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Topological edge states in equidistant arrays of Lithium Niobate nano-waveguides
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We report that equidistant 1D arrays of thin-film Lithium Niobate nano-waveguides generically
support topological edge states. Unlike conventional coupled-waveguide topological systems, the
topological properties of these arrays are dictated by the interplay between intra- and inter-modal
couplings of two families of guided modes with different parities. Exploiting two modes within the
same waveguide to design a topological invariant allows us to decrease the system size by a factor of
two and substantially simplify the structure. We present two example geometries where topological
edge states of different types (based on either quasi-TE or quasi-TM modes) can be observed within
a wide range of wavelengths and array spacings.

Topological photonic systems have recently attracted
much attention, not only as a potential playground to ex-
plore fundamental physical effects associated with topo-
logical states, but also as a new platform to design struc-
tures for light manipulation [1–3]. Of particular interest
are recently emerging all-dielectric structures, whereby
topological properties are defined by the structure of a
photonic crystal [4, 5]. Remarkably, non-trivial topo-
logical phases may exist even in simple 1D crystals [6].
A fundamental workhorse of topological physics is a 1D
system called the Su-Schrieffer-Heeger (SSH) chain [7].
This model, which was originally proposed to describe
excitations in polyacetylene molecules, represents a 1D
dimer chain with alternating coupling (hopping) coef-
ficients. The two topologically distinct phases of the
chain correspond to two different configurations where
either the stronger or the weaker coupling defines the
unit cell [8]. The topological invariant that distinguishes
these phases is known as either the winding number or
the Zak phase [9]. One important manifestation of topo-
logical phases in 1D systems is the emergence of edge
states [6]. Existence of such localized states is directly
related to the topological properties of the bulk crys-
tal through bulk-boundary correspondence [10, 11]. This
correspondence dictates that, because the invariant has
to abruptly change at the boundary of the topological
material, this boundary is required to host protected edge
states.
The vast majority of photonic topological structures

explored so far impose the required crystal symmetry
by spatially modulating the dielectric constant. This
approach stems from a general analogy between con-
densed matter physics and photonics [12]. Particularly,
the standard models describing light propagation in cou-
pled waveguide systems directly map onto tight-binding
models, such as the SSH chain [13]. Such models as-
sume single-mode operation of the waveguides. Recently,
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an alternative approach has been proposed, whereby the
multi-modeness of the coupled waveguides is exploited
to expand the number of degrees of freedom per unit
cell [14–16]. Here, the effective crystal structure and
its topological properties are governed by the network
of different intra- and inter-modal couplings, while the
spatial arrangement of the waveguides can be entirely
homogeneous. Thus, the complexity of topological pho-
tonic bands can be realised in much simpler and more
compact structures.

In this work, we demonstrate that one-dimensional
equidistant (homogeneous) arrays of Lithium Niobate on
Insulator (LNOI) waveguides [17–19] can exhibit topo-
logically distinct phases, leading to formation of topolog-
ical edge states, see Fig. 1. Ridge waveguides are etched
from a Lithium Niobate (LiNbO3) film of thickness h on a
silica glass substrate. The waveguides are characterised
by width w at the top, residual film thickness t, and
sidewall angle ϕ [Fig. 1(a)]. This angle typically varies
from 40◦ to 80◦, depending on the particular etching
process [19]. Combined with the anisotropic dispersion
of bulk Lithium Niobate, the four geometrical parame-
ters (h, t, w, ϕ) represent a convenient toolbox for tun-
ing the dispersion of an isolated waveguide. Particularly,
for certain parameters one can observe a nearly degener-
ate behaviour of different pairs of guided modes within
large spectral windows. One such example geometry is
illustrated in Fig. 1(b), where two such modes, labelled
quasi-TE01 and quasi-TE10, have similar effective indices
within a wide wavelength interval 1.0µm < λ < 1.7µm
(these modes would be completely degenerate in a per-
fect square waveguide). Adjusting the sidewall angle, a
similar nearly-degenerate behaviour of quasi-TM01 and
quasi-TM10 modes can be observed, see Fig. 1(c). This
trend appears to be generic: similar nearly-degenerate
behaviour of different pairs of modes can be observed in
LNOI waveguides by varying the three geometrical pa-
rameters. The presence of two degenerate modes within
each waveguide is the key ingredient that enables topo-
logical states within an equidistant array.
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FIG. 1. Edge states in LNOI waveguide arrays: (a) a
schematic view of an array; (b) dispersion of different guided
modes in a single waveguide with w = 700nm, h = 800nm,
t = 100nm, ϕ = 75◦, using x-cut LN film (the extraordi-
nary axis of the crystal is oriented horizontally). The dashed
line illustrates dispersion of the edge mode in an array of
N = 10 waveguides, edge-to-edge separations s = 100nm; (c)
the same as (b) but for ϕ = 85◦, dashed line illustrates dis-
persion of the edge mode with s = 50nm; (d)-(f) field profiles
(norm of the electric field) of guided modes in the same ge-
ometry as in panel (c), with λ = 0.7µm. An edge mode in
waveguides array with N = 10 and s = 50nm is shown in
panel (g), and a zoom-in of the waveguide at the edge is dis-
played in (d). Parts (e) and (f) show profiles of quasi-TM01

and quasi-TM10 modes of an isolated waveguide, respectively.
The arrows indicate the polarization of the local electric field.
(Data from COMSOL Multiphysics).
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FIG. 2. Overlaps between quasi-TM01 mode in waveguide n
and quasi-TM10 mode in waveguides n− 1 (a) and n+ 1 (b)
entering the calculation of the coupling constant in Eq. (3).

Arranging such waveguides in a regular 1D array, as
in Fig. 1(a), we observe the formation of localized edge
modes within a wide range of wavelengths and edge-to-
edge separation distances s between the waveguides. Fig-
ure 1(g) shows one example of an edge mode in an array
of waveguides with the same parameters as in Fig. 1(c).
In this mode, the field intensity is exponentially localized
within a few waveguides nearest to the edge of the array.
This mode is doubly-degenerate: an equivalent ”mirror”
mode exists on the opposite edge. Similar edge modes
are observed in the second geometry. Dashed lines in
Fig. 1(b) and (c) show dispersions of the edge modes in
finite-size arrays composed of waveguides having the two
respective geometries. In both cases and for all wave-
lengths, the effective index of an edge mode appears to
be in-between the indices of the two nearly degenerate
modes of a single waveguide.
A close inspection of the field distribution of the edge

mode in Fig. 1(g) within the area of the first waveg-
uide, see Fig. 1(d), reveals that a superposition of the
quasi-TM01 and quasi-TM10 modes is excited within this
waveguide. These numerical results were obtained from
COMSOL Multiphysics taking into account the material
dispersion of both the Lithium Niobate and the silica
glass substrate [20]. The corresponding mode profiles of
an isolated waveguide are shown in Figs. 1(e) and 1(f).
Thus, substracting the fields of quasi-TM01 and quasi-
TM10 modes results in the diagonal structure observed
in Fig. 1(d). A similar structure is observed in other
waveguides, see Fig. 1(g), and in edge modes supported
by the second geometry in Fig. 1(b).
What is the origin of these edge states? To answer

this question, we consider a simple coupled-mode model,
which takes into account interactions between the two
different types of modes for each waveguides:

−i
dAn

dz
= nAAn + CA (An+1 +An−1)

+Cx (Bn+1 −Bn−1) , (1)

−i
dBn

dz
= nBBn + CB (Bn+1 +Bn−1)

−Cx (An+1 −An−1) . (2)

Here An and Bn are amplitudes of the two modes [e.g.,
quasi-TE01 and quasi-TE10 for the geometry in Fig. 1(b)]
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FIG. 3. Band structure of an infinite array with the same waveguide parameters as Fig. 1(b): (a) the balance between the
modal detuning and coupling coefficients, n−+2C−, as a function of the waveguide separation at λ = 1.0µm. The gap closes at
s ≈ 130nm; (b) the structure of eigenvectors of the coupled-mode model in Eqs. (1,2) of the top (black) and bottom (red) bands
for s = 125nm (thick lines) and s = 135nm (thin lines); (c) the band structure for s = 125nm obtained using Comsol simulations
(solid curves) and the coupled-mode model (dashed curves); (d)-(f) profiles of the modes of the top band for s = 125nm at
q/π = 0, 0.1, and 1, respectively.

in the n-th waveguide, z is the dimensionless propaga-
tion length measured in the units of the wavelength in
vacuum λ0 = 2πc/ω, nA and nB are the effective in-
dices of the two modes for an isolated waveguide, and
CA, CB, and Cx are different intra- and inter-modal cou-
pling coefficients. One important aspect of this model is
the variation of signs of the inter-modal coupling coeffi-
cient Cx connecting mode An and mode Bn+1 (Cx), and
connecting mode An and mode Bn−1 (−Cx). This is a
direct consequence of the opposite parities of the two in-
teracting modes [16]. Generally, the coupling coefficient
between mode p in the waveguide n and mode q in the
waveguide (n+ 1), with p and q each being either mode
A or mode B, is obtained via the overlap integral [21]:

Cpq = ω

∫∫ +∞

−∞

~e∗p(x, y) ·∆ǫ~eq(x+ T, y)dxdy , (3)

where ~eA,B(x, y) are the modes of the isolated waveguide
n, T is the centre-to-centre distance between the waveg-
uides, and ∆ǫ(x, y) is the difference between the permit-
tivity tensor of the two-waveguide structure (waveguides
n and n + 1) and a single-waveguide structure (waveg-
uide n only). Essentially, ∆ǫ is non-zero within the core
area of the (n + 1)th waveguide only. For the modes of
the same type, i.e., when p = q, the coupling coefficients
between pairs of waveguides n and (n+ 1), and between
waveguides n and (n − 1), will be the same. However,
this is no longer the case if the modes are of different
types. In particular, when the two modes have opposite
symmetries with respect to x→ −x, such as quasi-TM01

and quasi-TM10 modes, one obtains Cpq = −Cqp, as il-
lustrated in Fig. 2. Notably, this variation of signs pre-
serves the Hermitian structure of the model, but induces
an effective chirality in the array.
For an infinite array, the spectrum of the model in

Eqs. (1,2) for plane waves An, Bn ∼ exp(iλz − iqn) con-
sists of two bands:

λ1,2 = n+ + 2C+ cos(q)

±

√

(n− + 2C− cos(q))2 + 4C2
x sin

2 q , (4)

where n± = (nB ± nA)/2 and C± = (CB ± CA)/2. No-
tably, the gap between the bands closes at q = 0 when
n− + 2C− = 0, or at q = π when n− − 2C− = 0. This
gap closure is accompanied by a qualitative change in the
structure of the eigenvectors, as illustrated in Figs. 3(a)
and (b). Here, for the geometry as in Fig. 1(c), by vary-
ing the separation distance between the wavegudes at a
fixed wavelength, the balance between |n−| and 2|C−| is
tipped over. When |n−| > 2|C−| (s > s0 ≈ 130nm),
the amplitudes of either A or B modes dominate across
the entire Brillouin zone 0 ≤ |q| ≤ π in each band, see
the thin lines in Figs. 3(b). Thus, each band can be as-
sociated with a particular mode (A or B) in this case.
On the contrary, when |n−| < 2|C−| (s < s0), the struc-
ture of the modes within each band switches between
mode A and B as the wavenumber q sweeps the Bril-
louin zone, see the thick lines in Fig. 3(b). These results
of the coupled-mode model are in agreement with the full
solution of Maxwell’s equations with periodic boundary
conditions. In Fig. 3(c), a part of the spectrum of an in-
finite waveguide array (in the vicinity of quasi-TM10 and
quasi-TM01 modes for an isolated waveguide) is shown
as obtained using COMSOL Multiphysics (solid curves).
The corresponding spectrum of the coupled-mode model
is shown with dashed curves. For the latter, we used
COMSOL data for isolated waveguides to calculate the
coupling coefficients according to Eq. (3). The profiles
of the modes of the top band at different wavenumbers q
are shown in Figs. 3(d)-(f). As predicted by the coupled-
modes model, we observe a transition from quasi-TM01

at q = 0 to quasi-TM10 at q = π.
For the model in Eqs. (1,2), it was demonstrated that,

as the spectral gap closes and reopens again, the sys-
tem undergoes a topological transition [16]. The same
is true for the full model, as we confirm by calculating
the Zak phase of the two bands using the Wilson loop
approach [22]:

θ ≈ i lnΠN
i=1 〈ψ(ki), ψ(ki+1)〉 , (5)

where ψ(k) are the normalized eigen-modes belonging to
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FIG. 4. (a) and (b) Zak phase of the top band (corresponding to TE10/TM10 modes for sufficiently large s) of an infinite
waveguide array, Eq. (5), evaluated for the geometries as in Fig. 1(b) and (c), respectively. The light shaded areas indicate
the regions with θ = π, where we predict the existence of edge modes; (c) modes of a finite waveguides array with N = 10 for
the geometry as in Fig. 1(c) and with λ = 1µm, obtained from COMSOL simulations. The red dashed lines show two modes
of the coupled-modes model, Eqs. (1,2), which correspond to edge states. The shaded areas indicate bandwidths of the two
bands of the coupled-modes infinite system, Eq. (4); (d) and (e) profiles of edge modes in finite waveguide arrays with N = 10,
s = 100nm and s = 50nm. The top panels are the results of COMSOL simulations, the corresponding effective indices are
marked with the star and pentagon symbols in panel (c). The bottom panels are the eigenmodes of the model in Eqs. (1,2).

a particular band, and the inner product of two modes is
defined as

〈a, b〉 =
1

4

∫∫

[

~ea × ~h∗b + ~e∗b ×
~ha

]

dxdy . (6)

The evaluation in Eq. (5) is performed by discretizing the
full Brillouin zone into N segments with kN+1 = k1 =
−π. As the separation between the waveguides crosses
the transition point s = s0, we observe a jump from
θ = 0 (trivial phase corresponding to winding number
0) to θ = π (non-trivial phase corresponding to winding
number 1) in each of the two bands. In Figs. 4(a) and (b),
the Zak phase of the top band is plotted for the same ge-
ometries as in Figs. 1(b) and (c), respectively. This topo-
logical phase transition is accompanied by the emergence
of two degenerate edge modes (localized at either edge)
in a finite-size array, as illustrated in Figs. 4(c)–(e). In
Fig. 4(c), the spectrum of an infinite size coupled-modes
model, Eq. (4), is shown with the shaded areas for the
same geometry as in Fig. 1(c) at λ = 1µm. The modes of
a finite-size array (N = 10 waveguides) are shown with
solid (Comsol simulations) and dashed (coupled-modes
model) lines. As the gap of an infinite system closes and
re-opens, the two modes corresponding to the bottom
and top edges of the two bands at s > s0 merge together
to form the two degenerate edge states at s < s0. In the
coupled-modes model, these two states have a fixed effec-
tive index for any s, see the dashed lines in Fig. 4(c). In
the full system, the indices are no longer fixed due to the
influence of a third band corresponding to quasi-TE01

modes, c.f. Fig. 1(c). Nevertheless, the coupled-modes
model gives a reasonably accurate prediction, not only
for the effective index, but also for the detailed field pro-
files of the edge modes, as shown in Figs. 4(d) and (e).
Similar behaviour is observed with quasi-TE modes in

the second geometry, as in Fig. 1(b). In Fig. 5(a) the
spectrum of the infinite periodic structure (in a vicinity
of the TE01 and TE10 modes of an isolated waveguide)

is shown. This was obtained from COMSOL simulations
of the periodic structure. Fig. 5(b) zooms in the area
near the gap. In Fig. 5(c) we present mode profiles of a
finite-size array with N = 20 waveguides. We picked 10
modes with indices closest to the gap, the corresponding
indices are indicated in Fig. 5(b) with black circles, blue
crosses, and red diamonds. Most of the modes appear to
be delocalized, the corresponding indices are within ei-
ther top (black circles) or bottom (blue crosses) bands of
the infinite structure. The two modes indicated by red
diamonds fall within the gap. Notably, the two modes
have nearly degenerate indices, and their profiles appear
to be very similar, with the field intensity being local-
ized at the edges. These are the symmetric and anti-
symmetric combinations of the edge modes, as generated
by the COMSOL solver due to the degeneracy. The edge
modes can thus be reconstructed from these two degen-
erate modes, as shown in Fig. 5(c). The bottom panel
in Fig. 5(c) shows the corresponding edge mode as ob-
tained from the coupled-modes model. As before, the
two models appear to be in excellent agreement.
We find topological edge modes when the condition

|n−| < 2|C−| (7)

is satisfied. This inequality compares the mismatch in
the effective indices, on the left side, and in the intra-
modal coupling coefficients, on the right side, of the two
nearly-degenerate modes of an isolated waveguide. Inter-
estingly, the inter-modal coupling coefficient Cx does not
enter this condition explicitly, but an interaction between
the two families of modes is required to form the edge
states. Surprisingly, we discover that for LNOI waveg-
uide arrays the condition in Eq. (7) is satisfied across
large regions of the (λ, s) parameter space, leading us
to conclude that topological states are a generic feature
of this system, see e.g., Fig. 4(a) and (b). There are
two factors which contribute to having large regions of
parameter space correspond to topological states. First,
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we find pairs of nearly degenerate modes (quantified by a
small effective index mismatch n−) across large frequency
windows due to the combined effects of the material dis-
persion of Lithium Niobate and the geometric dispersion
of the nano-waveguides. Here we presented two example
geometries with different combinations of the first-order
TE and TMmodes, but we expect this small mismatch to
also occur for pairs of other higher-order modes. Second,
due to the different parities of the participating modes,
the inter-modal coupling coefficients CA and CB gen-
erally appear to be of opposite signs, thus maximising
2|C−| = |CB − CA|. As a result, we observe non-trivial
topology even when considering pairs of modes with a
large detuning |n−|.

Thus, LNOI waveguide arrays represent a convenient
topological photonics platform, in which topology occurs
within systems readily fabricated using standard tech-
niques. Significantly, exploiting pairs of near-degenerate
modes replaces a two-waveguide unit cell by a single
waveguide, thereby decreasing the size of arrays in which
topological effects are observed by a factor of two. Com-
bined with the strong second-order optical nonlinear-
ity of Lithium Niobate, we find this system especially
promising for further studies of nonlinear topological phe-
nomena, such as topological optical parametric oscilla-
tions [23] or dynamics of two-colour topological edge soli-
tons [24].
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