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We utilise the graphon—a continuous mathematical object which represents the limit of conver-
gent sequences of dense graphs—to formulate a general, continuous description of quantum spin
systems in thermal equilibrium when the average co-ordination number grows extensively in the
system size. Specifically, we derive a closed set of coupled non-linear Fredholm integral equations
which govern the properties of the system. The graphon forms the kernel of these equations and
their solution yields exact expressions for the macroscopic observables in the system in the thermo-
dynamic limit. We analyse these equations for both quantum and classical spin systems, recovering
known results and providing novel analytical solutions for a range of more complex cases. We
supplement this with controlled, finite-size numerical calculations using Monte-Carlo and Tensor
Network methods, showing their convergence towards our analytical results with increasing system
size.

Introduction – The physical properties of interacting
systems are strongly affected by the connectivity of their
components. For instance, network topology plays a de-
cisive role in the rate of disease spreading in infectious
disease models [1] whilst systematic studies have been
undertaken into the affect of connectivity on the syn-
chronisation of oscillators [2–5].

In interacting spin systems, the same ideas hold true:
frustration causes the manifestation of exotic phases of
matter such as a spin liquids [6] and small-world ef-
fects alter the underlying universality class of ordered-
disordered phase transitions [7]. The difficulty of solv-
ing the many-body problem (especially in the quantum
regime), however, means a more general characterisation
of how network topology influences strongly correlated
systems is unknown.

When disorder is absent and the average co-ordination
number becomes large, interacting many-body systems
fall into the mean-field universality class and become
amenable to simpler, mathematical and computational
approaches [8–12]. Despite mostly being applied to
translationally-invariant systems, the mean field ap-
proach is known to be valid for an infinite multitude of
networks, whether homogeneous or heterogeneous [13].
Whilst it is only exact in the thermodynamic limit
and when the average co-ordination number grows pro-
portionally with the system size [14], mean-field the-
ory can provide meaningful physical predictions for low-
dimensional systems [15, 16]. Within the field of graph
theory, network structures—whether heterogeneous or
homogeneous—with an extensive co-ordination number
are well-characterised. Their thermodynamic limit is suc-
cinctly described by the graphon [17, 18], a continuous
mathematical object which represents the limit of a se-
quence of adjacency matrices as the number of vertices
tends to infinity and the average co-ordination number
grows extensively.
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Here we utilise the graphon in the study of interacting
spin systems. This allows us to formally take the ther-
modynamic limit and derive an exact, continuous the-
ory for the limit of sequences of discrete Hamiltonian on
graphs of increasing size and average co-ordination num-
ber. Specifically, we take a very general spin Hamilto-
nian defined over an arbitrary graph and, for sequences
of dense graphs whose limit is known to converge to a
given graphon, derive a coupled set of integral equa-
tions which exactly describe the equilibrium physics of
the limit of the corresponding sequence of Hamiltonians.
The graphon forms the kernel in these integral equations
and the Physics of the system can be directly studied as
a function of this object.
Taking several classical and quantum example models

we demonstrate the utility of these integral equations:
i) verifying previous results on all-to-all spin systems,
ii) proving the existence of a finite-temperature phase
transition in the classical Ising model for any graphon
and iii) deriving analytical solutions for the equilibrium
observables of spin models on novel non-trivial, hetero-
geneous networks. We reinforce our analytical solutions
with large-scale, finite-size Monte Carlo and Tensor Net-
work simulations. Whilst the spin systems we treat in
this work are commonly studied due to their relevance
as models of real-world magnetism, they also find appli-
cation in many other branches of science, including the
political, social and biological sciences [19–21].
Hamiltonian – Our starting point is L qubits placed on

the L vertices of a graph GL. The graph is specified by
an L×L symmetric adjacency matrix AGL

with elements
Av,v′ which dictate the (weighted) connections between
vertices (qubits) v, v′ ∈ [1...L], [1...L]. The Hamiltonian
reads

H(GL) =
1

L

L∑
v,v′=1
v>v′

Av,v′

( ∑
α=x,y,z

Jασ̂αv σ̂
α
v′

)
+
∑
v∈V

α=x,y,z

hασ̂αv′ .

(1)
with Jα, hα ∈ R, and σ̂αv the Pauli spin operator acting
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along the α-spin-axis on vertex v. Our focus is on graphs
where 0 ≤ Av,v′ ≤ 1 and

∑
v,v′ Av,v′ ∝ L2. When the

graph is unweighted (Av,v′ ∈ {0, 1}) then we refer to the
graph as ‘dense’ because the the average co-ordination
number diverges with system size. The factor of 1

L in
H(GL) is necessary to ensure a finite, non-trivial en-
ergy density. A variety of well-known models—including
the Curie-Weiss [22] and Lipkin Meshkov Glick [23, 24]
models—are contained within our Hamiltonian. The re-
striction 0 ≤ Av,v′ ≤ 1 and the homogeneous nature of
the field strengths, however, precludes our Hamiltonian
from including disordered models such as spin-glass sys-
tems [25, 26].

Theory – In this work, by utilising tools from graph
theory and mean-field theory, we formulate an explicit,
exact, continuous description of this system in thermal
equilibrium in the thermodynamic limit. In order to
describe our continuum formalism we must first intro-
duce the concept of a graphon. This can be done by
taking the vertices v = 1...L of a graph GL and per-
forming the change of variables: x = v/L ∈ [0, 1]. We
then define WGL

(x, y) : [0, 1]2 → [0, 1], a real symmet-
ric stepped function over the unit square such that for
a given (x, y) ∈ Iv × Iv′ , where Iv = [(v − 1)/L, v/L]
then WGL

(x, y) = Av,v′ . Equipped with a well-defined
metric for the similarity of two graphs, it can be shown
that for certain sequences of graphs (GL)L∈N the limit
limL→∞WGL

(x, y) converges to a well-defined symmet-
ric function W (x, y) known as the ‘graphon’ [17, 18]. In
the Supplemental Material (SM) we discuss these met-
rics in detail and provide theorems on the convergence
of graph sequences under these metrics. Importantly, it
is also possible to move in the opposite direction and
given a graphon W (x, y) construct sequences of finite
graphs whose limit is W (x, y). These finite graphs can
be constructed via one of two methods: ‘stochastic’ or
‘weighted’ sampling of W (x, y) and we use GSL and GWL
to refer to their respective realisation over the vertices
v = 1....L. They can be constructed by defining the
quantity

Pv,v′ = L2

∫
Iv×Iv′

W (x, y)dxdy, Iv = [(v−1)/L, v/L].

(2)
The adjacency matrix of the unweighted graph GSL is

then defined by setting Av,v′ = 1 with probability Pv,v′
and Av,v′ = 0 otherwise. The adjacency matrix of the
weighted graph GWL is defined by setting Av,v′ = Pv,v′ .
A given sequence of such realisations is guaranteed to
converge to the graphon W (x, y) in the limit L → ∞
[27].

With the definition of the graphon in hand, the central
result of this paper can be presented.

Theorem 1 Let (GL)L∈N = (G1, G2, ...) be a sequence
of finite-size graphs generated as stochastic or weighted
realisations of the graphon W (x, y). Then for a given
inverse temperature T = 1/β the macroscopic properties
of the equilibrium states of the sequence of Hamiltonians

H(GL)L∈N = (H(G1), H(G2), ...) converges and are de-
termined by the solution of the following coupled integral
equations

λα(x) = −Jα
∫ 1

0

W (x, y)λα(y) tanh(βΛ(y))

Λ(y)
dy + hα,

(3)
with α = x, y, z, Λ(x) =

+
√

(λx(x))2 + (λy(x))2 + (λz(x))2 and the three func-
tions λα(x), with α ∈ {x, y, z}, each being continuous,
real-valued and defined over the domain [0, 1].

In order to prove this theorem and arrive at Eq. (3) we
state the following intermediate theorem

Theorem 2 Let f(H) = − 1
Lβ ln(Tr(exp(−βH))) be the

free energy density of a dL×dL many-body Hamiltonian,
with β ∈ R≥0 and d the dimension of the local Hilbert
space. Let GSL and GWL be the stochastic and weighted
realisations on L vertices of a graphon W (x, y) respec-
tively. For an arbitrary set of real, finite values for the
parameters {Jx, Jy, Jz, hx, hy, hz} the following is true

|f(H(GSL))− f(H(GWL ))| = O(L−1/2), (4)

which vanishes in the limit L→ ∞.

This theorem is a significant generalisation of theorem 1
in Ref. [28] which proved this result solely for sequences
of Erdős-Rényi graphs, which correspond to the constant
graphon. The proof of theorem 2 (which can be found in
the SM) relies on more general statistical properties of
random graphs.
With theorem 2 in hand, theorem 1 follows by: i) focus-

ing strictly on the sequence (GWL )L∈N = (GW1 , GW2 , ...) of
weighted finite realisations ofW (x, y), ii) applying mean-
field theory (which is exact here in the thermodynamic
limit) and iii) taking the continuum limit of the resulting
equations by invoking the definition of the graphon. The
SM contains full proofs of both theorem 1 and theorem
2.
If we can solve Eq. (3) for the functions

{λx(x), λy(x), λz(x)}, then we have determined the
equilibrium physics of the limit of the sequence
(H(G1), H(G2), ...). The functions {λx(x), λy(x), λz(x)}
are a change of variables from the continuum limit of the
spin degrees of freedom in the Hamiltonian. They di-
rectly encode the physical properties of the equilibrium
state: the magnetisation on site v in the thermodynamic
limit is specified by ⟨σα(x)⟩ with x = limL→∞

v
L and is

related to the λ functions by

⟨σα(x)⟩ = −λ
α(x)tanh(βΛ(x))

Λ(x)
. (5)

The total magnetisation along a given spin direction is

Mα = lim
L→∞

1

L

L∑
v=1

⟨σαv ⟩ = −
∫ 1

0

λα(x)tanh(Λ(x))

Λ(x)
dx.

(6)



3

The validity of the mean-field approximation here means
we can compute multi-point correlators as products of
on-site expectation values.

How can we solve Eq. (3) and find
{λx(x), λy(x), λz(x)}? In general there is no ana-
lytical solution and we will be restricted to numerical
methods. Nonetheless, there are certain cases where
they can be solved analytically. Consider the case the
graphon is degenerate, i.e. W (x, y) =

∑n
i=1 fi(x)fi(y)

where n is finite and fi(x) : [0, 1] → [0, 1]. Substitution
into the above equation tells us λα(x) =

∑n
i=1 c

α
i fi(x)

where cαi are real-valued coefficients which depend on
the field strengths hα, couplings Jα and the inverse tem-
perature β but do not depend on x. These coefficients cαi
are the solution of the set of 3n coupled equations which
result from the substitution of λα(x) =

∑n
i=1 c

α
i fi(x)

into Eq.(3). For a given set of Jα, hα and value of β
we therefore have a closed form for λα(x) and various
observables in the system. In our examples in the
main text (further examples, including non-degenerate
graphons are considered in the SM) we focus on n = 1
as they can be manipulated to yield closed forms for the
equilibrium properties of the system.

Classical Ising model – We first set Jx = Jy = hx =
hy = hz = 0 and Jz = −1, realising the classical
Ising model with zero field. Utilising sgn(z) tanh(β|z|) =
tanh(z), our integral equations reduce to

λz(x) =

∫ 1

0

W (x, y) tanh(βλz(y))dy. (7)

The Z2 spin-flip symmetry is encoded in the fact that if
λz(x) is a solution to the equation then so is −λz(x).
Moreover, there is clearly always the trivial solution
λz(x) = 0 ∀x which corresponds to the disordered param-
agnetic state with 0 magnetisation. Applying Banach’s
fixed-point theorem [29] to Eq. (7) tells us that, with

certainty, when β < supx∈[0,1]

∫ 1

0
W (x, y)dy this is the

only solution. For larger values of β, however, there ex-
ists a non-trivial solution which corresponds to a ferro-
magnetic phase. For instance, when β → ∞ we have

λz(x) =
∫ 1

0
W (x, y)dx ̸= 0 ∀x. Thus, following this anal-

ysis, we know that λz(x, β) cannot be smooth and contin-
uous over x ∈ [0, 1] and β ∈ [0,∞] and there must exist a
finite-order transition between the ferromagnetic solution
and the paramagnetic solution at some critical tempera-
ture. Our continuum description has therefore allowed us
to prove the existence of a ferromagnetic–paramagnetic
phase transition for the Ising model on any dense graph—
with a corresponding analytical upper bound on this tem-
perature. A similar argument can be applied to a number
of the limits of Eq. (1).

Now let us treat some explicit examples. We first
consider W (x, y) = p whose stochastic realisations are
GER(p): the Erdős-Rényi graph over L vertices where
each edge appears independently with probability p. Ob-
serve from Eq. (7) that in this case λz(x) = λz =
p tanh(βλz) and is independent of x. Substituting this

FIG. 1. Magnetisation of the classical Ising model for the
graphons: W (x, y) = xy and W (x, y) = 1

4
. a) Total Magneti-

sation density Mz versus inverse temperature β for L → ∞.
Black dashed-dotted lines give the asymptotic derived by
taking the large β limit of the respective closed-form equa-
tions. Red circles correspond to Monte Carlo simulations
of finite, L = 800, randomly sampled graphs GS

L derived
from W (x, y) = xy. Bottom) Percentage difference in Mz for
the exact result in the thermodynamic limit versus finite-size
Monte Carlo simulations at several L (crosses are L = 100,
triangles L = 200, squares L = 400 and circles L = 800). For
each β and L, 100 stochastic samples GS

L are realised and the
data (both top and bottom plots) is averaged over these. Fur-
ther details are provided in the SM. b) On-site magnetisation
σz(x) versus β and x for the graphon W (x, y) = xy in the
thermodynamic limit.

into Eq. (6) gives us the familiar self-consistent equa-
tion Mz = tanh(βpMz) for the magnetisation Mz of the
classical Ising model under the mean-field approximation.
The edge probability p re-scales the temperature in the
all-to-all model and the randomness of the model has no
effect on the macroscopic physics in the thermodynamic
limit—a result which has been proven to be general for
spin systems on Erdős-Rényi graphs [22, 28].

We consider the, more complex, separable graphon
W (x, y) = xy, whose stochastic relatisations dictates
that each pair of spins v and v′ interacts with a strength 1
with probability (vv′/L2) and strength 0 otherwise. One
can also choose to directly interpret the deterministic re-
alisation of the graphon, where each pair of spins inter-
acts with a strength (vv′/L2). Both interpretations lead
to the same physics in the thermodynamic limit—this
follows directly from theorem 2. From Eq. (7) we derive

(see SM) σz(x) = tanh(βcx) and Mz = ln(cosh(c))
c where

c is the real-valued solution of the equation

12c2−π2+24cln(1+e−2c)−12PL2(−e−2c) =
24c3

β
, (8)

and PL2 is the PolyLogarithm function of order 2. The
critical inverse temperature βc is βc = 3: the supremum
of the LHS of the above equation for c ∈ [0,∞].
In Fig. 1 we plot the total magnetisation Mz and the

local magnetisation σz(x) versus β based on our analyti-
cal solution. We also perform finite-size Monte-Carlo nu-
merics forMz for increasing system size (by constructing
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FIG. 2. Properties of the ground state of the transverse
field Ising model on the graphon W (x, y) =

√
xy. Results

for the constant graphon are included for reference. a) En-
ergy density versus transverse field strength h. Orange line
represents the analytic solution in the thermodynamic limit.
Markers represent numerical calculations averaged over 100
finite stochastic realisations of W (x, y) =

√
xy on L = 400

sites. Inset) Percentage difference between the ground state
energy calculated on L = 100, 200 and 400 (cross, triangle
and circle marker respectively) site random-exchange reali-
sations of W (x, y) and the exact solution for L → ∞. b)
Total transverse (unfaded) and longitudinal (faded) Magneti-
sation densities of the ground state. Inset) Two-point cor-
relator ⟨σx( 1

4
)σx( 3

4
)⟩. c) Von-Neumann Entanglement En-

tropy (EE) of W (x, y) =
√
xy averaged over 100 stochas-

tic realisations on L = 400 sites. The partition is between
the first xL sites of the system and the remaining (1 − x)L
sites. The red curve corresponds to the entanglement en-
tropy at x = 2/3 for h = 0 → 1. Dotted black line is the fit
EE(x = 2/3) = −0.136 log2(h−0.5)−0.089. d) Analytical re-
sult for the on-site magnetisation σx(x) versus transverse field
strength h and position x for the graphon W (x, y) =

√
xy.

stochastic realisations of W (x, y)) and demonstrate con-
vergence to our analytical solution. We compare these
results to the graphon W (x, y) = 1

4 . As the tempera-
ture increases both systems undergo a second-order phase
transition characterised by typical mean-field exponents.
For the graphon W (x, y) = xy, however, the conver-
gence to a fully ferromagnetic state at zero temperature
is slower. This convergence can be determined analyti-
cally by expanding Eq. (8) for large β and substituting

into Mz = ln(cosh(c))
c , yielding Mz = 1 − 2 ln(2)

β . There

is thus a direct linear convergence of the magnetisation
to unity with temperature T = 1

β versus the exponen-

tially fast convergence associated with the homogoneous
W (x, y) = const. case.

This slow convergence is a result of the ‘left boundary’
of the system. In Fig. 1b) we see that the local magneti-
sation at small values of x, where the spin-spin couplings

are very weak, is very small even deep in the ferromag-
netic regime. This ‘boundary effect’ means the T = 0
state has a finite magnetic susceptibility to changes in
temperature, i.e. dMz

dT |T=0 = −2 ln(2). In the homoge-

neous case we have dMz

dT |T=0 = 0. Whilst both systems
are mean-field in terms of their universal behaviour, they
exhibit very different physics in the ferromagnetic regime.
Transverse field Ising model – We now consider a quan-

tum example: the transverse field Ising model. Our in-
tegral equation is (setting Jx = Jy = hy = hz = 0 and
hx = −h, Jz = −1 in Eq. (1)

λz(x) =

∫ 1

0

W (x, y)λz(y) tanh
(
β
√
h2 + (λz(y))2

)
√
h2 + (λz(y))2

dy.

(9)
We focus on the ground-state by taking the limit β → ∞.
We can again use Banach’s fixed-point theorem here to
prove the existence of a disordered-ordered phase transi-
tion with an upper bound of the critical field strength hc
given by the supremum of the marginal of the graphon.
We now consider some specific examples. First, tak-

ing the Erdős-Rényi graphon W (x, y) = p straightfor-

wardly yields the solutionMz =
√
1− h2

p2 consistent with

a rescaled TFI model with all-to-all coupling [28].
There are, however, other, less trivial graphons for

which an exact analytical solution for the ground state
properties can be found. Consider the separable case
W (x, y) =

√
xy. Some algebra on Eq. (9) (see SM) leads

to ⟨σx(x)⟩ = h√
h2+g2x

and ⟨σz(x)⟩ = − g
√
x√

h2+g2x
with

g =

{√
2
3

√
1 + (1− 3h)

√
1 + 6h h < 1

2 ,

0 otherwise.
(10)

Integrating the expression (see SM) for the transverse
magnetisation then gives the following closed form for
the total transverse magnetisation density

Mx =

{
6h

3h+
√

2+9h2+(2−6h)
√
1+6h

h < 1
2 ,

1 otherwise.
(11)

The total longitudinal magnetisation density can also be
obtained in closed form (see SM). Our methodology has
yielded an analytic expression for the magnetisation (in
the thermodynamic limit) of the transverse field Ising
model on a complex, highly inhomogeneous graph struc-
ture.
In Fig. 2 we plot these solutions alongside those for

the constant graphon. The left boundary of the system,
which has very weak z− z coupling, modifies the physics
of the system and makes it more susceptible to the trans-
verse field than the all-to-all case. The transverse-field
susceptibility versus site-index x can be derived from Eq.

(10) yielding limh→0
d⟨σx(x)⟩

dh | = δ(x), where δ(x) is the
Dirac-delta function. There is a singularity in the sus-
ceptibility on the left boundary of the system at 0 field-
strength in the ferromagnetic regime. This is not present
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in the all-to-all model. Critical exponents for the mag-
netisations at the phase transition can be found via ex-
pansion of the analytical results and these are consistent
with the mean-field universality class and equivalent for
the two graphons.

In Fig. 2 we also provide finite-size simulations of the
ground state on random-exchange realisations ofW (x, y)
using Density Matrix Renormalization Group (DMRG)
[30] calculations on a Matrix Product State ansatz. We
reach system sizes on the order of ∼ 100 spins, observ-
ing convergence to our analytical solution. We verify
this convergence for local observables and non-local ones,
where exact, analytical results can be obtained via the
mean-field approximation.

Importantly, from these tensor network numerics we
can go beyond mean-field theory and obtain the entan-
glement entropy of the ground state on a finite system —
something currently inaccessible to our continuous for-
malism. This is non-zero and diverges logarithmically
with the transverse field strength as criticality is ap-
proached: h → 0.5−. We also find the entanglement
only depends on the ratio x = N/L, where N is the parti-
tion size. This scaling is reminiscent of the entanglement
properties of the all-to-all transverse field Ising model
[23]. Here we observe it in a heterogeneous dense graph
system, suggesting a possible universal mechanism un-
derpinning the scaling of entanglement entropy in these
models.

Conclusion – We have successfully utilised tools from
graph theory to derive a set of integral equations which
describe the physics of generic spin models with a large
density of interactions in the thermodynamic limit—
whether classical or quantum. Our formalism straightfor-
wardly reproduces known results and, most importantly,
can be used to uncover the equilibrium properties of more
complex systems. We observe how inhomogeneity in the
underlying graphs alters the magnetic properties of the
system.

Our work opens a up a number of further avenues for
future research. Firstly, extending our formalism to de-
scribe the out-of-equilibrium dynamics of a spin system
on a dense graph is a natural direction. Whilst an analyt-
ical solution is known for the all-to-all case (W (x, y) = 1)
on the Lipkin-Meshkov-Glick model (a model whose dy-
namics was recently realised on a quantum simulator
[24]), our graph-theoretic approach could open up so-
lutions for a whole range of dense graphs. The quan-
tum fluctuations which deviate finite-size results from the
mean-field case would be stronger here.

Secondly, graphon estimation is the process of estimat-
ing the continuous graphonW (x, y) from which a given fi-
nite graph G could have been drawn from [31–33]. There-
fore when studying spin models on a large, connected
structure (the structure need not necessarily be dense,
graphon estimation can be done for quasi-sparse graphs
too [32, 33]) one can estimate the graphon W (x, y) and
solve our equations to obtain an approximate solution to
the equilibrium physics of the system.
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I. APPENDIX

A. Appendix A: Proof of Theorems 1 and 2.

We restate the Hamiltonian from the main text

H(GL) =
1

L

L∑
v,v′=1
v>v′

Av,v′

(∑
α

Jασ̂αv σ̂
α
v′

)
+
∑
v∈V
α

hασ̂αv′ ,

(S1)
where all definitions are retained and α = x, y, z. We
now prove Theorems 1 and 2 from the main text, which
are restated below.

Theorem 1 Let (GL)L∈N = (G1, G2, ...) be a sequence
of finite-size graphs generated as stochastic or weighted
realisations of the graphon W (x, y). Then for a given
inverse temperature T = 1/β the macroscopic properties
of the equilibrium states of the sequence of Hamiltonians
H(GL)L∈N = (H(G1), H(G2), ...) converges and are de-
termined by the solution of the following coupled integral
equations

λα(x) = −Jα
∫ 1

0

W (x, y)λα(y) tanh(βΛ(y))

Λ(y)
dy + hα,

(S2)
with α = x, y, z, Λ(x) =

+
√

(λx(x))2 + (λy(x))2 + (λz(x))2 and the three func-
tions λα(x), with α ∈ {x, y, z}, each being continuous,
real-valued and defined over the domain [0, 1].

Theorem 2 Let f(H) = − 1
Lβ ln(Tr(exp(−βH))) be the

free energy density of a dL×dL many-body Hamiltonian,
with β ∈ R≥0 and d the dimension of the local Hilbert
space. Let GSL and GWL be the stochastic and weighted
realisations on L vertices of a graphon W (x, y) respec-
tively. For an arbitrary set of real, finite values for the
parameters {Jx, Jy, Jz, hx, hy, hz} the following is true

|f(H(GSL))− f(H(GWL ))| = O(L−1/2), (S3)

which vanishes in the limit L→ ∞.

We will first prove Theorem 1 by assuming that Theo-
rem 2 is true. Then we will prove Theorem 2 to complete
the proof.
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We first perform a mean-field treatment of H(GL) for
some arbitrary graph GL with adjacency matrix elements

Av,v′ and take L→ ∞. Let σ̂αv = ⟨σ̂αv ⟩+ δ̂αv , substitute it
into the Hamiltonian and ignore terms of order δ̂2. The
result is (up to a constant):

H(GL) =
∑
v

Hv =
∑
v,α

σ̂αv

(
1

L

( L∑
v′=1

Av,v′J
α⟨σ̂αv ⟩

)
+hα

)
.

(S4)
Within this mean-field approximation the equilibrium
state of the system is given by

ρ(β) =
exp(−βH)

Tr(exp(−βH))
=

L⊗
v=1

exp(−βHv)

Tr(exp(−βHv))
=

L⊗
v=1

ρv.

(S5)
Where the reduced density matrix on each site ρv is,
explicitly (in the basis spanned by the eigenstates of σz),
the following 2× 2 matrix:

ρv =
1

2λv

(
λv − λzvtanh(βλv) −(λxv − iλyv)tanh(βλv)

−(λxv + iλyv)tanh(βλv) λv + λzvtanh(βλv),

)
(S6)

where we have defined λv =
√
(λxv)

2 + (λyv)2 + (λzv)
2 and

λαv = 1
L

(∑
v′ Av,v′J

α⟨σ̂αv′⟩
)
+ hα.

By taking the expectation values ⟨σαv ⟩ associated with
ρv we find the λαv variables must obey the following self-
consistency relation:

λαv = − 1

L

(
L∑

v′=1

JαAv,v′λ
α
v tanh(βλv′)

λv

)
+ hα, (S7)

with v = 1...L and α = x, y, z. The set of values {λαv }
with v = 1...L, α = x, y, z which solves the 3L non-linear
equations described by Eq. (S7) thus fully characterise
the mean-field equilibrium state associated with H.

Now we wish to take the continuum limit of Eq. (S7).
First, we define the following: x = v/L, dx = 1/L,
λαv = λα(x) and λv = λ(x). We assume that the
adjacency matrix has been generated as a weighted
realisation of some graphon W (x, y), i.e. Av,v′ =
L2
∫
Iv×Iv′

W (x, y)dxdy, Iv = [(v − 1)/L, v/L]. Substi-

tuting this all into Eq. (S7) gives us

λα(x) = −

( ∑
y=1/L,2/L,...,L

JαL2

(∫
Iv×Iv′

W (x, y)dxdy

)
λα(x) tanh(βλ(y))

λ(y)

)
dx+ hα. (S8)

Now we take L → ∞ which implies

L2

(∫
Iv×Iv′

W (x, y)dxdy

)
→ W (x, y) and the sum-

mation becomes an integral. We can then write down
the coupled, continuous mean-field equations

λα(x) = −Jα
∫ 1

0

W (x, y)λα(y) tanh(βΛ(y))

Λ(y)
dy + hα,

(S9)
with α = x, y, z and Λ(x) =√
(λx(x))2 + (λy(x)2 + (λz(x))2. These govern our

system in the thermodynamic limit of the sequence of
graphs generated from the graphon W (x, y). Whilst we
explcitly used the weighted realisation GWL of W (x, y),
Theorem 2 tells us that the equilibrium properties of
the system that arise as the solution of Eq. (S9) are
equivalent for both GWL and GSL as L → ∞. Thus these
equations govern the properties of any sequence of finite
graphs which converge to W (x, y) — not just weighted
ones.

The equations in Eq. (S9) are coupled, non-linear
Fredholm integral equations with the graphon acting as
the kernel. From the solution set {λx(x), λx(y), λy(z)} to
these equations we can obtain the on-site magnetisations

via

σα(x) = −λ
α(x) tanh(βΛ(x))

Λ(x)
, (S10)

and the total magnetisation density is Mα =
∫ 1

0
σ(x)dx.

In order to complete the proof of Theorem 1 we need
to prove Theorem 2 which was assumed at the end of
the last section. We recall a Lemma proven in Ref. [28],
which we will be helpful in completing the proof.

Lemma 1 Let (AL)L∈N = (A1, A2, ...) and (BL)L∈N =
(B1, B2, ...) be two sequences of many-body Hermitian
matrices. The matrices AL and BL in the sequence have
size dL × dL, with d fixed and the dimension of the lo-
cal Hilbert space. Let DL = AL − BL and λDMax be the
largest (in terms of the absolute value) eigenvalue of DL.
If |λDMax| = O(Lκ) then |f(AL) − f(BL)| = O(Lκ−1),
which vanishes for κ < 1 as L→ ∞.
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We begin by defining the following operator:

DL := H(GSL)−H(GWL ) =
∑

α=x,y,z

Dα
L

=
∑

α=x,y,z

1

L

 L∑
i,j=1
i<j

ASij σ̂
α
i σ̂

α
j −

L∑
i,j=1
i<j

AWij σ̂
α
i σ̂

α
j

 ,

(S11)

where ASij are the matrix elements of GSL and AWij are the

matrix elements of GWL , finite stochastic and weighted
realisations of some graphon W (x, y).
We proceed to evaluate the eigenvalues of the operator

Dα
L. As such, consider its eigenstates |σα1 , ..., σαL⟩, where

σ̂αi |σα1 , ..., σαL⟩ = µi |σα1 , ..., σαL⟩, with µi = ±1, depend-
ing on whether the ith spin is pointing ‘up’ or ‘down’ in
that basis. We will define µij := µiµj and consider the
eigenvalue

⟨σα1 , ..., σαL|Dα
L |σα1 , ..., σαL⟩ =

1

L

 L∑
i,j=1
i<j

ASijµij −
L∑

i,j=1
i<j

AWij µij

 , (S12)

We we will proceed to show that, independent of the
eigenstate |σα1 , ..., σαL⟩, this eigenvalue grows, at most, as

L1/2 in the large L limit. From there we can invoke
Weyl’s inequality to show that the eigenvalues ofDL grow
asymptotically as L1/2 and subsequently invoke Lemma
1 (from above) to complete the proof of Theorem 1.

To prove the L1/2 growth of Eq. (S12), we begin with
the Hoeffding inequality. This states that for indepen-
dent random variables Y1, ..., Yn for which ai ≤ Yi ≤ bi
then the sum Sn := Y1 + Y2 + ...+ Yn is bounded as

P (|Sn − E(Sn)| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(ai − bi)2

)
,

(S13)
with the factor of 2 stemming from the fact we have in-
corporated both the upper and lower Hoeffding bounds
together. We will apply this bound to Eq. (S12).

Let us construct the set X := {Xij} which consists

of the L(L−1)
2 random variables Xij := ASijµij (we have

i, j = 1...L and i > j). Observe that since ASij ∈ {0, 1}
(the graphGSL is simple) and µij is either 1 or−1, we have
that −1 ≤ Xij ≤ 1. Also, E(Xij) = E(ASij)µij = AWij µij ,

where E(ASij) denotes the expected value. In our case,
however, all of the Xij quantities are not independent—

the sign of Xij is determined from the sign of Xik and
Xkj . This can be dealt with by applying the Hoeffding
bound to the Xij ’s with positive and negative sign sepa-
rately.
A given eigenvector |σα1 , ..., σαL⟩ will consist of a num-

ber of spins pointing up (σi = +1) and and the remain-

der pointing down (σi = −1). Define M =
∑L
k=1 σk,

then it can be checked that of the L(L−1)
2 parameters

µij ,
L2+M2−2L

4 are positive and L2−M2

4 are negative. We
therefore partition the set X := {Xij} into two sets as
follows {

xA := {Xij |µij = 1},
xB := {Xij |µij = −1}.

We would like also to keep track of the values AWij µij , so

we partition the set {µijAWij } into{
x̄A := {µijAWij |µij = 1},
x̄B := {µijAWij |µij = −1}.

We can now invoke the Hoeffding bound on each set sep-
arately, since each set now consists on independent ran-
dom variables. We have two sums on which to invoke the

bound: SA :=
∑M2+L2−2L

4

l=1 xAl and SB :=
∑L2−M2

4

l=1 xBl ,
where we use xAl and xBl to refer to elements from xA

and xB respectively. Likewise we will use x̄Ai and x̄Bi to
refer to individual elements of x̄A and x̄B respectively.
Then observe that, due to E(Xij) = AWij µij we have

E(SA) =
∑M2+L2−2L

4

l=1 x̄Al and E(SB) =
∑L2−M2

4

l=1 x̄Bl
Equation (S13) then gives two bounds:P

(∣∣SA − E(SA)
∣∣ ≥ t1

)
≤ 2 exp

(
−2t21

L2+M2−2L

)
,

P
(∣∣SB − E(SB)

∣∣ ≥ t2
)
≤ 2 exp

(
−2t22

L2−M2

)
.

We combine these bounds to obtain:

P


∣∣∣∣∣∣∣∣
L∑

i,j=1
i<j

µijA
S
ij −

L∑
i,j=1
i<j

µijA
W
ij

∣∣∣∣∣∣∣∣ ≥ t1 + t2


≤ 4 exp

(
−2t21

L2 +M2 − 2L

)
exp

(
−2t22

L2 −M2

)
. (S14)

Since we fixed the magnetisation M of the eigenstate
in deriving the above bound, we should take the union
bound over

(
L

1
2 (L+M)

)
eigenstates with magnetisation M .

We will denote an eigenstate with magnetisation M as
|σM ⟩, resulting in the new bound
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⋃
|σM ⟩

P


∣∣∣∣∣∣∣∣
L∑

i,j=1
i<j

µijA
S
ij −

L∑
i,j=1
i<j

µijA
W
ij

∣∣∣∣∣∣∣∣ ≥ t1 + t2

 ≤ 4

(
L

1
2 (L+M)

)
exp

(
−2t21

L2 +M2 − 2L

)
exp

(
−2t22

L2 −M2

)
. (S15)

Now observe that the following is true(
L

1
2 (L+M)

)
exp

(
−2t21

L2 +M2 − 2L

)
exp

(
−2t22

L2 −M2

)
≤
(
L
L
2

)
exp

(
− t

2
1 + t22
L2

)
, (S16)

where L ∈ N, |M | ≤ L and t1, t2 ∈ R+.
This leads us to the following

⋃
M

⋃
|σM ⟩

P


∣∣∣∣∣∣∣∣
L∑

i,j=1
i<j

µijA
S
ij −

L∑
i,j=1
i<j

µijA
W
ij

∣∣∣∣∣∣∣∣ ≥ t1 + t2


≤ 4(L+ 1)

(
L
L
2

)
exp

(
− t

2
1 + t22
L2

)
,

(S17)

where the union bound has again been used. Now observe
that if t1 + t2 = O(Lγ) then t21 + t22 = O(L2γ), where

γ ∈ R. Using the fact
(
L
L
2

)
∼
√

2
Lπ2

L for large L, and

also that using 2L = eLln(2), we then arrive at

⋃
M

⋃
|σM ⟩

P


∣∣∣∣∣∣∣∣
L∑

i,j=1
i<j

µijA
S
ij −

L∑
i,j=1
i<j

µijA
W
ij

∣∣∣∣∣∣∣∣ ≥ O(Lγ)


≤ 2(L+ 1)

√
2

Lπ
exp

(
Lln(2)−O(L2γ−2)

)
,

(S18)

which vanishes unless γ ≤ 3
2 . This leads us to

⟨σα1 , ..., σαL|Dα
L |σα1 , ..., σαL⟩ = O(L

1
2 ) ∀M, |σ⟩. (S19)

Now fromWeyl’s inequality we know that the eigenvalues
of the operator DL = H(GSL) − H(GWL ) are therefore

bounded as O(L1/2). From here we can invoke Lemma 1
with κ = 1/2 and Theorem 2 is proven.

B. Appendix B: Analytical solution of the classical
Ising model for W (x, y) = xy

We wish to solve Eq. (7) with W (x, y) = xy, i.e. iden-
tify the function λz(x) which solves

λz(x) =

∫ 1

0

xy tanh(βλz(y))dy. (S20)

We start by observing that λz(x) = f(β)x, where f(β)
is a real valued function of β that is independent of x.
Substituting this into Eq. (S20) and defining c = βf(β)
gives us

c

β
=

∫ 1

0

y tanh(cy)dy, (S21)

We can perform the integration here analytically. First,
perform integration by parts and expand into exponen-
tials:∫ 1

0

y tanh(cy)dy

=
1

c2

([
1

2
y2 tanh(cy)

]c
0

− 1

2

∫ c

0

y2 sech2(y)dy

)

=
1

c2

(
c2 tanh

(
c2
)

2
−
∫ c

0

2y2e−2y

(1 + e−2y)2
dy

)
. (S22)

Now the integral on the RHS can be dealt with by ob-

serving that e−2y

(1+e−2y)2 =
∑∞
n=1(−1)n−1ne−2nx, giving us

c2
∫ 1

0

y tanh(cy)dy

=
c2 tanh

(
c2
)

2
−

∞∑
n=1

(−1)n−1n

∫ c

0

2y2e−2nydy

=
c2 tanh

(
c2
)

2
−

∞∑
n=1

(−1)n(1 + e−2cn(1 + 2cn(1 + cn))

2n2
.

(S23)

We can evaluate the series by splitting up the numer-
ator and using known results,

c2
∫ 1

0

y tanh(cy)dy

=
1

2
− π2

24c2
+

1

c
ln
(
1 + e−2c

)
− 1

2c2
PL2(−e−2c). (S24)

We can then use this result to reduce Eq. (S20) to Eq.
(8) from the main text:

1

β
=

1

24c3
(
12c2 − π2 + 24cln(1 + e−2c)− 12PL2(−e−2c)

)
.

(S25)
Additionally, it is straightforward to observe that

Mz =
∫ 1

0
σz(x)dx =

∫ 1

0
tanh(cx)dx = ln(cosh(c))

c .
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C. Analytical solution of the ground-state of the
transverse field Ising model for W (x, y) =

√
xy

We wish to solve Eq. (9) in the main text with
W (x, y) =

√
xy and β = ∞, i.e:

λz(x) =
√
x

∫ 1

0

√
yλz(y)√

h2 + (λz(y))2
dy, (S26)

again observing that this implies λz(x) =
√
xg(h) where

g(h) is some real-valued function of h gives∫ 1

0

y√
h2 + g2(h)y

dy = 1, (S27)

which we can solve for g(h) (we restrict h and g(h) to
be positive real without loss of generality) by a series of

substitutions. Yielding

2(2h3 − 2h2
√
h2 + g2(h) + g2(h)

√
h2 + g2(h))

3g4(h)
= 1,

(S28)
which has the solution

g(h) =

{√
2
3

√
1 + (1− 3h)

√
1 + 6h h < 1

2 ,

0 otherwise.
(S29)

as in the main text. The transverse and longitudinal
magnetisations are determined by the integrals Mx =∫ 1

0
h√

h2+g2(h)x
dx and Mz = −

∫ 1

0
g(h)

√
x√

h2+g2(h)x
dx respec-

tively. The first, by direct integration, yields Eq. (11) in
the main text. The second can be done by an extensive
series of trigonometric substitutions and results in the
following closed form expression

Mz(x) =

 (1+s)
(
2
√

(1−s)(4+18h2−4s)−9h2(2 ln(3)+2 ln(h)−2 ln(−
√
2−2s+

√
2+9h2−2s))

)
108h2(−1+2h)

0 otherwise
, (S30)

where s = (−1 + 3h)
√
1 + 6h.

D. Appendix C: Further example graphons

In this section we consider further graphons which were
not treated in the main text but frequently appear in the
literature on graphons.

Stochastic block models - The Stochastic Block
Graphon is typically utilised in statistical analysis of net-
works because they are useful in uncovering clustering in

networks [35]. The graphon can be expressed as

W (x, y) =


p11 if (x, y) ∈ X1 ×X1,

p12 if (x, y) ∈ X1 ×X2,

...

pkk if (x, y) ∈ Xk ×Xk,

(S31)

with pij = pji and the Xi specifying disjoint sub-domains
of [0, 1] such that ∪ki=1Xi = [0, 1]. We write ∆Xi to
indicate the width of the interval Xi. The continuous
mean-field equations then take on the following form

λα(x) = −Jα
k∑
j=1

∫
Xj

pijλ
α(y) tanh

(
β
√
(λx(y))2 + (λy(y)2 + (λz(y))2

)
√
(λx(y))2 + (λy(y)2 + (λz(y))2

dy + hα ∀x ∈ Xi. (S32)

Observe that we can immediately infer from this that
λα(x) is constant across each of the domains Xi. We can
thus define λαi = λα(x) ∀x ∈ Xi and reduce Eq. (S33) to

λαi

= −Jα
k∑
j=1

∆Xj

pijλ
α
j tanh

(
β
√

(λxj )
2 + (λy)2j + (λzj )

2
)

√
(λxj )

2 + (λyj )
2 + (λzj )

2
+ hα,

(S33)

a series of equations which become increasingly compli-
cated to solve as the number of clusters does. In the case
of a single cluster we recover the case of an Erdős-Rényi
graph.

Growing uniform attachment – The growing uniform
attachment graphon is given by W (x, y) = 1−max(x, y)
[36]. The graphs which are finite realisations of this
graphon will consist of nodes in which the average con-
nectivity of a node varies uniformly across the graph.
Such graphs are therefore highly inhomogenous in their
average vertex connectivity. Substituting W (x, y) =



10

1 − max(x, y) into Eq. (S9) and differentiating the left
and right hand sides twice with respect to x leads us to
the following coupled second-order ODEs

d2λα(x)

dx2
= Jα

λα(x) tanh (β
√
λx(x)2 + λy(x)2 + λz(x)2)√

λx(x)2 + λy(x)2 + λz(x)2
,

(S34)
with α = x, y, z, boundary conditions λα(1) = 0 and
dλα(x)
dx |x=0 = 0 ∀α.
Maximally irregular graph – The maximally irregular

graph is the finite connected graph where each site (other

than one pair) has a different co-ordination number to
any others [28]. Taking the thermodynamic limit of the
adjacency matrix results in the graphon

W (x, y) =

{
1 x+ y ≤ 1

0 otherwise.
(S35)

and the integral equations in Eq. (S9) reduce (upon dif-
ferentiation) to the following three coupled first order
ODEs

dλα(x)

dx
= −Jα

λα(1− x)tanh(β
√
(λx(1− x))2 + (λy(1− x))2 + (λz(1− x))2√

(λx(1− x))2 + (λy(1− x))2 + (λz(1− x))2
, α = x, y, z, (S36)

with boundary conditions λα(1) = 0 ∀α. Such equations are known as functional differential equations and have been
studied extensively in both Mathematics and the applied Sciences [37].

E. Appendix D: Numerical details

Classical Ising model — For the finite-size data plotted
in Figure 1 of the main text we used Monte-Carlo simula-
tions. Specifically, for a given L we drew a finite random-
exchange realisation of the graphonW (x, y) = xy and for
a given temperature β utilised the Metropolis-Hastings
algorithm to generate NSamples = 5000 for the Magneti-
sation Density Mz. We used a Markov chain length of
250 between each sample and threw away the first 1000
samples. For each L we took 100 stochastic realisations
of the graphon W (x, y) and averaged our results over
this. There are thus two sources of statistical error in
our simulations: the error from sampling a finite num-
ber of stochastic realisations and the error from taking
a finite number of Monte-Carlo samples. In Fig. 1 we
plot the standard error on the mean from both of these
sources, the values are negligible in comparison to the
scale (0 → 1) of Fig. 1 in the main text.

Transverse Ising model — For the data plotted in
Figure 2 of the main text we used the Density-Matrix-
Renormalisation-Group (DMRG) algorithm to find the
ground-state of the transverse field Ising model. For
a given L we drew a finite stochastic realisation of the
graphonW (x, y) =

√
xy. Then, for a given field strength

h we took a random Matrix Product State with a small
bond dimension χ and successively performed DMRG
sweeps, letting the bond-dimension double every 4th
sweep until the energy converges to within 0.1% of that
for the previous bond dimension. There is thus only one
source of statistical error in this simulation: the error
from sampling a finite number (100) of stochastic reali-
sations. In Fig. 1 we plot this error as a percentage and
observe that it is on the order of 0.1%. The ordering of
the sites (from left to right) of the Matrix Product State
was taken to be identical to the ordering v = 1...L of the

sites of the graph.

F. Appendix E: The Graphon as the Limit Object
of Dense Graph Sequences

We provide mathematical details on how the graphon
W is the limit object of a sequence of dense graphs
(Gn)n∈N where n is the number of vertices. This Ap-
pendix closely follows Ref. [38], although the theory on
graph limits was first developed in Ref. [17]. The in-
terested reader should consult either of these for more
detail.

Consider two simple graphs F and G, where we define
the number of vertices of F to be k and that of G to be
n. A homomorphism from F to G is a map which pre-
serves edges. This means that given an edge (i, j) ∈ E(F )
(here E(F ) is the edge set of F ), and a homomorphism h,
there is always an edge (h(i), h(j)) ∈ E(G)— the set of
edges of G. Let hom(F,G) indicate the number of homo-
morphisms from F into G. The homomorphism density
t(F,G) is then defined to be

t(F,G) =
hom(F,G)

nk
. (S37)

The homomorphism density is the probability of a ran-
dom map from the graph F to the graph G being a ho-
momorphism, since nk is the total number of maps from
a graph with k vertices to a graph with n vertices.

Suppose that instead we are given a graphon, such as
WG — the stepped graphon corresponding to the graph
G which is defined as WG(x, y) = Av,v′ for (x, y) ∈ [(v −
1)/n, v/n]×[(v′−1)/n, v′/n] (with A being the adjacency
matrix of G). In this case, the homomorphism density is



11

Supplementary Figure 1. a) Standard error on the mean for
the Monte-Carlo calculations of Mz for the classical Ising
Model on stochastic finite-size realisations of W (x, y) = xy.
Top plot is standard error on the mean from 5000 Monte-
Carlo samples of Mz at a given β and L. Data points are
averaged over 100 stochastic realisations of W (x, y). Bottom
plot is the standard error on the mean from the 100 stochastic
realisations of W (x, y), averaged over the 5000 samples taken
for each realisation. b) Relative standard error on the mean
(standard error on the mean as a percentage of the mean)
for the ground state energy of the transverse field Ising model
calculated via DMRG. Standard error is that originating from
the 100 stochastic realisations of W (x, y) =

√
xy at a given h

and system size L.

defined to be

t(F,WG) =

∫
[0,1]k

∏
(i,j)∈E(F )

W (xi, xj)
∏
i∈1:k

dxi (S38)

Here the same definition holds for any arbitrary graphon
W .
The homomorphism density with reference to a finite

graph F indicates the relative likelihood of the graph G
or more generally graphon W containing an instance of
F inside of it. If two graphs or graphons have similar
homomorphism densities for all simple graphs F , then
these graphs are similar. The definition of convergence
of a sequence of graphs hinges precisely on this concept.

Definition 1 (Convergent Graph Sequence) A se-
quence (Gn) of simple graphs with V (Gn) → ∞ as
n→ ∞ converges if the subgraph densities t(F,Gn) con-
verge for all simple graphs F .

The above definition gives allows us to precisely define
in what sense W can be considered a limit object.

Theorem 3 (Lovasz, 2012 [38]) Let (Gn) be a se-
quence of simple graphs with V (Gn) → ∞. If (Gn) con-
verges, there exists a graphon W such that t(F,Gn) →
t(F,W ) for all simple graphs F .

The above theorem tells us that if the sequence
(Gn) converges, then there exists some limit object—the
graphon—which captures the limiting homomorphism
density counts of the sequence of graphs for all simple
graphs.
There is a second, equivalent, definition of convergence

which us allows us to define W as an appropriate limit of
a sequence of dense graphs. This definition utilises the
cut distance of two graphs.

Definition 2 (Cut Distance) Given two graphons W
and W ′, define the cut distance between them to be

δ□(W,W
′)

:= inf
ϕ,ψ

sup
S,T

∣∣∣∣∫
S×T

(W (ϕ(x), ϕ(y))−W ′(ψ(x), ψ(y)))

∣∣∣∣
(S39)

where the infimum is taken over all vertex re-labelings
ϕ of W and ψ of W ′. The supremum is taken over all
measurable subsets S and T of [0, 1].

The cut distance is a metric on the space of graphons
(up to weak isomorphism). It maximises the difference
between the integral of the two graphons on measurable
intervals S and T which together form a box S×T . This
step can be thought of as maximising the difference in
edges between those vertices contained in S × T . The
infimum is then taken on that chosen interval over all
measure preserving maps, in order to ensure that the cut
distance is zero for weakly isomorphic graphons. The
following theorem can then be proven from the above
definitions.

Theorem 4 (Lovasz, 2012 [38]) Given a sequence
(Gn) of simple graphs with |V (Gn)| → ∞ as n → ∞,
the sequence is said to converge to the graphon W if
δ□(WGn

,W ) → 0 as n→ ∞.

This theorem provides alternative definition for the
graphon as a limit object. In this definition, we envisage
instead the pixelated adjacency matrix of the sequence
of simple graphs Gn approaching (via the cut distance)
that of the limit object W .
Importantly, the above definitions and theorems can

be generalised to sequences of weighted graphs by requir-
ing the graphs to have uniformly bounded edgeweights.
Moreover, we emphasise that these limits only make sense
for sequences of dense graphs, because it can be shown
that sparse graph sequences always have as their limit
the graphon W (x, y) = 0 for all x and y.
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