = x2, S3 = y1 − y2, S4 = y2. (3.9)

Then (x1(t), x2(t), y1(t), y2(t)) solves

∂tx1 = −1

2
b1 +

1

2
(α2

1 + α2
2 + α2

3)y1 −
1

2
(α2

3 − α2
2)y2,

∂tx2 = −1

2
b2 −

1

2
(α2

3 − α2
2)y1 +

1

2
(α2

2 + α2
3 + α2

4)y2

∂ty1 = −c123 sin(x1),
∂ty2 = −c234 sin(x2),

(3.10)

on I, where b1, b2 are the constants

b1 := α2
1E1 + α2

2E2, b2 := α2
2E2. (3.11)

(ii) Let b1, b2 be constants, and let (x1(t), x2(t), y1(t), y2(t)) be a solution of system (3.10) on
some time interval I. Define the constants E1, E2 as

E1 =
b1 − b2
α2
1

, E2 =
b2
α2
2

, (3.12)

and define the functions S3(t), S4(t), ϕ123(t), ϕ234(t) by (3.9). Then (S3(t), S4(t), ϕ123(t),
ϕ234(t)) solves system (3.8) on I.
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3.3 The Hamiltonian structure

System (3.10) is the 2-dimensional Hamiltonian system

ẋn = ∂ynH(x, y), ẏn = −∂xnH(x, y), n = 1, 2,

with Hamiltonian

H(x, y) = −c123 cos(x1)− c234 cos(x2)−
1

2
b · y + 1

4
Ay · y (3.13)

where b = (b1, b2) ∈ R
2 and A is the matrix

A :=

(
(α2

1 + α2
2 + α2

3) −(α2
3 − α2

2)
−(α2

3 − α2
2) (α2

2 + α2
3 + α2

4)

)
. (3.14)

The matrix A is symmetric, positive definite and invertible with

A−1 =
1

detA

(
(α2

2 + α2
3 + α2

4) (α2
3 − α2

2)
(α2

3 − α2
2) (α2

1 + α2
2 + α2

3)

)
(3.15)

and
detA = α2

1α
2
4 + (α2

1 + α2
4)(α

2
2 + α2

3) + 4α2
2α

2
3 > 0. (3.16)

The invertibility of A is the so-called twist condition for the Hamiltonian H; thanks to it, we
can eliminate the linear term b · y from the Hamiltonian by a translation of the y variables

x1 = x̃1, x2 = x̃2, y1 = q1 + ỹ1, y2 = q2 + ỹ2, (3.17)

with q = A−1b, namely

q1 =
α2
2 + α2

3 + α2
4

detA
b1 +

α2
3 − α2

2

detA
b2, q2 =

α2
3 − α2

2

detA
b1 +

α2
1 + α2

2 + α2
3

detA
b2. (3.18)

This change of coordinates is symplectic and the new Hamiltonian is just H̃(x̃, ỹ) = H(x̃, q+ ỹ),
whose equations are given by

∂tx̃1 =
1
2(α

2
1 + α2

2 + α2
3)ỹ1 − 1

2(α
2
3 − α2

2)ỹ2,

∂tỹ1 = −c123 sin(x̃1),
∂tx̃2 = −1

2(α
2
3 − α2

2)ỹ1 +
1
2(α

2
2 + α2

3 + α2
4)ỹ2,

∂tỹ2 = −c234 sin(x̃2).

(3.19)

The equivalence of systems (3.10) and (3.19) is described in the following lemma.

Lemma 3.5. Let c123, c234 be any two constants. The following properties hold.

(i) Let b1, b2 be constants, and let (x1(t), x2(t), y1(t), y2(t)) be a solution of system (3.10)
on some time interval I. Define the constants q1, q2 by (3.18), and define the functions
x̃1(t), x̃2(t), ỹ1(t), ỹ2(t) by (3.17). Then (x̃1(t), x̃2(t), ỹ1(t), ỹ2(t)) solves (3.19).

(ii) Let (x̃1(t), x̃2(t), ỹ1(t), ỹ2(t)) be a solution of system (3.19) on some interval I. Let q1, q2
be any two real numbers. Define constants b1, b2 by the identity b = Aq, i.e., define

b1 = (α2
1 + α2

2 + α2
3)q1 − (α2

3 − α2
2)q2, b2 = −(α2

3 − α2
2)q1 + (α2

2 + α2
3 + α2

4)q2, (3.20)

and define the functions x1(t), x2(t), y1(t), y2(t) by (3.17). Then (x1(t), x2(t), y1(t), y2(t))
solves (3.10) on I.
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3.4 Normalization of coefficients by rescaling

Now we want to normalize the leading coefficients of system (3.19), using a rescaling of the time
variable and dilations of the ỹ variables. We consider the change of variables

x̃1(t) = ξ1(Bt), x̃2(t) = ξ2(Bt), ỹ1(t) = A1η1(Bt), ỹ2(t) = A2η2(Bt), (3.21)

where A1, A2, B are defined as follows. We assume that

c123 > 0 (3.22)

and we fix

A1 :=
( 2c123
α2
1 + α2

2 + α2
3

) 1

2

, B :=
(c123(α2

1 + α2
2 + α2

3)

2

) 1

2

, (3.23)

A2 :=
2B

α2
2 + α2

3 + α2
4

. (3.24)

Note that A1 and A2 are related by

A1 = A2γ, with γ :=
α2
2 + α2

3 + α2
4

α2
1 + α2

2 + α2
3

. (3.25)

Thus, system (3.19) becomes

ξ̇1 = η1 − µ1η2,

η̇1 = − sin(ξ1),

ξ̇2 = η2 − µ2η1,

η̇2 = −λ sin(ξ2),

(3.26)

where

µ1 :=
α2
3 − α2

2

α2
2 + α2

3 + α2
4

=
(α2

3 − α2
2)A2

2B
, (3.27)

µ2 :=
α2
3 − α2

2

α2
1 + α2

2 + α2
3

= µ1γ =
(α2

3 − α2
2)A1

2B
, (3.28)

λ :=
c234(α

2
2 + α2

3 + α2
4)

c123(α2
1 + α2

2 + α2
3)

=
c234
c123

γ =
c234
A2B

. (3.29)

We observe that the system with µ1 = 0 is given by the sum of two uncoupled Hamiltonians,
while for µ1 6= 0 the Hamiltonian structure is lost. The equivalence of systems (3.19) and (3.26)
is described in the following lemma.

Lemma 3.6. The following statements are satisfied.

(i) Let c123, c234 be any two constants, with c123 > 0, and let (x̃1(t), x̃2(t), ỹ1(t), ỹ2(t)) be
a solution of system (3.19) on some time interval [0, T ]. Let A1, A2, B be the constants
defined in (3.23), (3.24). Define the functions ξ1, ξ2, η1, η2 as

ξ1(t) = x̃1

( t
B

)
, ξ2(t) = x̃2

( t
B

)
, η1(t) =

1

A1
ỹ1

( t
B

)
, η2(t) =

1

A2
ỹ2

( t
B

)
. (3.30)

Define the constants µ1, µ2, λ by (3.27), (3.28), (3.29). Then (ξ1(t), ξ2(t), η1(t), η2(t))
solves (3.26) on the time interval [0, BT ].
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(ii) Let λ be any constant. Let µ1, µ2 be the constants defined in (3.27), (3.28). Let (ξ1(t), ξ2(t), η1(t), η2(t))
be a solution of system (3.26) on some time interval [0, T ]. Let A1 be any positive constant.
Define the constant c123 as

c123 =
α2
1 + α2

2 + α2
3

2
A21 (3.31)

and define the constant c234 by means of (3.29), i.e., c234 = c123λ/γ, where γ is defined
in (3.25). Define the constant B by the second identity in (3.23), and the constant A2 by
(3.24). Define the functions x̃1, x̃2, ỹ1, ỹ2 by (3.21). Then (x̃1(t), x̃2(t), ỹ1(t), ỹ2(t)) solve
(3.19) on the time interval [0, B−1T ].

3.5 Large Fourier frequency as a perturbation parameter

Recall the definition (3.2) of α1, . . . , α4 as functions of the two integer parameters m, p. Then

α2
3 − α2

2 = (2m+ p)2 − (m+ p)2 = 3m2 + 2mp,

α2
1 + α2

2 + α2
3 = m2 + (m+ p)2 + (2m+ p)2 = 6m2 + 6mp + 2p2,

α2
2 + α2

3 + α2
4 = (m+ p)2 + (2m+ p)2 + (3m+ 2p)2 = 14m2 + 18mp + 6p2.

We note that the monomial p2 cancels out in the difference α2
3 − α2

2, while it is present in the
other two sums. For this reason, taking p large with respect to m gives a small parameter, which
we will use in our perturbation analysis (the other small parameter of the problem is the size of
the solution, i.e., the size of the initial data of the Kirchhoff equation). Denoting

σ :=
m

p
, (3.32)

one has

µ1 =
2σ + 3σ2

6 + 18σ + 14σ2
= σ

(1
3
+ µ̃1(σ)

)
, γ =

6 + 18σ + 14σ2

2 + 6σ + 6σ2
= 3 +O(σ),

µ2 = µ1γ =
2σ + 3σ2

2 + 6σ + 6σ2
= σ

(
1 + µ̃2(σ)

)
, µ̃1(σ), µ̃2(σ) = O(σ) as σ → 0, (3.33)

where µ̃1(σ), µ̃2(σ) are defined by the identities (3.33). We also note that 1 < γ < 3 for all
σ > 0.

Thus, for σ = m/p small, the “coupling” terms µ1η2 and µ2η1 in system (3.26) can be
considered as perturbations of the “unperturbed” system of two uncoupled pendulums

{
ξ̇1 = η1,

η̇1 = − sin(ξ1),

{
ξ̇2 = η2,

η̇2 = −λ sin(ξ2).
(3.34)

We want to normalize also the coefficient λ appearing in the last equation of system (3.26).
Later, we will see that this normalization corresponds to a constraint on the initial data for
equation (2.23); at this stage, however, we simply observe that the parameter λ in part (ii) of
Lemma 3.6 is not subject to any constraint. Thus, in the following analysis we fix λ = 1 and
simply do not consider other values of that parameter. For λ = 1, system (3.26) becomes





ξ̇1 = η1 − µ1η2,

η̇1 = − sin(ξ1),

ξ̇2 = η2 − µ2η1,

η̇2 = − sin(ξ2).

(3.35)
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System (3.35) has a conserved quantity (obtained expressing the old Hamiltonian in terms of
the new variables), which is

µ2

(1
2
η21 + 1− cos ξ1

)
+ µ1

(1
2
η22 + 1− cos ξ2

)
− µ1µ2η1η2. (3.36)

The only parameters in system (3.35) are the constants µ1, µ2 defined in (3.27), (3.28), which
depend only on the ratio σ = m/p, and tend to zero as σ → 0 (see (3.33)). The “unperturbed”
part of system (3.35) is (3.34) with λ = 1, that is,

{
ξ̇1 = η1,

η̇1 = − sin(ξ1),

{
ξ̇2 = η2,

η̇2 = − sin(ξ2).
(3.37)

System (3.37) is fully normalized and it is the 2-dimensional Hamiltonian system of two uncou-
pled normalized pendulums

ξ̇n = ∂ηnH, η̇n = −∂ξnH, n = 1, 2,

with Hamiltonian

H = H1(ξ1, η1) +H2(ξ2, η2), Hn(ξn, ηn) =
1

2
η2n +

(
1− cos(ξn)

)
, n = 1, 2. (3.38)

The constant term 1 in the formula of Hn has been added just to give zero energy to the elliptic
equilibrium.

It is convenient to consider the system (3.35) as a perturbed double-pendulum system where
the perturbative parameter is given by σ, instead of µ1, µ2. Namely, using (3.33),

ξ̇1 = η1 − σ
(1
3
+ µ̃1(σ)

)
η2,

η̇1 = − sin(ξ1),

ξ̇2 = η2 − σ
(
1 + µ̃2(σ)

)
η1,

η̇2 = − sin(ξ2).
(3.39)

The conserved quantity in (3.36), divided by σ, is

E(ξ1, η1, ξ2, η2) :=
(1
3
+ µ̃1(σ)

)
H1(ξ1, η1) +

(
1 + µ̃2(σ)

)
H2(ξ2, η2)

− σ
(1
3
+ µ̃1(σ)

)(
1 + µ̃2(σ)

)
η1η2.

(3.40)

4 Chaos for two weakly coupled pendulums

In this section we prove the following result about chaotic solutions of system (3.39). We denote
N0 := {0, 1, 2, . . .} the set of nonnegative integers. Given an energy parameter a ∈ (0, 2), we
denote by (ξ∗1(t), η

∗
1(t)) the periodic solution of the pendulum satisfying

H1(ξ
∗
1(t), η

∗
1(t)) = a, ξ∗1(0) = 0 η∗1(0) > 0. (4.1)

To emphasize its dependence on a we will also denote ξ∗1(t) = ξ∗1(t; a) and η
∗
1(t) = η∗1(t; a).

Proposition 4.1. There exists a universal constant a0 ∈ (0, 2) (see Lemma 4.6) such that
the following holds. Let a ∈ [a0, 2) and let Ta be the period of (ξ∗1(t; a), η

∗
1(t; a)). There exist
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universal constants σ0 ∈ (0, 1), C1, C2 > 0 such that for every σ ∈ (0, σ0) there exists M0(σ) in
the interval

C1 log(σ
−1) ≤M0(σ) ≤ C2 log(σ

−1)

such that the following properties hold. Let (m0,m1,m2, . . .) = (mj)j∈N0
be any sequence of

integers with mj ≥M0(σ) for all j ∈ N. Then, there exists a solution (ξ1, η1, ξ2, η2)(t) of system
(3.39) such that the following holds.

(i) The function (ξ1, η1) satisfies

sup
t∈R

|ξ1(t)− ξ∗1(t)| ≤ Cσ, sup
t∈R

|η1(t)− η∗1(t)| ≤ Cσ,

for some universal constant C > 0.

(ii) There exists a sequence of times (t0, t1, t2, . . .) = (tj)j∈N0
with

t0 = 0, tj+1 = tj + Ta(mj + θj), 0 ≤ θj < 1, ∀j ∈ N0 (4.2)

such that
η2(tj) = 1 ∀j ∈ N0.

Moreover, there exists another sequence of times (t̄j)j∈N0
satisfying tj < t̄j < tj+1 such

that

1 < η2(t) ≤ 2 + Cσ ∀t ∈ (tj , t̄j), −Cσ ≤ η2(t) < 1 ∀t ∈ (t̄j , tj+1) (4.3)

and
max
t∈[tj ,t̄j ]

η2(t) ≥ 2−Cσ, min
t∈[t̄j ,tj+1]

η2(t) ≤ Cσ (4.4)

for some universal constant C > 0.

We remark that η2 = 1 is the value around which η2(t) is oscillating up and down with the
randomly chosen sequence of times.

In order to prove Proposition 4.1 we shall find a partially hyperbolic periodic orbit of the full
system (3.39) and show that, for σ > 0 small enough, its stable and unstable invariant manifolds
intersect transversally. This will imply the existence of a Smale horseshoe and the existence of
symbolic chaotic dynamics.

Remark 4.2. The pendulum energy a in (4.1) is used as a free parameter only in this section.
Proposition 4.1 will be applied in Sections 5 and 6 only for a = a0. Since a0 is a universal
constant, for a = a0 any quantity depending only on a becomes a universal constant.

4.1 Partially hyperbolic periodic orbit

We start by searching for the partially hyperbolic periodic solution. The unperturbed system
(σ = 0) has plenty of partially hyperbolic periodic orbits, which are given for instance by the
product of librations in the first pendulum (in the plane (ξ1, η1)) and the saddle of the second
pendulum (in the plane (ξ2, η2)). We select one of these orbits and we apply an implicit function
theorem argument to prove the existence of a nearby periodic orbit with the same period.

We consider the periodic orbit

P = P(t; a) := (ξ∗1(t; a), η
∗
1(t; a), π, 0) (4.5)
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of the unperturbed system (3.37) (which is system (3.39) with σ = 0), where (ξ∗1 , η
∗
1) is defined in

(4.1) and a ∈ (0, 2) will be fixed at the end of subsection 4.2. Note that the elliptic equilibrium
(ξ1, η1) = (0, 0) of the first pendulum has energy H1(0, 0) = 0, and its saddle (ξ1, η1) = (π, 0),
as well as its homoclinic orbits, has energy H1(π, 0) = 2. The solution P is supported on the
curve

T0 := {(ξ1, η1, ξ2, η2) : H1(ξ1, η1) = a, ξ2 = π, η2 = 0}. (4.6)

We denote by T the period Ta of the orbit P and by ω := 2π/T its frequency. Of course T0, T, ω
depend on the energy parameter a; in fact, all the quantities in the present subsection and in the
next one (included, in particular, the smallness radius σ1 given by Proposition 4.3) depend on
a. Nonetheless, in general, we do not indicate explicitly the dependence on a; we just underline
that, after fixing a, every quantity appearing in subsections 4.1 and 4.2 will be determined, with
no dependence on any other hidden parameter.

The unperturbed (σ = 0) homoclinic manifold of P is

W0(P) = {(ξ1, η1, ξ2, η2) : H1(ξ1, η1) = a, H2(ξ2, η2) = 2}. (4.7)

We consider its time-parametrization

Γ±
0 := {(ξ∗1(τ1), η∗1(τ1), qh(τ2), p±h (τ2)) : τ1, τ2 ∈ R}, (4.8)

where

(qh(s), p
±
h (s)) =

(
2 arcsin(tanh(s)), ± 2

cosh(s)

)
.

Now we prove that the periodic orbit P persists when 0 < σ ≪ 1. More precisely, we prove the
following result.

Proposition 4.3. Let P be the T -periodic orbit of (3.37) defined in (4.5). Then, there exist
constants σ1 > 0, C > 0 such that, for all 0 < σ < σ1, there exists a T -periodic solution Pσ(t)
of (3.39) which is σ-close to P in the C1-topology, namely

‖Pσ − P‖C1(R) ≤ Cσ.

Moreover Pσ possesses one stable and one unstable hyperbolic direction.

Recall that system (3.39) has the energy (3.40) as first integral. Then, the existence of a
hyperbolic periodic orbit at each energy level is a consequence of classical perturbation theory.
However, Proposition 4.3 gives the existence of a periodic orbit for a fixed period. This could be
shown by proving that the period is monotone with E . Below, to make this paper selfcontained,
we give an alternative proof of Proposition 4.3 based on a symmetry argument.

Proof of Proposition 4.3. To prove the persistence of the periodic orbit P we use the fact that
the system (3.39) is reversible with respect to the involution

ρ : (T× R)2 → (T× R)2 ρ(ξ1, η1, ξ2, η2) = (−ξ1, η1,−ξ2, η2).

This means that, if we denote by X the vector field of (3.39), then X ◦ ρ = −ρ∗X, where ρ∗ is
the differential of ρ, which acts on the tangent space R4. To apply an implicit function theorem
argument it is convenient to pass to action-angle coordinates on the first pendulum (plane
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(ξ1, η1)). This will simplify the analysis of the linearized problem in the tangential directions at
the periodic orbit P. In the domain

S := {(x1, y1) ∈ T× R : H1(x1, y1) ∈ (0, 2)} ,

we consider the action-angle variables transformation

Φ: T× I → S, (ξ1, η1) = Φ(θ, I) = (f(θ, I), g(θ, I))

for some open interval I ⊂ R. If we fix (ξ1, η1) and call 2κ = H1(ξ1, η1), we can express f and
g using elliptic functions in the following way:





f(θ, I) = 2 arcsin

(√
κ sn

(
2K(κ)

π
θ
∣∣∣κ

))

g(θ, I) = 2
√
κ cn

(
2K(κ)

π
θ
∣∣∣κ

)
,

(4.9)

where K(κ) is the complete elliptic integral of first kind and sn and cn are the elliptic sine and
the elliptic cosine respectively (see e.g. [18]).

We now drop the sub-index from ξ2, η2. Let us denote by

Ψ = (Φ, Id) : T× I × T× R → S × T×R, Ψ(θ, I, ξ, η) = (Φ(θ, I), ξ, η).

The involution ρ expressed in these new coordinates is just given by ν = Ψ−1 ◦ ρ ◦ Ψ. Since
the elliptic sine is odd and the elliptic cosine is even (with respect to its first variable), it is
straightforward to see that system (3.39) in the new coordinates is reversible with respect to the
involution

ν(θ, I, ξ, η) = (−θ, I,−ξ, η).
We denote by I 7→ Ω(I) the action-to-frequency map of the unperturbed pendulum.

Remark 4.4. Note that Ω′(I) 6= 0 for all I ∈ I.
The unperturbed periodic orbit P now reads as

θ(t) = Ω(I0)t, I(t) = I0, ξ(t) = π, η(t) = 0

for some I0 ∈ I. We remark that Ω(I0) = ω, where ω = 2π/T was defined below (4.6). We
consider the scaled time t ωt, and the system (3.39) becomes





ωθ̇ = Ω(I) + σR1(θ, I, η),

ωİ = σR2(θ, I, η),

ωξ̇ = η + σR3(θ, I),

ωη̇ = − sin(ξ)

(4.10)

where the functions Ri, i = 1, 2, 3, are determined by the relation

[DΨ(θ, I, ξ, η)]−1




−(13 + µ̃1(σ))η
0

−(1 + µ̃2(σ))g(θ, I)
0


 =




R1(θ, I, η)
R2(θ, I, η)
R3(θ, I)

0


 .
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We look for 2π-periodic, smooth, reversible solutions of (4.10), namely u(t) = (θ(t), I(t), ξ(t), η(t))
such that νu(−t) = u(t). In other words, we look for solutions in the invariant set

C1
odd, even(T) := {(θ(t), I(t), ξ(t), η(t)) ∈ C1(T;T× I × T× R) : θ(t), ξ(t) odd, I(t), η(t) even}.

Similarly, we define the space

C0
even, odd(T) := {(g1(t), g2(t), g3(t), g4(t)) ∈ C0(T;R4) : g1(t), g3(t) even, g2(t), g4(t) odd}.

Remark 4.5. We note that 2π-solutions of (4.10) correspond to T -periodic solutions of (3.39).

Let us define

F(σ; ·) : C1
odd, even(T) → C0

even, odd(T), F(σ; θ, I, ξ, η) =




ωθ̇ − Ω(I)− σR1(θ, I, η)

ωİ − σR2(θ, I, η)

ωξ̇ − η − σR3(θ, I)
ωη̇ + sin(ξ)


 .

Since the maps Ω, Ψ and the vector field X are analytic, we have that F(σ; ·) is at least C1.
Then

F(0;ωt, I0, π, 0) = 0.

We now study the linearized system at the unperturbed solution. We fix (g1, g2, g3, g4) ∈
C0
even, odd(T) and we look for solutions of the linear system





ω∂tθ − Ω′(I0)I = g1

ω∂tI = g2

ω∂tξ − η = g3

ω∂tη − ξ = g4.

(4.11)

We observe that the above system is decoupled, hence we can study separately the equations for
(θ, I) and the ones for (ξ, η). Concerning the former, we first solve the equation for the actions.
Since g2 is odd we have 〈g2〉 = 0 and

I − 〈I〉 = (ω∂t)
−1g2,

where we denote by 〈·〉 the time average over T and we denote by (ω∂t)
−1g2 the primitive of g2

with zero average. Hence I is determined up to its average. Substituting in the equation for the
angle we obtain

ω∂tθ = Ω′(I0)(ω∂t)
−1g2 +Ω′(I0)〈I〉 + g1. (4.12)

Equation (4.12) can be solved only if the r.h.s. has zero average. Therefore we fix

〈I〉 = − 〈g1〉
Ω′(I0)

, θ = (ω∂t)
−1

[
Ω′(I0)(ω∂t)

−1g2 +Ω′(I0)〈I〉+ g1
]

(note that Ω′(I0) 6= 0, see Remark 4.4). Concerning the equations for the (ξ, η) variables we
have the following: by setting v := ξ+ η, w := ξ− η, h := g3 + g4 and h̃ := g3 − g4 we have that

ω∂tv − v = h, ω∂tw +w = h̃. (4.13)
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By Fourier series, one has that

v(t) =
∑

k∈Z

hk
iωk − 1

eikt, w(t) =
∑

k∈Z

h̃k
iωk + 1

eikt

are the unique solutions of (4.13). Since ξ = (v + w)/2 and η = (v − w)/2, we recover the ξ, η
components of the solution of (4.11). From the explicit expression of the solutions we have that
for gi ≡ 0, i = 1, . . . , 4, the only solution of (4.11) is zero. Moreover the solutions are of class
C1. This implies that dF(0;ωt, I0, π, 0) is invertible and by the implicit function theorem there
exists σ1 > 0 and a C1 function g : (−σ1, σ1) → C1

odd, even(T) such that

F(σ; g(σ)) = 0 ∀σ ∈ (−σ1, σ1), g(0; t) = (ωt, I0, π, 0).

We call Pσ the periodic orbit g(σ) written in the original coordinates (ξ1, η1, ξ2, η2). We
also notice that by (4.13) this orbit is hyperbolic in the (ξ2, η2) directions. This concludes the
proof.

By classical theory of persistence of invariant manifolds, Pσ has stable and unstable invariant
manifolds W s,u

σ (Pσ) that depend differentiably on σ. Moreover these manifolds can be locally
parametrized as C1 graphs over the unperturbed invariant manifold (4.7).

4.2 Transverse intersection of invariant manifolds

In this section we prove that the stable and unstable invariant manifolds W s,u
σ (Pσ) intersect

transversally at some point. Since the invariant manifolds have dimension 2 and we look for
intersections within a 3-dimensional energy level (see (3.40)), it is sufficient to construct a 1-
dimensional section Λ and measure the distance between the manifolds on the projection of
Λ.

We recall the time parameterization of the unperturbed separatrix Γ±
0 given in (4.8). By

symmetry we can consider just a single branch of the unperturbed homoclinic manifold, say
Γ0 = Γ+

0 . Let us consider a point z0 = z0(τ1, τ2) ∈ Γ0 ⊂ {H1 = a, H2 = 2} and define the
section

Λ := {z0 + λ∇H1(z) : λ ∈ R},
where we use the notation H1(ξ1, η1, ξ2, η2) := H1(ξ1, η1). The line Λ passes through z0 and it
is normal to Γ0.

By the continuous dependence of the invariant manifolds on the parameters, for σ small
enough, Λ intersects transversally also W s,u

σ (Pσ) at two points zs,uσ = zs,uσ (τ1, τ2). We use the
unperturbed energy of the first pendulum H1 to measure the distance between zsσ and zuσ . Note
that the gradient of H1 never vanishes on Γ0, hence it is a good measure of a displacement in
the normal directions of Γ0. We define the distance

H1(z
s
σ)−H1(z

u
σ) = σM +O(σ2), (4.14)

where the first order of this distance is given by

M =M(τ1, τ2) :=
d

dσ |σ=0

(H1(z
s
σ)−H1(z

u
σ)).
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By classical arguments (see for instance [31]) we have that the first order is given by the Melnikov
integral

M(τ1, τ2) =

∫ +∞

−∞
DH1(Φ

t
H(Γ0(τ1, τ2)))[Y (ΦtH(Γ0(τ1, τ2)))] dt,

where Y is the first order in σ of the perturbation of the system (3.39), namely

Y (ξ1, η1, ξ2, η2) := (−η2/3, 0,−η1, 0),
and ΦtH is the Hamiltonian flow of H in (3.38). We observe that (recall (4.8))

ΦtH(Γ0(τ1, τ2)) = (ξ∗1(τ1 + t), η∗1(τ1 + t), qh(τ2 + t), p+h (τ2 + t)).

By the autonomous nature of system (3.39), the Melnikov integral depends just on one param-
eter. We define τ := τ2 − τ1 and we consider the reduced Melnikov integral

M(τ) := −1

3

∫ +∞

−∞
p+h (τ + s) sin(ξ∗1(s)) ds.

Note that, for all τ1 ∈ R, one has M(τ) =M(τ1, τ1+τ) =M(0, τ). We now prove the following.

Lemma 4.6. There exists a universal constant a0 ∈ (0, 2) such that, for all a ∈ [a0, 2), the
reduced Melnikov integral M(τ) has a non-degenerate zero at τ = 0.

Proof. We observe that M(0) = 0 because ξ∗1(t) is an odd function, while p+h (t) is even. The
derivative of the reduced Melnikov integral at τ = 0 is

d

dτ
M(0) =

1

3

∫ +∞

−∞
sin(qh(s)) sin(ξ

∗
1(s)) ds =

2

3

∫ +∞

0
sin(qh(s)) sin(ξ

∗
1(s)) ds.

We recall that (ξ∗1 , η
∗
1) in (4.5) depends on the parameter a, and we explicitly indicate the

dependence on a of the integral we want to study, denoting

J(a) :=

∫ +∞

0
sin(qh(s)) sin(ξ

∗
1(s; a)) ds.

We have to prove that J(a) is non zero for some value of a ∈ (0, 2). By the classical theorem of
continuous dependence on initial data for ODEs, one has the following pointwise convergence:

for every s ∈ [0,∞), lim
a→2

ξ∗1(s; a) = qh(s)

(even more, the convergence is uniform on compact intervals). Hence, for every s ∈ [0,∞), fa(s)
converges to f2(s) as a→ 2, where

fa(s) := sin(qh(s)) sin(ξ
∗
1(s; a)), f2(s) := sin2(qh(s)).

Moreover, since qh(s) ∈ [0, π) for all s ∈ [0,∞), one has

|fa(s)| ≤ | sin(qh(s))| = sin(qh(s)) =
2 sinh(s)

cosh2(s)
=: g(s) ∀s ∈ [0,∞),

and g ∈ L1(0,∞). Hence, by the dominated convergence theorem,

J∗ := lim
a→2

J(a) =

∫ ∞

0
f2(s) ds =

∫ ∞

0
g2(s) ds.

The limit J∗ is finite by the exponential decay of g2, and it is positive because g2 is positive.
Hence there exists a0 ∈ (0, 2) such that |J(a) − J∗| ≤ J∗/2 for all a ∈ [a0, 2), and the lemma is
proved.
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By the above lemma and the Implicit Function Theorem, for σ > 0 small enough, there
exists at least one zero of the distance (4.14), with transverse intersection.

4.3 Symbolic dynamics

We introduce the section

Π := {(ξ1, η1, ξ2, η2) : ξ2 = 0, η2 > 0, E(ξ1, η1, ξ2, η2) = E(Pσ)},

where E(Pσ) is the value of the prime integral E in (3.40) at the solution Pσ. This section is
transverse to the unperturbed flow (σ = 0) at a point of W0(P) and so, for σ > 0 small enough,
also to the perturbed one. Moreover, by Lemma 4.6, it contains points of W s

σ(Pσ) ⋔ W u
σ (Pσ)

(where ⋔ means transverse intersection).
Denote by Φt the flow of system (3.39). Fixed a point z ∈ Π, we define T (z) > 0 as the first

(forward) return time to Π. For those points z that do not hit back the section Π (for instance,
the points of W s

σ(Pσ)), we set T (z) = +∞. We define the open set U ⊂ Π as

U := {z ∈ Π : T (z) < +∞}

and the associated Poincaré map P : U ⊂ Π → Π by P(z) = Φt(z)|t=T (z).

Proposition 4.7. (Smale Horseshoe) There exist universal constants σ0, C1, C2 > 0 such that
for all σ ∈ (0, σ0) there exists a positive integer M0(σ) in the interval

C1 log(σ
−1) ≤M0(σ) ≤ C2 log(σ

−1) (4.15)

such that the Poincaré map P possesses an invariant set Y ⊂ U whose dynamics is conjugated
to the infinite symbols shift. Namely, there exists a homeomorphism h : A → Y , where

A := {ω = {ωk}k∈Z : ωk ∈ N, ωk ≥M0(σ) ∀k ∈ Z},

such that P|Y = h ◦ d ◦ h−1 where d : A → A is the shift

(dω)k = ωk+1, k ∈ Z.

Moreover h−1 can be defined as follows. Associated to z ∈ Y one can define the sequence of
hitting times

t0 = 0, tk = tk−1 + T (Pk−1z) for k ≥ 1, tk = tk+1 − T (Pkz) for k ≤ −1,

and h−1(z) := ω = (ωk)k∈Z, with

ωk =

⌊
tk − tk−1

T

⌋
,

where T = Ta is the period of the periodic orbit Pσ, and ⌊·⌋ denotes the integer part.

Proof. The proof follows the same lines as the construction of symbolic dynamics done by Moser
in Chapter 3 of [30].

Proposition 4.7 concludes the proof of Proposition 4.1. Note that the return times to the
section are large since orbits get close to the hyperbolic periodic orbit.
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5 Back to the truncated effective system

In Section 4 we have proved the existence of chaotic solutions for system (3.39). These solutions
are global in time. In the next lemma we obtain the corresponding solutions of the truncated
effective system (3.3).

Lemma 5.1. Let a = a0 in Proposition 4.1, and let σ0 be the corresponding universal constant
given by Proposition 4.1. Let m, p be two integers, 2 ≤ m < p, with ratio σ := m/p in the interval
(0, σ0). Define α1, . . . α4 by (3.2), µ̃1(σ), µ̃2(σ) by (3.33), and γ by the second identity in (3.25).
Assume the hypotheses of Proposition 4.1, and consider the solution (ξ1(t), η1(t), ξ2(t), η2(t)) of
system (3.39) obtained in Proposition 4.1.

Consider any three real numbers A1, q1, q2, with A1 > 0, and define the following constants:
define c123 by (3.31), define c234 = c123/γ, define B by the second identity in (3.23), define A2

by (3.24), define b1, b2 by (3.20), define E1, E2 by (3.12). Define the functions

S1(t) := E1 − q1 − A1η1(Bt),

S2(t) := E2 − q1 − q2 − A1η1(Bt)− A2η2(Bt),

S3(t) := q1 − q2 + A1η1(Bt)− A2η2(Bt),

S4(t) := q2 + A2η2(Bt),

ϕ123(t) := ξ1(Bt),

ϕ234(t) := ξ2(Bt).

(5.1)

Then (S1(t), S2(t), S3(t), S4(t), ϕ123(t), ϕ234(t), c123, c234) satisfies (3.3) for all t ∈ R.

Proof. We apply Lemma 3.6-(ii) with λ = 1 to go back from system (3.39) to system (3.19),
then Lemma 3.5-(ii) to go back from system (3.19) to system (3.10), then Lemma 3.4-(ii) to
go back from system (3.10) to system (3.8), and finally Lemma 3.3-(ii) to go back from system
(3.8) to system (3.3).

5.1 Positivity of the superactions

Now we come to the question whether the solutions of system (3.3) obtained in Lemma 5.1
satisfy the inequalities (3.4). As a first step, we study the constant terms

E1 − q1, E2 − q1 − q2, q1 − q2, q2 (5.2)

appearing in the definition of S1, . . . , S4 in Lemma 5.1. We compute the formula of E1, E2 as
functions of q1, q2: from (3.12) and (3.20) we get

E1 =
α2
1 + 2α2

3

α2
1

q1 −
2α2

3 + α2
4

α2
1

q2, E2 = −α
2
3 − α2

2

α2
2

q1 +
α2
2 + α2

3 + α2
4

α2
2

q2. (5.3)

Next, we observe in the following lemma that q1, q2 can be chosen such that the constant terms
(5.2) are all positive.

Lemma 5.2. Let q1, q2 be positive real numbers with ratio q1/q2 in the interval (1 + r
2 , 1 + r),

r = α2
4/α

2
3, and let E1, E2 be defined by (5.3). Then the constants (5.2) are all positive. In

particular, if

q1 =
(
1 +

2

3
r
)
q2, (5.4)
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then

E1 − q1 =
1

3

α2
4

α2
1

q2, E2 − q1 − q2 =
1

3

α2
4

α2
2

q2, q1 − q2 =
2

3

α2
4

α2
3

q2. (5.5)

Proof. By (5.3),

E1 − q1 =
(2α2

3

α2
1

q1
q2

− 2α2
3 + α2

4

α2
1

)
q2, E2 − q1 − q2 =

(
− α2

3

α2
2

q1
q2

+
α2
3 + α2

4

α2
2

)
q2,

q1 − q2 =
(q1
q2

− 1
)
q2.

We write the ratio q1/q2 as 1 + ϑr, where ϑ ∈ R is a free parameter and r = α2
4/α

2
3. Then

E1 − q1 =
α2
4q2
α2
1

(2ϑ− 1), E2 − q1 − q2 =
α2
4q2
α2
2

(1− ϑ), q1 − q2 =
α2
4q2
α2
3

ϑ.

The minimum
min{2ϑ − 1, 1 − ϑ, ϑ, 1} = min{2ϑ − 1, 1− ϑ}

is positive for ϑ ∈ (12 , 1), and it reaches its maximum value at ϑ = 2/3.

Note that, by (3.2), the ratio r = α2
4/α

2
3 tends to 4 as σ = m/p → 0. By (3.25), (3.33), the

constant A2 in Lemma 5.1 satisfies

A2 =
A1

γ
=

1 + 3σ + 3σ2

3 + 9σ + 7σ2
A1 ≤ A1. (5.6)

The solutions η1, η2, constructed in Proposition 4.1 and appearing in Lemma 5.1, satisfy

sup
t∈R

|η1(t)| ≤ 3, sup
t∈R

|η2(t)| ≤ 3 (5.7)

(more accurate estimates about η1, η2 have been obtained in Proposition 4.1). Thus, we prove
the following bound for Sn from below.

Lemma 5.3. Let q2, A1 be any two positive real numbers, and define q1 by (5.4). If

A1 ≤
q2
9
, (5.8)

then the functions Sn(t) defined in Lemma 5.1 satisfy

Sn(t) ≥
q2
2
> 0 ∀t ∈ R and ∀n = 1, 2, 3, 4. (5.9)

Proof. By (5.5) and (5.6), the functions Sn(t) defined in Lemma 5.1 satisfy for all t ∈ R

S1(t) ≥ E1 − q1 − 3A1 =
1

3

α2
4

α2
1

q2 − 3A1,

S2(t) ≥ E2 − q1 − q2 − 3A1 − 3A2 ≥
1

3

α2
4

α2
2

q2 − 6A1,

S3(t) ≥ q1 − q2 − 3A1 − 3A2 ≥
2

3

α2
4

α2
3

q2 − 6A1,

S4(t) ≥ q2 − 3A2 ≥ q2 − 3A1.
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By (3.2), one has
α2
4

α2
1

> 4,
α2
4

α2
2

> 4,
2α2

4

α2
3

> 4,

which, together with (5.8), implies (5.9).

By Lemma 5.3, the condition (5.8) implies the meaningfulness condition (3.4) for the solu-
tions of system (3.3). By Lemma 5.3, now we have two free parameters, which are q2 and A1,
related by the inequality 0 < A1 ≤ q2/9, while q1 is now constrained by formula (5.4).

5.2 Initial data in the normal form ball

The special solutions of system (3.3) defined in Lemma 5.1 will be compared, by a Gronwall
argument, with those of the full (i.e., non-truncated) effective system (2.18), (2.19) starting at
the same initial data at time t = 0. The initial data we are interested in correspond to functions
u0(x) in the ball (2.8), because every u0 in that ball produces a solution of the Cauchy problem
(2.2), (2.9) that remains, for a sufficiently long interval of time, in the domain where the normal
form transformation is well-defined, as is explained quantitatively in Lemma 2.2. Recall that
δ1 > 0 in (2.8) is a universal constant, and m1 is defined in (2.6). The following lemma deals
with the ball (2.8) written in terms of Sn.

Lemma 5.4. Consider the solutions of system (3.3) given by Lemma 5.1, and assume (5.4),
(5.8). Then

4∑

n=1

α2s
n Sn(t) ≤ 8α2s

4 q2 ∀t ∈ R, s ∈ [1,∞). (5.10)

Proof. For all t ∈ R, if the smallness condition (5.8) is satisfied, then the solutions of system
(3.3) obtained in Lemma 5.1 satisfy

4∑

n=1

α2s
n Sn ≤ α2s

1 (E1 − q1 + 3A1) + α2s
2 (E2 − q1 − q2 + 6A1) + α2s

3 (q1 − q2 + 6A1) + α2s
4 (q2 + 3A1)

≤ α2s
1

2α2
4q2
α2
1

+ α2s
2

2α2
4q2
α2
2

+ α2s
3

2α2
4q2
α2
3

+ α2s
4 2q2 ≤ 8α2s

4 q2,

where we have used the bounds in (5.7) for η1, η2, the identities (5.5) for the constants terms
(5.2), the bound (5.8) for A1, the bound (5.6) for A2, and the fact that s ≥ 1, α1 < · · · < α4.

A consequence of this lemma is the following. If one chooses q2 such that

8α2m1

4 q2 ≤ δ21 , (5.11)

where m1, δ1 are the universal constants of the ball (2.8), then

4∑

n=1

α2m1

n Sn(t) ≤ δ2 ∀t ∈ R. (5.12)
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5.3 Construction of a compatible initial datum

Given a trigonometric polynomial u ∈ C(Td,C), Fourier supported on the set {k ∈ Z
d : |k| ∈

{α1, α2, α3, α4}}, with Fourier coefficients uk, we use the superscript u to denote

S(u)
n :=

∑

|k|=αn

|uk|2, B(u)
n :=

∑

|k|=αn

uku−k, n = 1, 2, 3, 4, (5.13)

Z
(u)
123 := B

(u)
1 B

(u)
2 B

(u)
3 , ρ

(u)
123 := |Z(u)

123|, c
(u)
123 :=

3

8
ρ
(u)
123α1α2α3, (5.14)

analogous definitions for Z
(u)
234, ρ

(u)
234, c

(u)
234, and, if ρ

(u)
123, ρ

(u)
234 are positive, we define the angles ϕ

(u)
123,

ϕ
(u)
234 ∈ T = R/2πZ by the identities

Z
(u)
123 = ρ

(u)
123 exp(iϕ

(u)
123), Z

(u)
234 = ρ

(u)
234 exp(iϕ

(u)
234). (5.15)

We consider the following question:
Given a solution (S1(t), S2(t), S3(t), S4(t), ϕ123(t), ϕ234(t)) of system (3.3) obtained in Lemma

5.1, and taken, in particular, its value at time t = 0, does there exist a function u0(x) in the
ball (2.8), Fourier supported on the spheres of radius α1, α2, α3, α4, such that





S
(u0)
n = Sn(0), n = 1, 2, 3, 4,

ϕ
(u0)
123 = ϕ123(0), ϕ

(u0)
234 = ϕ234(0),

c
(u0)
123 = c123, c

(u0)
234 = c234 ?

(5.16)

The equations for the angles must be interpreted as identities of elements of T = R/2πZ. The
affirmative answer to this question is given in Lemma 5.8 below, whose proof uses the next three
simple preparatory lemmas.

Lemma 5.5. Let (S1(t), S2(t), S3(t), S4(t), ϕ123(t), ϕ234(t)) be a solution of system (3.3) obtained
in Lemma 5.1. Assume that q1, q2, A1 satisfy (5.4), (5.8). If, in addition, A1, q2 satisfy

A1 ≤
( 3

32

α3
1

α2
1 + α2

2 + α2
3

) 1

2

q
3

2

2 , (5.17)

then there exist real numbers rn, ψn, n = 1, 2, 3, 4, with

0 < rn ≤ Sn(0), (5.18)

such that

ψ1 + ψ2 − ψ3 = ϕ123(0),
3

8
(r1α1)(r2α2)(r3α3) = c123, (5.19)

ψ2 + ψ3 − ψ4 = ϕ234(0),
3

8
(r2α2)(r3α3)(r4α4) = c234. (5.20)

Proof. Regarding (ψ1, ψ2, ψ3, ψ4), there are infinitely many solutions, because they are 4 un-
knowns that have to satisfy just 2 linear constraints. For example, we can fix (ψ1, ψ2, ψ3, ψ4) =
(ϕ123(0), 0, 0,−ϕ234(0)). Regarding rn, we first recall that, from Lemma 5.1, the constants c123,
c234 are

c123 =
α2
1 + α2

2 + α2
3

2
A21, c234 =

c123
γ
,
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where γ is defined in (3.25) and satisfies 1 < γ < 3. Therefore c123, c234 are positive, because A1
is positive. We have to choose rn such that

(α1r1)(α2r2)(α3r3) =
8

3
c123 =

4

3
(α2

1 + α2
2 + α2

3)A
2
1,

(α2r2)(α3r3)(α4r4) =
8

3

c123
γ

=
4

3
(α2

1 + α2
2 + α2

3)A
2
1

1

γ
.

Hence we fix

r1 =
r0
α1
, r2 =

r0
α2
, r3 =

r0
α3
, r4 =

r0
γα4

, r0 :=
(4
3
(α2

1 + α2
2 + α2

3)A
2
1

) 1

3

.

Thus, rn are all positive and satisfy the required identities. It only remains to check that
rn ≤ Sn(0). By (5.9), we know that q2/2 ≤ Sn(0) for all n = 1, 2, 3, 4. Since α1 < α2 < α3 < α4

and γ > 1, we have r4 < r3 < r2 < r1. Hence it is sufficient to check that r1 ≤ q2/2, and, by
the definition of r1 = r0/α1, this holds if A1, q2 satisfy (5.17).

Lemma 5.6. Let s, r, ψ be real numbers such that 0 < r ≤ s. Then there exists z1, z2 ∈ C \ {0}
such that |z1|2 + |z2|2 = s and 2z1z2 = reiψ.

Lemma 5.7. Let sn, rn, ψn, n = 1, 2, 3, 4, be real numbers such that 0 < rn ≤ sn. Then, in any
dimension d ≥ 1, there exists a trigonometric polynomial u0 ∈ C(Td,C), Fourier supported on
the set {k ∈ Z

d : |k| ∈ {α1, α2, α3, α4}}, such that, recalling the notation (5.13),

S(u0)
n = sn, B(u0)

n = rne
iψn , n = 1, 2, 3, 4. (5.21)

Proof. For each n = 1, 2, 3, 4, fix an integer vector kn ∈ Z
d with |kn| = αn, and apply Lemma

5.6 to determine two nonzero complex numbers z1,n, z2,n such that

|z1,n|2 + |z2,n|2 = sn, 2z1,nz2,n = rne
iψn .

We define u0 as the trigonometric polynomial having z1,n, z2,n as Fourier coefficients for the
frequencies kn,−kn, and having no other frequencies in its support, i.e.

u0(x) =

4∑

n=1

(z1,ne
ikn·x + z2,ne

−ikn·x).

Then
S(u0)
n = |z1,n|2 + |z2,n|2 = sn, B(u0)

n = 2z1,nz2,n = rne
iψn .

Lemma 5.7 deals with trigonometric polynomials supported on just one pair (kn,−kn) of
points on the sphere {k : |k| = αn}; this is the minimal situation, valid in any dimension d ≥ 1.
Of course, in dimension d ≥ 2 the Fourier support can contain more than one pair of opposite

frequencies on the same sphere, and therefore the construction of u0 with prescribed S
(u0)
n , B

(u0)
n

has even more free parameters at disposal.
The following lemma gives the answer to question (5.16).

Lemma 5.8. Let (S1(t), S2(t), S3(t), S4(t), ϕ123(t), ϕ234(t)) be a solution of system (3.3) obtained
in Lemma 5.1. Also assume that q1, q2, A1 satisfy (5.4), (5.8), (5.17). Then there exists a trigono-
metric polynomial u0 ∈ C(Td,C), Fourier supported on the set {k ∈ Z

d : |k| ∈ {α1, α2, α3, α4}},
satisfying all the identities in (5.16). If, in addition, q2 satisfies (5.11), then u0 belongs to the
ball (2.8).
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Proof. By Lemma 5.5, there exist constants rn, ψn satisfying (5.18), (5.19), (5.20). Define sn :=
Sn(0), so that (5.18) becomes 0 < rn ≤ sn. By Lemma 5.7, there exists a trigonometric
polynomial u0, with the desired Fourier support, satisfying (5.21). By the first identity in (5.21)
we directly have

S(u0)
n = sn = Sn(0), n = 1, 2, 3, 4.

By the second identity in (5.21), the first definition in (5.14), and the first identity in (5.19), we
obtain

Z
(u0)
123 = r1r2r3 exp(i(ψ1 + ψ2 − ψ3)) = r1r2r3 exp(iϕ123(0)). (5.22)

By (5.22), by the second and third definition in (5.14), and by the second identity in (5.19), we
get

ρ
(u0)
123 = r1r2r2, c

(u0)
123 =

3

8
r1r2r3α1α2α3 = c123.

Moreover, since r1r2r3 > 0, (5.22) is a polar representation of Z
(u0)
123 , and hence ϕ

(u0)
123 = ϕ123(0)

as elements of T = R/2πZ. Similar proof applies for c234, ϕ234(0).
Finally, if q2 satisfies (5.11), then, by Lemma 5.4, bound (5.12) holds; in particular, this

bound at time t = 0 implies that u0 belongs to the ball (2.8).

5.4 Joining the two amplitude parameters

In Lemma 5.1 the solutions of system (3.3) obtained from Proposition 4.1 are described by the
three independent parameters q1, q2, A1. Then, to get the positivity of the functions Sn, it is
enough to use that the ratio q1/q2 is bounded from below and from above by (5.4). After that,
only two independent parameters remain, which are q2 and A1. Then, to obtain the lower bound
(5.9), we need (5.8), which is a bound of the form A1 ≤ Cq2 for some universal constant C.
Also, q2 itself must satisfy the smallness condition (5.11), which is an inequality of the form
q2 ≤ K, for some constant K depending on m, p. Next, A1, q2 must also satisfy the condition

(5.17), which is an inequality of the form A1 ≤ Kq
3/2
2 , for some constant K depending on m, p.

We would like to obtain values of A1 as large as possible, because A1 and its multiple A2 are
the amplitudes of the chaotic movements we want to construct. We fix A1 as the largest value
compatible with (5.8) and (5.17). Thus, we define

ε := q
1

2

2 , A1 :=
( 3

32

α3
1

α2
1 + α2

2 + α2
3

) 1

2

ε3, (5.23)

so that (5.17) is satisfied. Note that (5.8) becomes

( 3

32

α3
1

α2
1 + α2

2 + α2
3

) 1

2

ε3 ≤ 1

9
ε2. (5.24)

We define

ε0 := min
{
1,

1

9

(32
3

α2
1 + α2

2 + α2
3

α3
1

) 1

2

,
δ1√
8αm1

4

}
, (5.25)

where δ1 is the universal constant in (5.11) and in (2.8), so that both (5.24) and (5.11) are
satisfied for all 0 < ε ≤ ε0. The constant ε0 depends only on m, p. For σ = m/p small enough,
the minimum in (5.25) is the third element of the set, as we note in the following lemma.

Lemma 5.9. There exists a universal constant σ1 ∈ (0, 1) such that, if σ = m/p ≤ σ1, then ε0
defined in (5.25) is ε0 = δ1/(

√
8αm1

4 ).
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Proof. It is enough to recall that α2
1 + α2

2 + α2
3 > 3α2

1, α
m1

4 ≥ α4, and α4 > α1 >
√
α1.

Lemma 5.10. Let a,m, p, σ, α1, . . . α4, µ̃1(σ), µ̃2(σ), γ, (ξ1(t), η1(t), ξ2(t), η2(t)) be like in Lemma
5.1. Consider any ε ∈ (0, ε0), where ε0 is the constant, depending only on m, p, defined in (5.25),
and define q2 := ε2, A1 given by the second identity in (5.23), q1 by (5.4), E1, E2 by (5.3), and
c123, c234, B, A2, S1(t), S2(t), S3(t), S4(t), ϕ123(t), ϕ234(t) like in Lemma 5.1. Also define
ρ123 =

8
3c123/(α1α2α3), ρ234 =

8
3c234/(α2α3α4).

Then (S1(t), S2(t), S3(t), S4(t), ϕ123(t), ϕ234(t)) is a solution of system (3.3) for all t ∈ R.
Moreover, the identity (5.4) is satisfied, and therefore (5.5) holds; the inequality (5.8) is satisfied,
and therefore the lower bound (5.9) holds; the inequality (5.11) is satisfied, and therefore the
bound (5.12) holds; the inequality (5.17) is satisfied, and therefore the thesis of Lemma 5.8
holds.

Proof. The proof follows from (5.23), (5.25) and the results of the previous subsections.

Recalling that the function η2 given by Proposition 4.1 satisfies (4.4), we also have the
following lemma, where ε2, ε3 are isolated from the other parts of the coefficients. The reason
to consider the quantity N1 in (5.29) is that it corresponds to the square of the Sobolev norm
H1(Td) of the solution of the Kirchhoff equation.

To simplify the exposition of the lemma, we rewrite (5.1) as

S1(t) = ε2s1 − ε3a1η1(bε
3t),

S2(t) = ε2s2 − ε3a1η1(bε
3t)− ε3a2η2(bε

3t),

S3(t) = ε2s3 + ε3a1η1(bε
3t)− ε3a2η2(bε

3t),

S4(t) = ε2s4 + ε3a2η2(bε
3t),

(5.26)

where

s1 :=
α2
4

3α2
1

, s2 :=
α2
4

3α2
2

, s3 :=
2α2

4

3α2
3

, s4 := 1,

a1 :=
( 3

32

α3
1

α2
1 + α2

2 + α2
3

) 1

2

, a2 :=
1

γ
a1, b :=

α2
1 + α2

2 + α2
3

2
a1,

(5.27)

so that
A1 = a1ε

3, A2 = a2ε
3, B = bε3. (5.28)

Note that the constants s1, s2, s3, s4, a1, a2, b depend only on m, p. We also define the associated
function

N1(t) :=
4∑

n=1

α2
nSn(t) = ε2

7α2
4

3
+ ε3(2α1α2)a1η1(bε

3t) + ε3(2α2α3)a2η2(bε
3t). (5.29)

Lemma 5.11. There exists a universal constant σ2 ∈ (0, 1) with the following property. Let
tj, t̄j be given by Proposition 4.1, and define

t∗j :=
tj
B

=
tj
bε3

, t̄∗j :=
t̄j
B

=
t̄j
bε3

, I∗j := [t∗j , t̄
∗
j ], E∗

j := [t̄∗j , t
∗
j+1]. (5.30)
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Assume the hypotheses of Lemma 5.10. If, in addition, the ratio σ = m/p satisfies σ ≤ σ2, then
N1(t) defined in (5.29) satisfies

ε2c1 +
99

100
ε3r1 ≤ N1(t) ≤ ε2c1 +

201

100
ε3r1 ∀t ∈ I∗j ,

ε2c1 −
1

100
ε3r1 ≤ N1(t) ≤ ε2c1 +

101

100
ε3r1 ∀t ∈ E∗

j ,

max
t∈I∗j

N1(t) ≥ ε2c1 +
199

100
ε3r1, min

t∈E∗

j

N1(t) ≤ ε2c1 +
1

100
ε3r1, (5.31)

for all j ≥ 0, where c1 :=
7
3α

2
4, r1 := (2α2α3)a2 depend only on m, p.

Proof. To prove the first inequality in the last line of (5.31), consider the interval I∗j , and let t′j
be a point in that interval where the function η2(bε

3t) achieves its maximum value. Since by
(4.4) and (5.7)

η2(bε
3t′j) ≥ 2− Cσ and |η1(t)| ≤ 3 ∀t ∈ R,

from (5.29) and the identity a1 = γa2 (see (5.27)) we get

max
t∈[t∗j ,t̄

∗

j ]
N1(t) ≥ N1(t

′
j) ≥ ε2

7α2
4

3
+ ε3(2α2α3)a2(2− Cσ)− ε3(2α1α2)3a1

= ε2
7α2

4

3
+ ε3(2α2α3)a2(2− Cσ)

(
1− 3γα1

α3(2− Cσ)

)
.

The difference in the last parenthesis tends to 1 as σ → 0, because γ → 3 and the ratio
α1/α3 = m/(2m + p) tends to 0 as σ = m/p → 0. The other inequalities in (5.31) are proved
similarly, using (4.3), (4.4), and the fact that

N1(t) = ε2
7α2

4

3
+ ε3(2α2α3)a2

(
η2(bε

3t)+
α1γ

α3
η1(bε

3t)
)
= ε2c1 + ε3r1

(
η2(bε

3t)+O(σ)
)
. (5.32)

Remark 5.12. By (5.32), the oscillations of N1 at the main order in σ are fully described by
the ones of η2, i.e., of S4.

Notation. From now on, we will sometimes be much less accurate than before in keeping
track of the explicit dependence of the various constants on α1, α2, α3, α4; we will denote gener-
ically by K (or sometimes K ′, or K ′′) any constant, possibly different from line to line, that
depends only on the integers m, p.

With the new notation, the constants defined in Lemma 5.10 become

c123 = Kε6, c234 = Kε6, ρ123 = Kε6, ρ234 = Kε6, (5.33)

where the four constants K denote four (possibly different) values.
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6 Approximation argument

Consider a solution (S1(t), S2(t), S3(t), S4(t), ϕ123(t), ϕ234(t)) of system (3.3) obtained in Lemma
5.10, and let u0 be the corresponding trigonometric polynomial in theHm1 ball (2.8) constructed
in Lemma 5.8. Let v0 := u0 be the complex conjugate of u0, and let (u(t), v(t)) be the solution
of the Cauchy problem for the transformed Kirchhoff equation (2.2) with initial condition (2.9).
Since u0 is a trigonometric polynomial, the solution (u, v) is global in time. Moreover, since
u0 belongs to the ball (2.8), the solution (u, v) satisfies (2.10) on the time interval [0, TNF], see
Lemma 2.2.

The estimate in Lemma 5.4 computed at time t = 0 gives the inequality

‖u0‖2s ≤ 8α2s
4 q2 ∀s ≥ 1, (6.1)

and therefore, recalling (5.23) and the notation at the end of the previous section, TNF in (2.10)
can be also estimated in terms of ε as

TNF ≥ C0

(8α2m1

4 q2)2
= Kε−4. (6.2)

For each time t ∈ [0, TNF], to slightly simplify the notations (5.13), (5.14), (5.15), we denote

Sun(t) := S(u(t))
n (6.3)

the superactions of the function u(t, ·), and we also introduce the analogous notation for all the
other quantities in (5.13), (5.14), (5.15).

By Lemma 2.3, one has

C1S
u
n(0) ≤ Sun(t) ≤ C2S

u
n(0) ∀t ∈ [0, TNF], n = 1, 2, 3, 4. (6.4)

By construction, one has Sun(0) = Sn(0). Hence, by (6.4), (5.10), (5.23),

‖u(t)‖2s =
4∑

n=1

α2s
n S

u
n(t)

≤ C2

4∑

n=1

α2s
n S

u
n(0) = C2

4∑

n=1

α2s
n Sn(0) = C2‖u0‖2s ≤ 8C2α

2s
4 q2 = 8C2α

2s
4 ε

2 (6.5)

for all t ∈ [0, TNF], all s ≥ 1. For s ∈ {1,m1}, one has α2s
4 ≤ α2m1

4 , and therefore we can simply
write

‖u(t)‖s ≤ Kε ∀t ∈ [0, TNF], s ∈ {1,m1}. (6.6)

Since (u(t), v(t)) solves (2.2) on [0, TNF], the functions Sun(t), B
u
n(t) solve the effective equa-

tions (2.15) on the same time interval, and Zu123(t), Z
u
234(t) solve (2.19) on the same time interval.

Since ρu123(t), ρ
u
234(t) are continuous and they are positive at time t = 0, there exists Tpolar > 0

such that ρu123(t), ρ
u
234(t) are positive for all t ∈ [0, Tpolar].

Remark 6.1. Note that, in general, Tpolar could be smaller than TNF.

On the time interval [0, Tpolar], the angles ϕu123(t), ϕ
u
234(t) are well-defined by the identities

Zu123(t) = ρu123(t) exp(iϕ
u
123(t)), Zu234(t) = ρu234(t) exp(iϕ

u
234(t)), ∀t ∈ [0, Tpolar]. (6.7)
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Since Zu123(t), Z
u
234(t) solve (2.19), the functions ρu123(t), ρ

u
234(t) solve the equations

∂tρ
u
123 = Rρu

123
, ∂tρ

u
234 = Rρu

234
(6.8)

on [0, Tpolar], and the functions ϕu123(t), ϕ
u
234(t) solve the equations

∂tϕ
u
123 = −1

2
(α2

1S
u
1 + α2

2S
u
2 − α2

3S
u
3 ) +Rϕu

123
,

∂tϕ
u
234 = −1

2
(α2

2S
u
2 + α2

3S
u
3 − α2

4S
u
4 ) +Rϕu

234
(6.9)

on [0, Tpolar], where

Rρu
123

:= Re
(
exp(−iϕu123)RZu

123

)
, Rϕu

123
:=

1

ρu123
Im

(
exp(−iϕu123)RZu

123

)
, (6.10)

and analogous definition for Rρu
234

, Rϕu
234

(just replace 123 with 234 everywhere in (6.10)).
The remainders of the type RZ are defined in (2.20) and estimated in (2.21). Moreover, Sun,
n = 1, 2, 3, 4, solve

∂tS
u
1 =

3

8
ρu123α1α2α3 sin(ϕ

u
123) +RSu

1
,

∂tS
u
2 =

3

8
ρu123α1α2α3 sin(ϕ

u
123) +

3

8
ρu234α2α3α4 sin(ϕ

u
234) +RSu

2
,

∂tS
u
3 = −3

8
ρu123α1α2α3 sin(ϕ

u
123) +

3

8
ρu234α2α3α4 sin(ϕ

u
234) +RSu

3
,

∂tS
u
4 = −3

8
ρu234α2α3α4 sin(ϕ

u
234) +RSu

4
(6.11)

on [0, Tpolar], where the remainders of the type RS appear in (2.15) and are estimated in (2.16).
In the following lemma we prove a formula for Tpolar.

Lemma 6.2. Assume the hypotheses of Lemma 5.10. There exists a universal constant σ3 ∈
(0, 1) such that, if σ = m/p, in addition to the hypotheses of Lemma 5.10, also satisfies σ ≤ σ3,
then Zu123(t) 6= 0, Zu234(t) 6= 0 for all t ∈ [0, Tpolar], with

Tpolar =
Cα1A

2
1

α4m1+2
4 q52

= Kε−4 ≤ TNF, (6.12)

where C > 0 is a universal constant and K > 0 is a constant depending only on m, p. As a
consequence, on [0, Tpolar], ρ

u
123, ρ

u
234 are positive and ϕu123, ϕ

u
234 are well-defined . Moreover,

|ρu123(t)− ρ123| ≤
1

2
ρ123, |ρu234(t)− ρ234| ≤

1

2
ρ234. (6.13)

Proof. In this proof C (and C ′, C ′′) denote universal constants, possibly different from line to
line. Suppose that ρu123 is positive on some time interval [0, T ] ⊂ [0, TNF]. Then, by (6.8) and
(6.10),

|∂tρu123| =
∣∣Re

(
exp(−iϕu123)RZu

123

)∣∣ ≤
∣∣ exp(−iϕu123)RZu

123

∣∣ = |RZu
123

|.
By (2.21), for all s ∈ R,

|RZu
123

| ≤ C‖u‖4m1
Su1S

u
2S

u
3 =

C‖u‖4m1

(α1α2α3)2s
(α2s

1 S
u
1 )(α

2s
2 S

u
2 )(α

2s
3 S

u
3 ) ≤

C‖u‖4m1
‖u‖6s

(α1α2α3)2s
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and, by (6.5), for s ≥ 1 and t ∈ [0, T ],

‖u(t)‖4m1
‖u(t)‖6s ≤ Cα4m1+6s

4 q52.

Hence, since α4 ≤ 2α3 and α4 ≤ 3α2, for s = 1, we obtain

|∂tρu123| ≤ |RZu
123

| ≤ Cα4m1+6
4 q52

(α1α2α3)2
≤ C ′α4m1+2

4 q52
α2
1

∀t ∈ [0, T ]. (6.14)

At time t = 0 we have, by construction, and by the definition (3.31) of c123,

ρu123(0) = ρ123 =
8c123

3α1α2α3
=

4(α2
1 + α2

2 + α2
3)

3α1α2α3
A21, (6.15)

which is positive because A1 > 0. Hence

|ρu123(t)− ρ123| ≤
∫ t

0
|∂tρu123(s)| ds ≤

C ′α4m1+2
4 q52
α2
1

t ∀t ∈ [0, T ],

and the last quantity is strictly less than ρ123 for all t ∈ [0, T ] if

T <
Cα1

α4m1+2
4

A21

q52
=: T ∗

123. (6.16)

This implies that ρu123 > 0 on [0, T ∗
123). Moreover, by (5.17) and (6.2),

T ∗
123 =

Cα1

α4m1+2
4

A21

q52
≤ C ′α

4
1

α4
4

1

α2m1

4 q22
≤ C ′′σ4TNF,

where σ = m/p. Then, for C ′′σ4 ≤ 1, one has T ∗
123 ≤ TNF.

Proceeding similarly for ρu234, we obtain the estimate

|∂tρu234| ≤ |RZu
234

| ≤ Cα4m1+6
4 q52

(α2α3α4)2
≤ C ′α4m1

4 q52 , (6.17)

and we deduce that ρu234 > 0 on [0, T ∗
234), with

T ∗
234 =

CA21
α4m1+1
4 q52

≤ C ′σ3TNF.

Also, T ∗
123 ≤ T ∗

234Cσ ≤ T ∗
234 for Cσ ≤ 1.

Finally, the estimates already proved also give that |ρu123(t) − ρ123| ≤ 1
2ρ123 for all t ∈

[0, T ∗
123/2]. Thus, we fix Tpolar = T ∗

123/2.

We recall that the superscript u indicates quantities related to the solution (u, v) of the
Cauchy problem (2.2), (2.9), while the absence of that superscript corresponds to the solution
of the truncated effective system (3.3). By construction, we have

Su(0) = S(0), ρu(0) = ρ(0), ϕu(0) = ϕ(0).

Moreover, ρ is constant in time, and there are no remainders RS , Rρ, Rϕ without the superscript
u because (3.3) is the truncated effective system.

The next lemma gives estimates for the difference between Su(t) and S(t) in a certain time
interval.
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Lemma 6.3. Assume the hypotheses of Lemma 5.10, and consider the associated solution (S1(t),
S2(t), S3(t), S4(t), ϕ123(t), ϕ234(t)) of system (3.3) given by Lemma 5.10. Let u0 be the corre-
sponding trigonometric polynomial in the ball (2.8) constructed in Lemma 5.8. Let v0 := u0 be
the complex conjugate of u0, and let (u(t), v(t)) be the solution of the Cauchy problem for the
transformed Kirchhoff equation (2.2) with initial condition (2.9). Assume that the ratio σ = m/p
satisfies σ ≤ σ3, where σ3 is defined in Lemma 6.2.

There exists ε1 ∈ (0, ε0), depending only on m, p, where ε0 is the constant in (5.25), such
that, for 0 < ε ≤ ε1, one has

ε−3|Sun(t)− Sn(t)| ≤ ε
3

4 ∀t ∈ [0, Tε], n = 1, 2, 3, 4, (6.18)

where
Tε = Kε−3 log(ε−1) (6.19)

for some positive constant K depending only on m, p.

Proof. From the difference of equations (6.11) for Sun and equations (3.3) for Sn, we obtain that
for all t ∈ [0, Tpolar], n = 1, 2, 3, 4,

|∂t(Sun − Sn)| ≤ α1α2α3

(
ρ123|ϕu123 − ϕ123|+ |ρu123 − ρ123|

)

+ α2α3α4

(
ρ234|ϕu234 − ϕ234|+ |ρu234 − ρ234|

)
+ |RSu

n
|.

By (2.16) one has |RSu
n
| ≤ C‖u‖6m1

Sun. By (6.6),

‖u‖m1
≤ Kε, |Sun| ≤ αn|Sun| ≤ ‖u‖21 ≤ Kε2,

and therefore |RSu
n
| ≤ Kε8 on [0, Tpolar]. Hence, for t ∈ [0, Tpolar] and n = 1, 2, 3, 4,

|∂t(Sun − Sn)| ≤ K
(
ρ123|ϕu123 − ϕ123|+ |ρu123 − ρ123|

)

+K
(
ρ234|ϕu234 − ϕ234|+ |ρu234 − ρ234|

)
+Kε8. (6.20)

Since ρ123, ρ234 are constants, by the equations (6.8) for ρu123, ρ
u
234 one has

∂t(ρ
u
123 − ρ123) = ∂tρ

u
123 = Rρu

123
, ∂t(ρ

u
234 − ρ234) = ∂tρ

u
234 = Rρu

234
.

The time derivatives ∂tρ
u
123, ∂tρ

u
234 have been already estimated in (6.14) and (6.17); hence,

integrating in time, we get

|ρu123(t)− ρ123| ≤ Kε10t, |ρu234(t)− ρ234| ≤ Kε10t ∀t ∈ [0, Tpolar].

Also, by (6.15) and (5.28), ρ123 ≤ Kε6, ρ234 ≤ Kε6. We plug these estimates into (6.20) and we
get

|∂t(Sun − Sn)| ≤ Kε6
(
|ϕu123 − ϕ123|+ |ϕu234 − ϕ234|

)
+Kε10t+Kε8 (6.21)

for all t ∈ [0, Tpolar], n = 1, 2, 3, 4.
Subtracting the equations (6.9) for ϕu123, ϕ

u
234 and those for ϕ123, ϕ234 in (3.3), we have

|∂t(ϕu123 − ϕ123)| ≤ α2
1|Su1 − S1|+ α2

2|Su2 − S2|+ α2
3|Su3 − S3|+ |Rϕu

123
|,

|∂t(ϕu234 − ϕ234)| ≤ α2
2|Su2 − S2|+ α2

3|Su3 − S3|+ α2
4|Su4 − S4|+ |Rϕu

234
|.

37



By (6.13), ρu123 ≥ 1
2ρ123 on [0, Tpolar]. Hence, by (6.10), |Rϕu

123
| ≤ (2/ρ123)|RZu

123
|, and RZu

123
has

been estimated in (6.14). Also, ρ123 is given in (6.15). Therefore

|Rϕu
123

| ≤ 2

ρ123
|RZu

123
| ≤ Kq52

A21
= Kε4

and, similarly, |Rϕu
234

| ≤ Kε4. Thus

|∂t(ϕu123 − ϕ123)|+ |∂t(ϕu234 − ϕ234)| ≤ K
4∑

n=1

|Sun − Sn|+Kε4. (6.22)

We apply Gronwall’s inequality to (6.21) and (6.22). It is convenient to introduce a factor
εβ , with β to be determined, because the factors in (6.21) and (6.22) contain different powers
of ε. We define the vector

ψ :=
(
εβ(Su1 − S1), ε

β(Su2 − S2), ε
β(Su3 − S3), ε

β(Su4 − S4), (ϕ
u
123 − ϕ123), (ϕ

u
234 − ϕ234)

)

=: (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6), (6.23)

which is a function of t ∈ [0, Tpolar] taking values in R
6. From (6.21) we obtain

|∂tψn| = εβ |∂t(Sun − Sn)| ≤ εβ[Kε6(|ψ5|+ |ψ6|) +Kε10t+Kε8]

≤ Kε6+β|ψ|+Kε10+βt+Kε8+β, n = 1, 2, 3, 4,

and from (6.22) we get

|∂tψ5|+ |∂tψ6| ≤ Kε−β(|ψ1|+ |ψ2|+ |ψ3|+ |ψ4|) +Kε4 ≤ Kε−β|ψ|+Kε4,

where | | is the usual Euclidean norm of R6. Therefore

|∂tψ| ≤ K(ε6+β + ε−β)|ψ| +Kε10+βt+Kε8+β +Kε4. (6.24)

We fix the value of β that minimizes the sum ε6+β+ε−β, that is, β = −3. Hence (6.24) becomes

|∂tψ| ≤ Kε3|ψ| +Kε7t+Kε4. (6.25)

Moreover, by the choice of the initial conditions ψ(0) = 0. Then, by Gronwall’s inequality,

|ψ(t)| ≤ exp(K0ε
3t)K1(ε

7t2 + ε4t) ∀t ∈ [0, Tpolar], (6.26)

for some positive constants K0,K1 depending only on m, p.
Now we consider the time Tε,h := K−1

0 ε−3 log(ε−h), where h is any positive real constant and
K0 > 0 is the constant appearing in (6.26); we note that Tε,h depends on h, ε,m, p. By (6.12),
one has Tε,h ≤ Tpolar for 0 < ε ≤ C, for some positive constant C depending only on h,m, p. By
(6.26), for all t ∈ [0, Tε,h] one has

|ψ(t)| ≤ exp(K0ε
3t)K1(ε

7t2 + ε4t) ≤ ε−hK1

(
ε7K−2

0 ε−6 log2(ε−h) + ε4K−1
0 ε−3 log(ε−h)

)

≤ ε1−hK1

(
K−2

0 log2(ε−h) +K−1
0 log(ε−h)

)
.

We also note that

ε1−hK1

(
K−2

0 log2(ε−h) +K−1
0 log(ε−h)

)
≤ ε1−2h for 0 < ε ≤ C ′, (6.27)

for some positive constant C ′ depending on h,m, p. We can fix, for example, h = 1/8.
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6.1 Motion of the Sobolev norms

We use theH1(Td) Sobolev norm ‖u(t)‖1 to describe the transfer of energy, namely the exchanges

in amplitude of the superactions Sun(t), n = 1, 2, 3, 4, as time evolves. Except the H
1

2 norm,
which is constant in time for the solutions of the approximating system (3.39) given by Lemma
5.1 (see Remark 3.6), any other Hs norms could be used to capture the transfer of energy
among the superactions. We decide to use the H1 norm because H1 here corresponds to the
spaceH

3

2×H 1

2 for the “physical variables”, which is the space of the standard local wellposedness
for the Kirchhoff equation.

Lemma 6.4. Assume all the hypotheses of Lemma 6.3, and also let σ ≤ σ2, where σ2 is given
by Lemma 5.11. Let t∗j , t̄

∗
j , I

∗
j , E

∗
j be defined in (5.30). There exists a constant ε2 ∈ (0, ε1),

depending only on m, p, where ε1 is defined in Lemma 6.3, such that if, in addition to the
hypotheses of Lemma 6.3, 0 < ε ≤ ε2, then the H1(Td) Sobolev norm of u(t) satisfies

ε2c1 +
98

100
ε3r1 ≤ ‖u(t)‖21 ≤ ε2c1 +

202

100
ε3r1 ∀t ∈ I∗j ,

ε2c1 −
2

100
ε3r1 ≤ ‖u(t)‖21 ≤ ε2c1 +

102

100
ε3r1 ∀t ∈ E∗

j ,

max
t∈I∗j

‖u(t)‖21 ≥ ε2c1 +
198

100
ε3r1, min

t∈E∗

j

‖u(t)‖21 ≤ ε2c1 +
2

100
ε3r1, (6.28)

for all the indices j ≥ 0 for which the intervals I∗j , E
∗
j are contained in [0, Tε], where Tε is defined

in (6.19) and c1, r1 are defined in Lemma 5.11.
Moreover, there exists a constant K > 0, depending only on m, p, such that, if the integers

mj introduced in Proposition 4.1 satisfy

N∑

j=0

mj ≤ K log(ε−1) (6.29)

for some N , then the intervals I∗0 , E
∗
0 , . . . , I

∗
N , E

∗
N are all contained in [0, Tε].

Proof. Consider an interval I∗j ⊆ [0, Tε], and a point t′j in that interval where the function N1,
defined in (5.29), achieves its maximum value over I∗j . By (5.31) and (6.18),

max
t∈I∗j

‖u(t)‖21 ≥ ‖u(t′j)‖21 =
4∑

n=1

α2
nS

u
n(t

′
j) = N1(t

′
j) +

4∑

n=1

α2
n

(
Sun(t

′
j)− Sn(t

′
j)
)

≥ ε2c1 +
199

100
ε3r1 −

4∑

n=1

α2
nε

3+ 3

4 ≥ ε2c1 +
198

100
ε3r1.

The other inequalities in (6.28) are proved similarly.
From (4.2) one has tj+1 = τ(m0 + θ0 + . . .+mj + θj). Hence, by (5.30),

t∗j+1 =
τ

bε3

j∑

k=0

(mk + θk) ∀j = 0, 1, 2, . . . .

Since (mk + θk) ≤ 2mk, recalling (6.19), one has t∗N+1 ≤ Tε if (6.29) holds.
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Lemma 6.5. Assume the hypotheses of Lemma 6.4. There exists a constant ε3 ∈ (0, ε2),
depending only on m, p, where ε2 is defined in Lemma 6.4, such that, if 0 < ε ≤ ε3, then

εc̃1 +
48

100
ε2r̃1 ≤ ‖u(t)‖1 ≤ εc̃1 +

101

100
ε2r̃1 ∀t ∈ I∗j ,

εc̃1 −
2

100
ε2r̃1 ≤ ‖u(t)‖1 ≤ εc̃1 +

51

100
ε2r̃1 ∀t ∈ E∗

j ,

max
t∈I∗j

‖u(t)‖1 ≥ εc̃1 +
98

100
ε2r̃1, min

t∈E∗

j

‖u(t)‖1 ≤ εc̃1 +
1

100
ε2r̃1, (6.30)

where c̃1 :=
√
c1 and r̃1 := r1/

√
c1. The inequalities in (6.30) hold for the indices j described in

Lemma 6.4, that is, for j = 0, . . . , N , where N satisfies (6.29).

Proof. The inequalities in (6.30) are obtained from (6.28) by the Taylor expansion (1 + x)1/2 =
1+ 1

2x+O(x2) as x→ 0 and the inequality (1+x)1/2 ≤ 1+ 1
2x, which holds for all x ≥ −1.

6.2 Back to the solutions of the Kirchhoff equation

As is observed in Lemma 2.2, if (u0, v0) is in the ball (2.8), then, for all t ∈ [0, TNF], the solution
(u, v) of the Cauchy problem (2.2), (2.9) remains in the ball ‖u‖m1

≤ δ where the transformation
Φ is well-defined, and (ũ, ṽ) = Φ(u, v) in (2.11) solves the original system (2.1) on the same time
interval.

We want to prove that the solution (ũ, ṽ) has a dynamical behavior similar to the one of
(u, v) in Lemma 6.5. We underline that v = u, hence ‖v‖1 = ‖u‖1, and, in fact, the inequalities
in Lemma 6.5 regard the solution (u, v). On the contrary, the “physical” solution (ũ, ṽ) is a pair
of real-valued functions solving (2.1), and therefore ṽ = ∂tũ. Thus, ‖u‖1 appearing in Lemma
6.5 corresponds to N in Lemma 6.9.

The transformation Φ is defined in (2.5). We consider the map Φ3 ◦ Φ4 ◦ Φ5 first, and then
Φ1,Φ2. From Lemma 2.1 we deduce the following property.

Lemma 6.6. Let δ, C be the universal constants in Lemma 2.1. Let (u, v) ∈ Hm1

0 (Td, c.c.), with
‖u‖m1

≤ δ, and let (f, g) := Φ3 ◦Φ4 ◦Φ5(u, v). Then, for every s ∈ R,

‖f − u‖s ≤ 2C‖u‖2m1
‖u‖s. (6.31)

Proof. By (2.7),

‖f − u‖2s =
∑

k∈Zd

|k|2s|fk − uk|2 ≤
∑

k

|k|2sC2‖u‖4m1
(|uk|+ |u−k|)2

≤ 2C2‖u‖4m1

∑

k

|k|2s(|uk|2 + |u−k|2) = 4C2‖u‖4m1
‖u‖2s.

We apply estimate (6.31) to the solution (u, v) of (2.2) constructed in the previous sections.

Lemma 6.7. Assume the hypotheses of Lemma 6.5. Let v be the complex conjugate of u, and
let (f, g) := Φ3 ◦ Φ4 ◦ Φ5(u, v). There exists a constant ε4 ∈ (0, ε3), depending only on m, p,
where ε3 is given by Lemma 6.5, such that, if 0 < ε ≤ ε4, then

εc̃1 +
47

100
ε2r̃1 ≤ ‖f(t)‖1 ≤ εc̃1 +

102

100
ε2r̃1 ∀t ∈ I∗j ,

εc̃1 −
3

100
ε2r̃1 ≤ ‖f(t)‖1 ≤ εc̃1 +

52

100
ε2r̃1 ∀t ∈ E∗

j ,

max
t∈I∗j

‖f(t)‖1 ≥ εc̃1 +
97

100
ε2r̃1, min

t∈E∗

j

‖f(t)‖1 ≤ εc̃1 +
2

100
ε2r̃1, (6.32)
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where c̃1, r̃1 are defined in Lemma 6.5. The inequalities (6.32) hold for the indices j described
in Lemma 6.4, that is, for j = 0, . . . , N , where N satisfies (6.29).

Proof. By (6.31) and (6.6), one has

‖f − u‖1 ≤ 2C‖u‖2m1
‖u‖1 ≤ Kε3 (6.33)

on the time interval [0, TNF], where the constant K depends only on m, p. All the inequalities
in the lemma are proved by (6.30) and (6.33).

The transformations Φ1,Φ2 are simply these:

(q, p) = Φ2(f, g) =
(f + g√

2
,
f − g

i
√
2

)
, (ũ, ṽ) = Φ1(q, p) = (|Dx|−

1

2 q, |Dx|
1

2 p), (6.34)

where |Dx|s is the Fourier multiplier |Dx|seik·x = |k|seik·x, s ∈ R, k ∈ Z
d \ {0} (the frequency

k = 0 can be ignored here, because only zero-average functions are involved).

Lemma 6.8. Let s ∈ R, let f be a zero-average, complex-valued function in Hs(Td,C), and let
g be its complex conjugate, i.e., (f, g) ∈ Hs

0(T
d, c.c.). Then (q, p) defined in (6.34) is a pair of

zero-average, real-valued functions in Hs
0(T

d,R), with

‖q‖2s + ‖p‖2s = ‖f‖2s + ‖g‖2s = 2‖f‖2s,

and (ũ, ṽ) defined in (6.34) is a pair of zero-average, real-valued functions in H
s+ 1

2

0 (Td,R) ×
H
s− 1

2

0 (Td,R), with
‖ũ‖s+ 1

2

= ‖q‖s, ‖ṽ‖s− 1

2

= ‖p‖s.

Proof. Elementary calculations with Fourier coefficients.

The next lemma regards the solutions (ũ, ṽ) of system (2.1), that is, the solutions ũ of the
original Kirchhoff equation (1.1).

Lemma 6.9. Assume the hypotheses of Lemma 6.7, and let (ũ, ṽ) := Φ1 ◦ Φ2(f, g). If ε ≤ ε4,
then the function

N (t) :=
(
‖ũ(t)‖23

2

+ ‖ṽ(t)‖21
2

) 1

2

(6.35)

satisfies

εc0 +
47

100
ε2r0 ≤ N (t) ≤ εc0 +

102

100
ε2r0 ∀t ∈ I∗j ,

εc0 −
3

100
ε2r0 ≤ N (t) ≤ εc0 +

52

100
ε2r0 ∀t ∈ E∗

j ,

max
t∈I∗j

N (t) ≥ εc0 +
97

100
ε2r0, min

t∈E∗

j

N (t) ≤ εc0 +
2

100
ε2r0, (6.36)

where c0 :=
√
2c̃1, r0 :=

√
2r̃1, and c̃1, r̃1 are defined in Lemma 6.5. The inequalities (6.36) hold

for the indices j described in Lemma 6.4, that is, for j = 0, . . . , N , where N satisfies (6.29).

Proof. By Lemma 6.8, one has N (t) =
√
2‖f(t)‖1. Hence (6.36) follows directly from (6.32).
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Proof of Theorem 1.1. All the previous smallness conditions on σ are satisfied for σ ≤ σ4 :=
min{σ0, σ1, σ2, σ3}, where σ0 = σ0(a0) is given by Proposition 4.1, σ1 by Lemma 5.9, σ2 by
Lemma 5.11, σ3 by Lemma 6.2. Note that σ0, σ1, σ2, σ3 are all universal constants, and therefore
σ4 is universal too. All the previous smallness conditions on ε are satisfied for 0 < ε ≤ ε4, where
ε4 is defined in Lemma 6.7. Also note that ε4 depends only on m, p.

Let m = 2, and let p be the minimum integer such that p > m = 2 and σ = m/p = 2/p ≤ σ∗.
Since σ∗ is a universal constant, the integers m, p are universal constants too. Then all the
constants depending only on m, p now become universal constants. In particular, M0(σ) given
by Proposition 4.1 is now a universal constant.

By Lemma 6.9, renaming sj, s̄j the times tj, t̄j in (4.2), renaming τ the period T = Ta, at
a = a0, in Proposition 4.1, renaming tj, t̄j the times t∗j , t̄

∗
j in (5.30), renaming Ij, Ej the intervals

I∗j , E
∗
j in (5.30), renaming ε the product εc0 where c0 is defined in Lemma 6.9, renaming r0 the

constant r0/(2c
2
0) where c0, r0 are defined in Lemma 6.9, renaming b the ratio b/c30 where c0 is

defined in Lemma 6.9 and b in (5.27), and also renaming u the solution ũ in Lemma 6.9, the
proof of Theorem 1.1 is complete.
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