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The anomalous Hall effect (AHE), which provides a bridgeway between the geometry of quantum
wavefunctions and transport measurements, has been a key focus of intensive studies. In addition to
the well-studied linear AHE, governed by the electronic Berry curvature, nonlinear AHE originated
from higher-order Berry-curvature multipoles has also been observed in recent studies. Inspired by
the 3rd order AHE and its room temperature sign switching in kagome antiferromagnet FeSn [1],
we investigate the generic sign structure of Berry-curvature-induced 3rd order AHE in topological
magnetic material. We find that in contrast to the linear Hall coefficient, whose sign is determined
by the broken time-reversal symmetry, the sign of the 3rd order Hall coefficient is dictated by the
interplay between time-reversal symmetry breaking, magnetic order, and spin-orbit couplings. Our
calculations give a possible solution for the “sign problem” of the 3rd order AHE response in the
phase space spanned by the in- and out-of-plane magnetization, the spin-orbital coupling strength
and chemical potential. We further propose realistic experiment setups to systematically reveal the
sign structure in the 3rd order AHE response via continuously rotating the magnetic field directions.

Introduction.— The Hall effect – the development of
transverse Hall voltage in a material carrying a finite
electrical current subjected to an out-of-plane magnetic
field – was discovered in the 19th century [2] and has by
now evolved into the common knowledge of condensed
matter physics. The anomalous Hall effect (AHE), on
the other hand, describes the situation where the Hall
effect appears in metallic ferromagnets independent of
the external magnetic field and was discovered similar in
time [3], but the important and fundamental connection
with topology and Berry phase of the quantum metric
in electronic states was fully appreciated much later [4–
7]. Thanks to such connection, in recent years, the AHE
leads to many exciting discoveries in topological quan-
tum materials, such as the quantum AHE in ferromagnet
topological insulators [8, 9], room temperature large AHE
in a non-collinear antiferromagnet [10], AHE in Weyl and
Dirac kagome metals [11–15] and (quantum and nonlin-
ear) AHE in quantum moiré materials [16–25].

Theoretically, it is well understood that the linear AHE
response can originate from the electronic Berry curva-
ture monopole [5–7]. More recently, it is pointed out
that the higher-order multipoles of Berry curvature can
give rise to even richer nonlinear AHE responses, both in
theoretical [18, 20, 26–42] and experimental [1, 12, 15–
17, 19, 21–24, 43–45] activities of topological quamtum
materials. The nonlinear AHE describes the phenomenon
when an AC current with frequency ω is injected, a volt-
age at integer multiples of the input frequency emerges
along the orthogonal direction, and this signal is nonlin-
ear with respect to the current and/or external fields.

Experimental studies about the 2nd-order AHE are
first carried out in non-centrosymmetric systems with
time reversal symmetry, such as the strained twisted

graphene layers [17, 24, 44] and transition metal dichalco-
genides (TMD) [16, 21–23, 43]. The 3rd-order AHE
(and other odd-orders) requiring time-reversal symmetry
breaking is observed in TMD and more recently, layered
kagome antiferromagnet FeSn [1, 19, 46, 47]. The lat-
ter is of particular interests to the present paper, where
the 1st- and 3rd- order Hall signals are observed from
cryogenic conditions to above room temperature, but the
2nd-order response remains absent [1]. More remarkably,
near the magnetic transition temperature (TN = 365
K [46, 48]), where spin canting induced by the magnetic
field is the strongest, the 3rd order AHE signal switches
sign while the sign of the 1st-order response remains un-
changed [1], indicating that the sign of 3rd-order Hall
coefficient is very sensitive to the underlying magnetic
and electronic properties, in direct contrast to its 1st-
or 2nd-order counterpart. This observation reveals the
rich sign structure of the 3rd order nonlinear AHE at
room temperature and demonstrates its potential usage
as a sensitive transport probe of magnetic properties in
various topological materials.

Although highly intriguing, the physical origin of this
rich and interesting sign structure of the 3rd order AHE
remains yet to be understood, which will be refereed to
as the “sign problem” of the 3rd order AHE [49]. The
answer and insights to this “sign problem”, as well as the
key physics principles that governs this sign structure, is
of crucial importance for predicting this rich sign struc-
ture in the vast material and experiment related param-
eter space and guiding new investigations in higher-order
AHE.

This paper is our effort to give a possible solution for
the “sign problem”. First, we review the higher order
AHE from Berry curvature multipole according to semi-
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classical Boltzmann equation and derive the formula for
the 3rd order AHE as simple weighted Fermi surfaces
summation in isotropic system. Then we show, using
a minimal model of topological magnetic materials, the
generic requirements of the Berry curvature quadrupole
induced 3rd order AHE and its rich sign structure in the
phase diagram spanned by the in- and out-of-plane mag-
netization mx and mz, the spin-orbital coupling strength
tsoc and chemical potential µ. Finally, we further pro-
pose realistic experiment setup by continuously rotating
the magnetic field directions to systematically reveal the
highly sensitive and useful sign switching mechanism in
the 3rd order AHE.
Higher order AHE.— It is well-known that the anoma-
lous velocity defined by Berry curvature can contribute to
linear AHE conductance according to the semi-classical
Boltzmann equation [6, 7]

σαβ = −q2εαβz
∑
n

∫
d2kf (0)

n Ωn, (1)

where q is the charge of the carrier, εαβz is the Levi-
Civita symbol, n is the band label, Ω indicates the Berry
curvature along z direction and f (0) is Fermi-Dirac dis-
tribution.

By recursively solving the semi-classical Boltzmann
equation, the 3rd order AHE conductance contributed
from higher momenta of Berry curvature can also be
readily derived [27, 33, 34]

σ
(2ω)
αβγ = − q3τ

1 + iωτ
εαβz

∑
n

∫
d2kf (0)

n ∂γΩn,

σ
(3ω)
αβγµ = q4τ2εαβz

(1 + i2ωτ)(1 + iωτ)
∑
n

∫
d2kf (0)

n ∂γ∂µΩn,

(2)
where ω is the frequency of the driving electric field and τ
is the relaxation time. Here we focus on the low frequency
regime and disorder contributions are ignored.

In a typical band structure, the Berry curvature Ω is
not uniformly distributed in the k-space. Instead, its in-
tensity often peaks around some “hotspots”, generated
by gapped Dirac or (other band) crossings [50] . There-
fore, to the leading order approximation, we can focus on
these “hotspots”, which give dominant contributions to
the Hall signal, and describe them using the k · p theory
(an explicit example will be given below). For simplicity,
here we assume that the dispersion and Berry curvature
around such a “hotspot” is isotropic (up to some rescaling
of k). As pointed out by Haldane [5], at low tempera-
ture and frequency, the Hall coefficients is fully dictated
by electron wave functions near the Fermi surface. For
nonlinear Hall response, following the same intuition, we
rewrite σ(3ω)

yxxx ∝
∑
n

∫
d2kf

(0)
n ∂kx∂kxΩn (within the ap-

proximation mentioned above) at T = 0 as

σ(3ω)
yxxx ∝

∑
n,s

sgn(∂kEn)k∂kΩn|k=kµ,n,s (3)

Here instead of integrating over the entire Fermi sea,
this formula sums over Fermi surfaces, where s labels the
Fermi surfaces and kµ,n,s is its Fermi wave vector. En(k)
is the dispersion of the nth band and sgn(∂kEn) = ±1 is
the sign of the Fermi velocity ∂kEn at this Fermi surface
(+/− for an electron/hole pocket).

In a magnetic material, if we don’t flip the orientation
of magnetic moment, the sign of ∂kΩn will usually remain
the same, insensitive to temperature and other control
parameters. Thus, if a material has only one pocket (with
a fixed sign for ∂kEn), the sign of σ(3ω)

yxxx is uniquely deter-
mined and thus cannot change. In contrast, for a system
with two or more (electron/hole) pockets, contributions
from different Fermi surfaces may carry opposite signs.
In this picture, each Fermi surface contributes ±1 with a
weight of |k∂kΩ|. Because control parameters (e.g. tem-
perature or doping) can change the weight of each Fermi
surface, the competition between + and − signs can lead
to a rich sign structure for σ(3ω)

yxxx.
It is also worthwhile to highlight that Eq. (3) and this

sign-switching behavior can be naturally generalized to
any odd higher order Hall coefficients, while the 3rd or-
der AHE is just one example and the lowest channel to
observe this phenomenon.
Minimal model.— To illustrate the sign structure in 3rd
order AHE, here we introduce a minimal model to de-
scribe the Berry curvature in a 2D magnetic material
with spin-orbit coupling and magnetic moments. Near
a Berry curvature hotspot, the k · p theory involves a
4-band Dirac Hamiltonian

H =
(

k · σ + tsocσz +mzI mxI
mxI k · σ − tsocσz −mzI

)
.

(4)

where I and σ are the identity and Pauli matrices re-
spectively and k ·σ = kxσx + kyσy, tsoc is the spin-orbit
coupling strength, and m = (mx,my,mz) represents the
magnetic moment. The eigenvalues are Ei,± = ±[k2 +
m2
x +m2

z + t2soc + (−1)i × 2
√
k2(m2

x +m2
z) +m2

zt
2
soc]1/2.

If one expands the eigenvalues up to k2 order
near k = 0, the eigenvalues can be expressed as
Ei,± ≈ ±

√
m2
x + (mz + (−1)itsoc)2∓ [k2(m2

x +mz(mz +
(−1)itsoc))]/[2mztsoc

√
m2
x + (mz + (−1)itsoc)2]. There

is a band curvature reversion for E1,± by tuning mx,mz,
and this reversion is the necessary condition for multi-
Fermi surfaces of a single band. Here we use ± in Ei,±
to label the band above/below 0 energy and i to label the
ith nearest band from 0 energy. The dispersion is plotted
in Fig. 1. Berry curvatures for each band can be readily
derived as

Ωi,± = (−1)i+1 (m2
x +m2

z)mztsoc
2((m2

x +m2
z)k2 + (mztsoc)2)3/2 . (5)

By observing the results above, we can see the bands dis-
persion and Berry curvature distribution are isotropic,
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FIG. 1. Band dispersion and Fermi surface weight.
Band dispersion is indicated by colored lines and the Fermi
surface weight k∂kΩ is labeled by the color bar (tsoc = 1
for both figures). Dashed lines show the position kB where
∂k(k∂kΩ) = 0 and kE where the minimal value of E1,+. (a)
For m2

x +mz(mz− tsoc) < 0 case (mx = 0.2,mz = 0.5), k = 0
is always the minimal point for E1,+. (b) For m2

x + m2
z >√

5
3mztsoc case (mx = 1,mz = 1), kE > kB and k = kE is

always the minimal point for E1,+ band.

which are only determined by k2 in momentum space, so
that mx can point any in-plane direction without chang-
ing the conclusion. Besides, there is no band touching
and reopening process at k = 0 by tuning mx,mz > 0
so that Berry curvature distribution is stable near k = 0
point. Finally, mz < 0 case can be easily achieved by
reversing Berry curvature of the |mz| case. With these
observations, we discuss the 3rd order AHE sign struc-
ture in this model below.

The sign structure of the 3rd order AHE.— It is obvi-
ous that the sign of tsoc or mz will change the sign of
Berry curvature so that all the Hall signal will reverse
(i.e. all linear and nonlinear Hall signal). This is the triv-
ial sign switching by gap-close-reopen procedure. We will
focus on the non-trivial sign switching mechanism which
comes from multi-Fermi surface weighted sum in Eq. (3),
by setting mx,mz, tsoc > 0 for convenience and finding
the connection of the anisotropy magnetic moment with
the sign structure of the 3rd order AHE. Because of the
particle-hole symmetry of this model, we only consider
the positive chemical potential.

Before analyzing the sign of the AHE, it is important
to highlight one key feature of the band structure. Here,
we focus on electron-doping with filling close to charge
neutrality, i.e., only the band E1,+ is partially filled in
Fig. 1. For m2

x + mz(mz − tsoc) < 0, E1,+ is a mono-
tonic function of k and thus if we set the chemical po-
tential

√
m2
x + (mz − tsoc)2 < µ <

√
m2
x + (mz + tsoc)2

(i.e., we put the Fermi surface between minimal points of
E1,+ and E2,+), the model system has only a single Fermi
surface. According to Eq. (3), there is no sign change of
the 3rd order anomalous Hall from single Fermi surface
of single band E1,+, if we vary µ or other control param-
eters.

In contrast, for m2
x +mz(mz − tsoc) > 0, the minimal

value for E1,+ is no longer located at k = 0 point but at

kE =
√

(m2
x +m2

z)2 −m2
zt

2
soc√

m2
x +m2

z

, (6)

as denoted by the dashed line in Fig. 1 (b). The minimal
value of E1,+ now is mxtsoc√

m2
x+m2

z

. With band structure,
electron doping to the band E1,+ will produce two Fermi
surfaces, one with Fermi wave vector kF < kE and the
other kF > kE . These two Fermi surfaces have opposite
Fermi velocity and thus can contribute opposite sign to
σ

(3ω)
yxxx. As shown in Fig. 2(d), the competition between

these two Fermi surfaces gives rise to a very rich phase
diagram with complicated sign structures.

Mathematically, the sign change boundary for σ(3ω)
yxxx is

the solution of equation∑
n,s

sgn(∂kEn)k∂kΩn|k=kµ,n,s = 0 (7)

Although the analytical solution is cumbersome, three
simple and exact statements can be proved (see SI for
the proof).
Statement 1 When

√
m2
x + (mz − tsoc)2 < µ <√

m2
x + (mz + tsoc)2, there is no sign change of the 3rd

order AHE when tuning mx,mz, µ.
Statement 2 When m2

x + m2
z >

√
5
3mztsoc and

mxtsoc√
m2
x+m2

z

< µ <

√
3
5 ((mz −

√
5
3 tsoc)2 +m2

x), there is no
sign change of the 3rd order AHE by tuning the intensity
of mx,mz, µ. And the sign in this region is opposite to
statement 1 region.
Statement 3 When µ = tsoc, the sign switching bound-
ary of the 3rd order AHE in mx,mz plane is a semi-circle
m2
x +m2

z =
√

5+2
√

13
3 mztsoc.

These exact conclusions dictate the global structure
of the phase diagram, and in addition, they provide a
pretty accurate estimation about the phase boundary.
Here we plot the full phase digram [Fig. 2(d)], obtained
numerically, and compares it with the exact statement
above. For better visualization, in Fig. 2(a-c), we show
the 2D cuts of the 3D phase diagram at three different
chemical potential. For 0 < µ < tsoc, the phase diagram
is shown in the Fig. 2(c), where the yellow region shows
the positive 3rd order AHE and the blue region shows
the negative. The cyan region means there is no signal
because of the chemical potential is below the minimum
of E1,+. While for the µ = tsoc case, one can see there is
no cyan region from Fig. 2(b). The yellow region forms
a semi-circle. For µ > tsoc, one can see the constraint
µ <

√
m2
x + (mz + tsoc)2 will work when mz > 0 as the

dash line from the other semi-circle shown in Fig. 2(a).
Below this dashed line, µ >

√
m2
x + (mz + tsoc)2 means

Fermi surface from the E2,+ band will contribute. Since
the minimal point for E2,+ band is always at k = 0, the
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FIG. 2. Sign diagram of the 3rd order AHE. The spin-orbital coupling strength is set as the unit of axis. The yellow
region shows the positive sign and the blue region shows the negative. The cyan region means there is no signal. (a) For
µ > tsoc interval, the chemical potential is set as µ = 1.4tsoc. The left dashed semi-circle shows µ =

√
m2

x + (mz + tsoc)2.
Under this line, the E2,+ band will contribute and finally change the sign from negative to positive when mz > 0. (b) For

µ = tsoc = 1, there is no cyan region and the transition boundary forms a semi-circle m2
x + m2

z =
√

5+2
√

13
3 mztsoc as shown

by the black dashed lines. (c) For 0 < µ < tsoc interval, the chemical potential is set as µ = 0.6tsoc. The straight dashed line
shows µ = |mx|tsoc√

m2
x+m2

z

and is the tangency of the black and red dashed semi-circles which indicate µ =
√
m2

x + (mz ± tsoc)2

and µ =
√

3
5 ((mz ±

√
5
3 tsoc)2 +m2

x). (d) Numerical results of the entire sign diagram of the 3rd order AHE when tuning
mx,mz, µ. The transition boundary approaches to two semi-cones.

~
xxV

xyV

DSV

ωI
tgV

bgV

x
y

z B

FIG. 3. Experimental detection for the sign switching
in the 3rd order AHE. Chemical potential is tuned by
top gate and bottom gate voltage Vtg, Vbg. AC current Iω

with low frequency ω injects along x direction from source to
drain. Then Vxx and Vxy for different frequency output can be
measured. The magnetic anisotropy can be tuned by rotating
the magnetic field from in-plane to out-of-plane directions.

contribution from E2,+ band is always positive so that
there is a sign change from negative to positive below
this line.
Experimental proposal and Discussions.— To detect the

sign phase diagram of the 3rd order AHE, we propose
the schematic experimental setting in Fig. 3. First, one
requires a piece of clean 2D Dirac material with strong
spin-orbital-coupling and large magnetic susceptibility.
As the experiment of FeSn [1], kagome metals satisfy
this requirement. Silicene and germanene in group IVA
also have a chance due to relative large spin-orbital-
coupling, but a strong magnetic field is needed. By
forming a Hall bar geometry with double gate tuning
the chemical potental and homogeneous magnetic field
tuning magnetic moment, one can measure the anoma-
lous contribution by subtracting the linear contribution
ρ

(3ω)
0 B from the 3rd order anomalous Hall resistivity
ρ

(3ω)
xy (B), ρ(3ω)

A (B) = ρ
(3ω)
xy (B) − ρ(3ω)

0 B as shown in the
experiment of FeSn [1]. By fixing the chemical potential
and the strength of the magnetic field, rotating the mag-
netic field to change the magnetic anisotropy, the sign of
ρ

(3ω)
A (B) shall change.

It is worthwhile to notice this sensitive response to
magnetic anisotropy shall be the largest when chemical
potential is tuned approaching to spin-orbital-coupling
strength (i.e., µ ∼ tsoc as shown in Fig. 2(b)), where for
small B, any magnetization deviating from in-plane di-
rection shall induce a sign change of ρ(3ω)

A (B). This phe-



5

nomena can be used to detect the spin-orbital-coupling
strength tsoc by observing the most sensitive µ point and
also possible magnetic phase transition, as has been suc-
cessfully demonstrated in Ref. [1].

To conclude, we derive the 3rd order AHE formula in
isotropic system as the weighted summation from each
Fermi surface (Eq. (3)) and show this is the leading order
where the sign of Fermi velocity sgn(∂kE) contributes.
To illustrate this point, we investigate the sign structure
of the 3rd order AHE for a minimal model with spin-
orbital coupling and magnetic anisotropy and plot the
sign diagram with tuning magnetic moment mx,mz and
chemical potential µ. Experiment for observing this phe-
nomena is proposed, which can be used to detect spin-
orbital-coupling strength of the material and magnetic
anisotropy.
Note added.— We would also like to bring the readers
attention to the experiment work from Berthold Jäck’s
group appear on arXiv [1], in which the 3rd anomalous
Hall effect and its ”sign problem” is observed at room
temperature.
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Explanation of statements

If the condition m2
x +mz(mz − tsoc) < 0 holds true, one can see E1,+, E2,+ bands only have their minimal values at

k = 0 point and monotonically increasing elsewhere, as shown in Fig. 1 (a). When we consider one-band contribution,
it means we require chemical potential

√
m2
x + (mz − tsoc)2 < µ <

√
m2
x + (mz + tsoc)2 (i.e., we put the Fermi surface

between minimal points of E1,+ and E2,+). According to Eq. (3), there is no sign change of the 3rd order anomalous
Hall from single Fermi surface of single band E1,+.

If the condition becomes m2
x +mz(mz − tsoc) > 0, one can see the minimal value for E1,+ is not located at k = 0

point but at another kE point

kE =
√

(m2
x +m2

z)2 −m2
zt

2
soc√

m2
x +m2

z

, (8)

as denoted by the dashed line in Fig. 1 (b). The minimal value of E1,+ now is mxtsoc√
m2
x+m2

z

. Considering one-band

contribution, we should require chemical potential mxtsoc√
m2
x+m2

z

< µ <
√
m2
x + (mz + tsoc)2 now. In the subinterval√

m2
x + (mz − tsoc)2 < µ <

√
m2
x + (mz + tsoc)2, one can see this is also a single band single Fermi surface contribu-

tion so that there is still no sign change. Combine these two intervals, we can form our first statement for our minimal
model:

Statement 1 When
√
m2
x + (mz − tsoc)2 < µ <

√
m2
x + (mz + tsoc)2, there is no sign change of the 3rd order

AHE when tuning mx,mz, µ.
While for the mxtsoc√

m2
x+m2

z

< µ <
√
m2
x + (mz − tsoc)2 case, there are two Fermi surfaces with opposite sgn(∂kE1,+)
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so that the competing may induce a sign change. We define kB as the extreme point for k∂kΩn.

kB =
√

2
3

mztsoc√
m2
x +m2

z

. (9)

The kB momentum is denoted as the dashed line in Fig. 1 and the energy E1,+ at kB point is EB =√
(mz −

√
5
3 tsoc)2 +m2

x(1− 2t2soc
3(m2

x+m2
z) ). It is obvious that when kE > kB , there must be at least two fillings where

σ
(3ω)
yxxx is larger than zero (e.g., µ ∼ mxtsoc√

m2
x+m2

z

) and smaller than zero (e.g., µ ∼
√
m2
x + (mz − tsoc)2). The kE > kB

condition is just m2
x+m2

z >
√

5
3mztsoc. It is also easy to derive when kE > kB and µ < EB , the total weight of Fermi

surfaces has the opposite sign with the statement 1 case. To identify this region easier, we release µ < EB restriction

a little according to mxtsoc√
m2
x+m2

z

< µ and require µ <
√

3
5 ((mz −

√
5
3 tsoc)2 +m2

x). This leads us to another statement.

Statement 2 When m2
x + m2

z >
√

5
3mztsoc and mxtsoc√

m2
x+m2

z

< µ <

√
3
5 ((mz −

√
5
3 tsoc)2 +m2

x), there is no sign
change of the 3rd order AHE by tuning the intensity of mx,mz, µ. And the sign in this region is opposite to statement
1 region.

It is also worth to note when µ = tsoc, the shape of sign change boundary is just a perfect semi-circle. We conclude
this as our statement 3, which can be derived directly by solving Eq. (7).

Statement 3 When µ = tsoc, the sign switching boundary of the 3rd order AHE in mx,mz plane is a semi-circle
m2
x +m2

z =
√

5+2
√

13
3 mztsoc.
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