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The rapidly advancing capabilities in nanophotonic design are enabling complex functionalities
limited mainly by physical bounds. The efficiency of transmission is a major consideration, but its
ultimate limit remains unknown for most systems. Here, we introduce a matrix formalism that puts
a fundamental bound on the channel-averaged transmission efficiency of any passive multi-channel
optical system based only on energy conservation and the desired functionality, independent of the
interior structure and material composition. Applying this formalism to diffraction-limited nonlocal
metalenses with a wide field of view, we show that the transmission efficiency must decrease with
the numerical aperture for the commonly adopted designs with equal entrance and output aperture
diameters. We also show that reducing the size of the entrance aperture can raise the efficiency
bound. This work reveals a fundamental limit on the transmission efficiency as well as providing
guidance for the design of high-efficiency multi-channel optical systems.

I. INTRODUCTION

Over the past decade, nanophotonic design and fab-
rication became more and more advanced. Oftentimes,
what limits the device performance is no longer fabrica-
tion constraints or the cleverness of the design, but funda-
mental physical bounds. Furthermore, the design process
typically requires time consuming development, simula-
tion, and optimization. It is invaluable to know before-
hand what the fundamental bounds are and how they are
related to the design choices [1]. Such a knowledge can
significantly reduce the time spent in blind explorations
and also point to better design choices that are not oth-
erwise obvious. Of particular interest are multi-channel
optical systems. For example, with a metalens [2–6],
one would like the incident wave from each angle to be
focused to the corresponding focal spot with unity effi-
ciency. But is a uniformly perfect efficiency compatible
with the desired angle-dependent response? What is the
highest efficiency allowed by fundamental laws?

Here, we introduce a matrix-based formalism that sets
a fundamental bound on the efficiency of any linear multi-
channel system given its functionality, and apply it to
metalenses.

Metalenses are compact lenses made with metasur-
faces, which show great potential for thinner and lighter
imaging systems with performances comparable to or ex-
ceeding conventional lenses [2–6]. Metalenses designed
from a library of unit cells have limited focusing ef-
ficiency, which can be overcome by more flexible de-
signs [7, 8]. Inverse design [7–15], grating averaging tech-
nique [16], and stitching separately designed sections to-
gether [17–19] are effective approaches. However, achiev-
ing high focusing efficiency at large numerical aperture
(NA) remains difficult, as all such “local” metasurfaces
have limited deflection efficiency at large angles [20, 21].
Since local metasurfaces have a spatial impulse response
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close to a delta function, they provide the same response
for different incident angles, so they are also limited in
their angular field of view (FOV) [22].

Nonlocal metalenses with tailored interactions between
adjacent building blocks (i.e., the spatial impulse re-
sponse is extended beyond a delta function) can over-
come the limited angular diversity of local metalenses to
enable diffraction-limited focusing over a large FOV [22–
24]. Nonlocal metalenses based on doublets [25, 26] or
aperture stops [27, 28] can support focusing efficiencies
higher than 50% over a wide FOV, but with NA lower
than 0.5. Multi-layer structures obtained from inverse
design have achieved diffraction-limited focusing with NA
= 0.7 over FOV = 80◦, but the averaged focusing effi-
ciency is only about 25% [29]. However, there was no
guidance on the efficiency bound of these nonlocal meta-
lenses.

From the desired response of a multi-channel optical
system, we can write down its transmission matrix that
relates the input to the output. Here, we rigorously
bound the channel-averaged transmission efficiency us-
ing the singular values of the transmission matrix and
the fact that the transmitted energy must not exceed the
input energy. For commonly adopted designs with equal
entrance and output apertures, we find the transmission
efficiency bound of a nonlocal metalens to drop with the
NA. We also find that reducing the entrance aperture
size can raise the efficiency bound to close to unity. This
approach is general and can guide the design of not only
metalenses but also other multi-channel optical systems.

II. RESULTS

A. Nonlocality

As schematically illustrated in Fig. 1(a),
subwavelength-thick local metalenses (such as meta-
lenses with the hyperbolic phase profile [30]) perform
well only over a limited input angular range. Nonlocal
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FIG. 1. Nonlocal metalenses and their transmission matrix. (a) A local metalens with subwavelength thickness, for which
the input and output apertures have the same size, i.e., Din = Dout. Diffraction-limited focusing can only be achieved within
a narrow range of incident angles. (b) A nonlocal metalens, whose larger thickness allows nonlocal coupling, under which
diffraction-limited focusing may be achieved over a wide angular range. Here, Din and Dout can be different. (c,d) The squared
amplitude of the transmission matrix |t(ky, k

′
y)|2 (c) and its normalized singular values σi/σ1 (d) for an ideal nonlocal metalens

with diameter Din = Dout = 300λ, NA = 0.8, FOV = 140◦. Here, the averaged transmission efficiency is bounded by (3) as
〈T 〉 ≤ 74%.

metalenses can achieve diffraction-limited focusing over
a much wider FOV but need a minimal thickness to
provide the nonlocality [22, 31]. Since a large FOV
requires an angle-dependent response (i.e., angular
dispersion), a spatially localized incident wave must
spread as it propagates through the metalens under
space-angle Fourier transform. Thus more angular
diversity necessitates more nonlocality. As shown in
Supplementary Fig. S1, nonlocal effects become im-
portant when the FOV is larger than a threshold. For
FOV above such a threshold, a sufficient thickness is
needed for light to spread and create nonlocality, so
the input diameter Din and output diameter Dout can
be different [Fig. 1(b)]. The different aperture sizes
provide an additional degree of freedom compared to
local metalenses with subwavelength thicknesses (for
which Din = Dout intrinsically).

B. Transmission matrix and target response

While the transmission-matrix formalism introduced
in this work is general, for concreteness we will con-
sider metalenses. For ideal (aberration-free) lenses un-
der plane-wave incidence, we can obtain the transmit-
ted phase profile on the output surface of the metal-
ens by matching the optical path lengths between the
marginal rays and the chief ray at the focus r(θin) =
(y = f tan θin, z = f + h). In 2D, we get [22, 27, 32]

φideal
out (y, z = h, θin) = ψ(θin)− 2π

λ

√
f2 + (y − f tan θin)

2
,

(1)
where θin is the incident angle; f and h are the focal
length and lens thickness respectively; ψ(θin) is an angle-
dependent but spatially invariant global phase with no
effect on the focusing quality.

Consider monochromatic, transverse magnetic waves
of 2D systems at wavelength λ, where E = Ex(y, z)x̂.

The incoming wavefront Ex(y′, z = 0) can be projected
onto Nin propagating plane waves with input transverse
momenta k′y = {kay} = (2π/λ) sin θin truncated to the
size of the input aperture i.e., |y′| < Din/2, yielding
complex-valued amplitude αa of the a-th plane-wave in-
put, where z = 0 is the front surface of the system, |kay | <
(2π/λ) sin (FOV/2) is restricted to the FOV of interest
with kay discretized with 2π/Din spacing following the
Nyquist-Shannon theorem [33]. Similarly, the transmit-
ted wavefront Ex(y, z = h) can be written as a superposi-
tion of Nout plane waves with ky = {kby} = (2π/λ) sin θout

truncated to |y| < Dout/2, and the complex-valued am-
plitude of the b-th plane-wave output is βb, where θout is
the output angle and |kby| < 2π/λ is sampled with mo-
mentum spacing 2π/Dout. For any linear optical system,
these amplitudes are related through the transmission
matrix tba,

βb =

Nin∑

a=1

tbaαa. (2)

We can parameterize the incoming and transmitted wave-
fronts as column vectors α = [α1; · · · ;αNin

] and β =
[β1; · · · ;βNout

]. Then, β = tα, where t = t(ky, k
′
y) =

t(kby, k
a
y) = tba is the transmission matrix in the angular

basis.

Fourier transforming the output field of the ideal
metalens of Eq. (1) from y to ky yields the trans-
mission matrix t. Such transmission matrix applies
to any lens with diffraction-limited focusing over this
FOV. The squared amplitude of the transmission ma-
trix |t(ky, k

′
y)|2 for a metalens with Din = Dout = 300λ,

NA = sin(arctan(Dout/(2f))) = 0.8 and FOV = 140◦

is shown in Fig. 1(c). More details on the transmission
matrix can be found in Supplementary Sec. 2. Notably,
Eq. (1) does not specify the overall amplitude prefactor
of the transmission matrix, so we cannot directly assess
the transmission efficiency based on this target response.
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FIG. 2. Transmission efficiency bound Neff/Nin of ideal nonlocal metalenses when Din = Dout and when using Din = Dth
in from

(4). (a) Neff/Nin averaged over FOV and output diameter Dout as a function of NA. The black line is
√

1−NA2. (b,c) The
distribution of Neff/Nin among different FOV and Dout when (b) NA = 0.7 and (c) NA = 0.9.

C. Transmission efficiency bound

When the transmission matrix includes the overall am-
plitude prefactor and is flux-normalized, the total trans-
mission efficiency (summed over all transmitted flux) av-
eraged over inputs within the prescribed FOV is 〈T 〉 =∑

a Ta/Nin, where Ta =
∑

b |tba|2 is the total transmis-
sion efficiency for incident angle θain and Nin is the num-
ber of input channels (i.e., the number of columns in the
transmission matrix). To obtain an upper bound on 〈T 〉
without knowledge of the overall amplitude prefactor of
the transmission matrix, we consider the singular val-
ues {σi} of the transmission matrix. With the singular
value decomposition, the transmission matrix is factor-

ized into t(ky, k
′
y) = UΣV† =

∑
i σi(uiv

†
i ), where each

right-singular column vector vi is a normalized incident
wavefront being a linear superposition of the input chan-
nels. The corresponding transmitted wavefront is σiui,
with a transmission efficiency of σ2

i and with the nor-
malized transmitted wavefront being column vector ui.
Energy conservation imposes that the transmitted en-
ergy cannot exceed the input energy, so 0 ≤ σ2

i ≤ 1
for all i. Since tr(t†t) =Σa(t†t)aa =

∑
b,a |tba|2 equals

the sum of the eigenvalues λi = σ2
i of matrix t†t, we

have 〈T 〉 =
∑

b,a |tba|2/Nin =
∑

i σ
2
i /Nin. In addition,∑

i σ
4
i ≤

∑
i σ

2
i follows from energy conservation. There-

fore, we have a rigorous inequality

〈T 〉 ≡
∑

b,a |tba|2
Nin

=
Neff

Nin

∑
i σ

4
i∑

i σ
2
i

≤ Neff

Nin
. (3)

Here, Neff = (
∑

i=1 σ
2
i )2/

∑
i=1 σ

4
i is the effective num-

ber of high-transmission channels characterized through
an inverse participation ratio [34], and it is indepen-
dent of the overall prefactor of the transmission ma-
trix. Figure 1(d) shows the normalized singular values of
the transmission matrix t(ky, k

′
y) in Fig. 1(c), for which

〈T 〉 ≤ Neff/Nin ≈ 74%.
This Neff comes directly from the desired angle-

dependent response encoded in the transmission matrix,
regardless of what structural design and material com-

position are used to realize such response. Together with
energy conservation, Neff imposes a fundamental bound
on the average transmission of the system through (3).
This formalism applies to any linear optical system for
which the desired response is known.

A bound is useful only when it is sufficiently tight.
Supplementary Fig. S2 shows from full-wave numerical
simulations [35] that Eq. (3) indeed provides a reason-
ably tight upper bound for the averaged transmission ef-
ficiency 〈T 〉, considering hyperbolic and quadratic meta-
lenses as examples.

Figure 2(a) shows the transmission efficiency bound
Neff/Nin as a function of NA for aberration-free nonlocal
metalenses with FOV larger than the threshold shown in
Supplementary Fig. S1. Since FOV and the output diam-
eter Dout have a very small influence on Neff/Nin (Sup-
plementary Figs. S3,S4), in Fig. 2(a) we map out how
the efficiency bound depends on the NA while averaging
over FOV and Dout. We see that using equal entrance
and output diameters, i.e., Din = Dout, results in an ef-

ficiency bound that drops approximately as
√

1−NA2.
This bound applies regardless of how complicated or op-
timized the design is and regardless of what materials are
used.

In Fig. 2(b,c), we show the distribution (among dif-
ferent FOV and output diameters) of the transmission
efficiency bound with NA = 0.7 and 0.9. The bound
is consistent with the inverse design results of Ref. [29],
where the achieved average absolute focusing efficiency
(considering only the transmitted power within three full-
widths at half-maximum around the focal peak) is 25%
for a nonlocal metalens with NA = 0.7 and FOV = 80◦.

D. Optimal aperture size

In addition to establishing a transmission efficiency
limit, it would be even more useful to know what strat-
egy one may adopt to raise such an efficiency limit. To
this end, we examine the singular values of the transmis-
sion matrix. In Fig. 1(d) where Din = Dout = 300λ and
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FIG. 3. The transmission efficiency bound Neff/Nin and
the condition number κ of the ideal transmission matrix as a
function of the entrance diameter Din. Black and gray vertical
dotted lines indicate Dth

in = 185λ and Dout = 300λ. Lens
parameters: output diameter Dout = 300λ, NA = 0.8, FOV
= 140◦.

NA = 0.8, we see there are many zero singular values.
These zero singular values lower Neff and the transmis-
sion efficiency. Removing these zero singular values (i.e.,
eliminating non-transmitting wavefronts) can raise the
transmission efficiency bound Neff/Nin. A zero singular
value corresponds to a superposition of the columns of
the transmission matrix that yields a zero vector, mean-
ing those columns are linearly dependent. Therefore, we
can eliminate zero singular values by reducing the num-
ber of columns in the transmission matrix. Because the
input wave vectors |k′y| < (2π/λ) sin (FOV/2) are sam-
pled with momentum spacing 2π/Din at the Nyquist rate,
we expect that reducing Din can lower the number of
input columns in the transmission matrix to raise the
transmission efficiency bound. Figure 3 shows this strat-
egy indeed works: reducing the input aperture size Din

increases the efficiency bound Neff/Nin.
The next question is: what would be an optimal in-

put diameter Din to use? While reducing Din raises the
transmission efficiency bound, doing so also reduces the
amount of light that can enter the metalens, which is not
desirable. To find a balance, we examine the condition
number κ, defined as the ratio between the maximal and
the minimal singular values. When zero σi exist, the con-
dition number κ diverges to infinity (subject to numerical
precision). The right-axis of Fig. 3 shows that κ abruptly
shoots up by many orders of magnitude when the input
diameter Din raises above a threshold that we label as
Dth

in (black dotted line). When Din < Dth
in , κ is of order

unity, all singular values are comparable with no zero-
transmission wavefronts, so we have Neff ≈ Nin, and the
transmission efficiency bound is close to unity. When
Din > Dth

in , near-zero-transmission wavefronts start to
appear, which results in a fast reduction of the trans-
mission efficiency bound. Therefore, this threshold value
Dth

in is an optimal input diameter to use, providing maxi-
mal entrance flux while keeping a near-unity transmission
efficiency bound.

To automate the determination of Dth
in , we examine

the slope ∂κ/∂Din, which transitions from near zero to a
very large number at Dth

in . Supplementary Tab. S1 shows
that different threshold values for ∂κ/∂Din yield almost
identical Dth

in and Neff/Nin. Note that the choice of the
global phase ψ(θin) in (1) does not influence Dth

in and the
transmission efficiency bound, as shown in Supplemen-
tary Fig. S5.

To guide future designs, it is desirable to know how
Dth

in depends on the various lens parameters. Figure 4
plots Dth

in as a function of the FOV, output diameter
Dout, and NA. As described in Sec. 2II A, lenses with
a very small FOV do not require nonlocality; for such
local metalenses, we find Dth

in ≈ Dout as expected from
the schematic in Fig. 1(a). As the FOV increases and
nonlocality emerges, we observe in Fig. 4(a) that Dth

in

drops below Dout (as expected from the preceding dis-
cussions) and reaches a constant value that depends on
NA but not on the FOV. This Dth

in for nonlocal meta-
lenses is proportional to Dout [Fig. 4(b)]. Figure 4(a,b)
fix Dout = 300λ and FOV = 140◦ respectively; other
lens parameters share similar dependencies (Figs. S6-S7
of Supplement 1). In Fig. 4(c), we find empirically that
the NA dependence is well described by

Dth
in = Dout

√
1−NA2. (4)

This result provides a recipe for choosing the input and
output aperture sizes for nonlocal high-NA metalenses
with high transmission.

To demonstrate the increased transmission efficiency
bound, we also show in Fig. 2(a–c) the transmission effi-
ciency bound when the input aperture size Din is set to
the optimal Dth

in in (4). We observe a large transmission

efficiency bound Neff/Nin that overcomes the
√

1−NA2

limit when equal entrance and output apertures are used.

III. DISCUSSION

While this work was originally motivated by the effi-
ciency of high-NA nonlocal metalenses, the formalism we
introduce is very general. Given the desired response of
any multi-channel optical system, one may write down
its transmission matrix and apply (3) to establish a
bound on its transmission efficiency. Like the thickness
bound introduced in Refs. [22, 31], the transmission ef-
ficiency bound here is functionality-driven and design-
independent.

Nonlocal metasurfaces open up a wide range of appli-
cations and tailored angle-dependent responses that are
impossible for traditional local metasurfaces [24]. The
efficiency bound in this work provides valuable guidance
for this rapidly evolving field.
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Transmission efficiency limit for nonlocal metalenses:
supplemental document

This document provides supplemental information to “Transmission efficiency limit for nonlocal metalenses”. It consists
of seven sections. Section 1 characterizes whether a metalens is local or nonlocal. Section 2 details how to construct the
transmission matrix of an ideal metalens. Section 3 compares the efficiency bound Neff/Nin with the transmission efficiency of
actual metalenses from full-wave simulations. Sec. 4 provides comprehensive data of Neff/Nin for different lens parameters.
Section 5 shows that the slope of the condition number, ∂κ/∂Din, is a robust parameter for determining the threshold input
diameter Dth

in . In Sec. 6, we show that Dth
in and transmission efficiency bound Neff/Nin are independent of the global phase

function ψ(θin). In Sec. 7, we provide complete data plots for Dth
in as a function of the lens parameters.
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1. NONLOCALITY OF METALENSES

When a metalens achieves diffraction-limited focusing across a wide range of incident angles, its response must be angle-
dependent, requiring nonlocality. Conversely, if the angular range is small, the response does not need to vary with angle, and a
local metalens would suffice. Thus we expect a threshold field of view (FOV) that separates local and nonlocal metalenses.

Assume free space on the incident and transmitted sides of the metalens. An ideal lens needs to match the optical path lengths
of the marginal rays and the chief ray from the focal spot position (y = f tan θin, z = h + f ) to the lens surface (y, z = h) for
diffraction-limited focusing, so the phase distribution on the back surface of an ideal metalens is

φideal
out (y, z = h, θin) = ψ(θin)−

2π

λ

√
f 2 + (y− f tan θin)

2, (S1)

where h, θin and f are the lens thickness, incident angle and focal length, respectively. The phase shift provided by the metalens
is then

∆φideal(y, θin) = φideal
out (y, θin)− φin(y, θin), (S2)

where φin(y, θin) = kin
y y = (2π/λ) sin θiny is the phase profile of the incident light.

The ψ(θin) in Eq. (S1) is an angle-dependent but spatially-invariant global phase, with no influence on the focusing perfor-
mance. One sensible choice for the global phase ψ(θin), applied in all calculations in this work, is

ψ(θin) =
2π

λ

〈√
f 2 + (y− f tan θin)2 + y sin θin

〉

y
≡ ψ0(θin), (S3)

where 〈· · · 〉y denotes averaging over y within the output aperture i.e., |y| < Dout/2. With this ψ0(θin), the y average of the phase
shift, 〈∆φideal(y, θin)〉y, is the same for different incident angles, which minimizes the required thickness of the metalens [1]. We
will show in Sec. 6 that the transmission efficiency bound studied in this work is independent of the choice of ψ(θin).

A local hyperbolic metalens achieves diffraction-limited focusing at the normal incidence θin = 0◦, with an angle-independent
phase-shift profile [2, 3]

∆φhyp(y) = ∆φideal(y, θin = 0◦) = ψ0(θin = 0◦)− 2π

λ

√
f 2 + y2. (S4)

Away from the normal incident angle, ∆φhyp(y) 6= ∆φideal(y, θin), so a hyperbolic metalens no longer achieves ideal focusing.
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Given the lens parameters (FOV, NA, and Dout), we want to determine whether it can be realized with a local metalens or
whether nonlocality is required. To do so, we evaluate

maxy,θin |∆φideal(y, θin)− ∆φhyp(y)| (S5)

across all positions |y| < Dout/2 and all incident angles within |θin| < FOV/2. If Eq. (S5)< π, we consider a local hyperbolic
metalens to be sufficient, and the metalens is classified as local. Otherwise, it is classified as nonlocal.

Figure S1(a) shows whether an ideal metalens is local or nonlocal over FOV ∈ (0◦, 180◦) and numerical aperture NA ∈ (0, 1)
when Dout = 300λ. When the FOV is very small, all lenses are local regardless of NA; this is the reason that in Fig. 4(a) of the
main text, Dth

in ≈ Dout when the FOV is very small. Above a threshold FOV, the lens becomes nonlocal, for which Dth
in < Dout.

The threshold FOV and Dth
in both depend on the NA. Figure S1(b) further shows the threshold FOV for different Dout and NA.
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Fig. S1. (a) Designation of whether a metalens is local or nonlocal; Dout = 300λ. (b) The threshold FOV that separates local
and nonlocal metalenses for different output diameter Dout and NA.

2. TRANSMISSION MATRIX OF AN IDEAL METALENS

Following Eq. (2) of the main text, the transmission matrix relates the incoming wavefront to the outgoing wavefront as
βb = ∑a tbaαa.

We express the input wavefront in a flux-orthogonal basis of truncated plane waves { fa},

fa(y, z) =





1√
Din

1√
ka

z
ei[ka

yy+ka
zz)] for |y| < Din

2

0 otherwise
(S6)

with {ka
y} =

{
a(2π/Din) such that a ∈ Z and |ka

y| < (2π/λ) sin (FOV/2)
}

and (ka
y)

2 + (ka
z)

2 = (2π/λ)2.

Consider incident plane wave from a fixed angle θa
in within the FOV. Here, Ea

x(y′, z = 0) = fa(y′, z = 0), corresponding to one
column of the transmission matrix, so βb = tba. To perfectly focus to the focal spot, the field profile on the output surface (z = h)
of the metalens should be proportional to the conjugated field radiated from a point source at the focal spot. Therefore,

Ea
x(y, z = h) =





A(θa
in)

eiφideal
out (y,θa

in)

[ f 2+(y− f tan θa
in)

2]1/4 for |y| < Dout
2

0 otherwise
. (S7)

The distance between a point (y, z = h) on the back surface of the metalens and the focal spot (y = f tan θin, z = h + f ) is
r =

√
f 2 + (y− f tan θin)2. The amplitude factor 1/

√
r comes from the decay rate of the radiated field from a point source in

2D. We expand this ideal output in a basis of flux-orthogonal truncated plane waves,

gb(y, z) =





1√
Dout

1√
kb

z
ei[kb

yy+kb
z(z−h)] for |y| < Dout

2

0 otherwise
(S8)

with {kb
y} =

{
b(2π/Dout) such that b ∈ Z and |kb

y| < 2π/λ
}

and (kb
y)

2 + (kb
z)

2 = (2π/λ)2. Projecting onto this basis, we

obtain Ex(y, z = h) = ∑b βbgb(y, z = h) with

tba = βb =

√
kb

z
Dout

∫ Dout
2

− Dout
2

Ea
x(y, z = h)e−ikb

yydy. (S9)

2



In practice, we can approximate the continuous integration over y in Eq. (S9) by a discrete summation. A sampling spacing of
∆y = λ/2 is chosen following the Nyquist-Shannon sampling theorem [4]. The discretized Eq. (S9) can be evaluated efficiently
using fast Fourier transform:

tba ≈ ∆y

√
kb

z
Dout

e−ikb
y(− Dout

2 + ∆y
2 )

N−1

∑
n=0

Ea
x(yn, z = h)e−i 2π

N bn, (S10)

where y ∈ [−Dout/2, Dout/2] is discretized to {yn ≡ −Dout
2 +

∆y
2 + n∆y}, and N ≡ Dout/∆y ∈ Z is the length of {yn}.

Eq. (S7) includes an amplitude factor A(θa
in) that can depend on the incident angle. This means that each column of the

transmission matrix has an undetermined amplitude prefactor. While the average transmission efficiency bound Neff/Nin in
this work does not depend on a global amplitude prefactor, we do need to specify the relative amplitude between the columns.
Here, we choose A(θa

in) such that ∑b |tba|2 is the same for all incident angles within the FOV. The reason is twofold. First, it is
typically desirable that the focal power is independent of the incident angle so there is no vignetting in the image, and the focal
power is proportional to the transmitted flux ∑b |tba|2 times the Strehl ratio (which is unity for an ideal lens). Second, in this
work we are interested in the upper bound on the transmission efficiency, so we want to find the largest possible Neff. A large
Neff corresponds to all possible inputs having similar total transmission, so making ∑b |tba|2 independent of the incident angle
can increase Neff.

3. TRANSMISSION EFFICIENCY OF HYPERBOLIC AND QUADRATIC METALENSES
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Fig. S2. Transmission efficiency for 2D metalenses with (a) hyperbolic phase-shift profile and (b) quadratic phase-shift profile.
Lens parameters: diameter D = 100 µm, λ = 532 nm.

As a verification, here we compare the transmission efficiency bound Neff/Nin with the transmission efficiency of actual
metalenses.

We design 2D metalenses with hyperbolic [Eq. (S4)] and quadratic [5–7] phase-shift profiles

∆φqua(y) = −
2π

λ

y2

2 f
, (S11)

operating at wavelength λ = 532 nm, composed of ridges with thickness h = 0.6 µm and varying widths between 45 nm
and 200 nm. Each unit cell has a titanium dioxide ridge with refractive index nridge = 2.43 sitting on a silica substrate with
nsub = 1.46. The unit cell size is fixed at 240 nm. We calculate their transmission matrices by full-wave simulations using an
open-source software MESTI [8, 9]. The simulation domain is discretized with 40 pixels per wavelength.

The transmission efficiency Ta at incident angle θa
in is

Ta = ∑
b
|tba|2 (S12)

for a flux-normalized transmission matrix tba. Here we consider transmission averaged over incident angles with |θa
in| < 45◦ (ie.

〈T〉 = ∑b,a |tba|2/Nin) and compare it to the efficiency bound Neff/Nin.
Figure S2 plots Neff/Nin and 〈T〉 as a function of NA with the lens diameter fixed at D = 100 µm, for hyperbolic and quadratic

metalenses. Indeed, 〈T〉 is always below Neff/Nin. Note that the range of NA is restricted to < 0.71 for the quadratic metalens
because its largest possible effective NA is 1/

√
2 = 0.71 [7].
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4. DEPENDENCE OF TRANSMISSION EFFICIENCY BOUND ON LENS PARAMETERS

Figure S3 plots the transmission efficiency bound Neff/Nin as a function of the FOV and Dout when Din = Dth
in and Din = Dout,

respectively, averaging over the other lens parameters. We see that FOV and Dout have very minor effects on the efficiency
bound.

Some representative results of the transmission efficiency bound are plotted in Fig. S4.
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in and
Din = Dout.
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5. THRESHOLD INPUT DIAMETER FROM ∂κ/∂DIN

Table S1 shows the threshold input diameter Dth
in for high transmission determined by (∂κ/∂Din) |Din=Dth

in
= 0.04/λ, 0.4/λ

or 4/λ, and the corresponding transmission efficiency bound Neff/Nin at Din = Dth
in when Dout = 300λ. We can see that the

results are insensitive to the threshold value used, indicating that ∂κ/∂Din is a robust indicator for the threshold. We use
(∂κ/∂Din) |Din=Dth

in
= 0.4/λ in the main text, though other values will yield similar results.

6. ψ(θIN) DEPENDENCE

The incident-angle-dependent but spatially-invariant global phase ψ(θin) in Eq. (S1) has no influence on the focusing quality,
so it can be chosen at will. The ψ(θin) = ψ0(θin) in Eq. (S3) was chosen to minimize the required thickness of the metalens [1].
Another common choice is

ψ(θin) =
2π

λ

√
f 2 + ( f tan θin)2 ≡ ψc(θin), (S13)
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Table S1. Threshold input diameter Dth
in and transmission efficiency bound Neff/Nin at Dout = 300λ

∂κ/∂Din = 0.04/λ ∂κ/∂Din = 0.4/λ ∂κ/∂Din = 4/λ

Dth
in Neff/Nin Dth

in Neff/Nin Dth
in Neff/Nin

NA = 0.2, FOV = 10◦ 294λ 100% 300λ 98.7% 300λ 98.7%

NA = 0.5, FOV = 10◦ 260λ 99.8% 265λ 98.8% 274λ 95.9%

NA = 0.9, FOV = 10◦ 133λ 96.0% 136λ 95.0% 146λ 89.3%

NA = 0.2, FOV = 80◦ 293λ 98.4% 294λ 98.7% 296λ 99.0%

NA = 0.5, FOV = 80◦ 260λ 92.8% 261λ 93.0% 264λ 93.4%

NA = 0.9, FOV = 80◦ 133λ 84.2% 133λ 84.2% 136λ 84.6%

NA = 0.2, FOV = 160◦ 292λ 97.3% 294λ 97.9% 296λ 98.3%

NA = 0.5, FOV = 160◦ 260λ 90.6% 261λ 90.8% 264λ 91.1%

NA = 0.9, FOV = 160◦ 132λ 87.4% 133λ 87.7% 136λ 88.0%
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Fig. S5. Threshold input diameter Dth
in and transmission efficiency bound Neff/Nin at Din = Dth
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5



which makes ∆φideal(y = 0, θin) = φideal
out (y = 0, θin)− φin(y = 0, θin) = 0.

As shown in Fig. S5, the threshold input diameter Dth
in and transmission efficiency bound Neff/Nin at Din = Dth

in are the same
for both choices of the global phase ψ(θin).

7. COMPREHENSIVE DATA ON THE THRESHOLD INPUT DIAMETER

Figure 4(a,b) of the main text plots the threshold input diameter Dth
in for output diameter Dout = 300λ and FOV = 140◦

respectively, with varying NA. Figures S6–S7 plot Dth
in for other Dout and other FOV.
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