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ABSTRACT

The development of Internet technology enables an analysis on the

whole population rather than a certain number of samples, and

leads to increasing requirement for privacy protection. Local dif-

ferential privacy (LDP) is an effective standard of privacy measure-

ment; however, its large variance of mean estimation causes chal-

lenges in application. To address this problem, this paper presents

a new LDP approach, an improved Christofides mechanism.

It compared four statistical survey methods for conducting sur-

veys on sensitive topics—modified Warner, Simmons, Christofides,

and the improved Christofides mechanism. Specifically, Warner,

Simmons and Christofidesmechanisms have beenmodified to draw

a sample from the population without replacement, to decrease

variance. Furthermore, by drawing cardswithout replacement based

on modified Christofides mechanism, we introduce a new mecha-

nism called the improved Christofides mechanism, which is found

to have the smallest variance under certain assumption when us-

ing LDP as a measurement of privacy leakage. The assumption is

do satisfied usually in the real world. Actually, we decrease the

variance to 28.7% of modified Christofides mechanism’s variance

in our experiment based on the HCOVANY dataset—a real world

dataset of IPUMS USA. This means our method gets a more accu-

rate estimate by using LDP as a measurement of privacy leakage.

This is the first time the improved Christofides mechanism is pro-

posed for LDP framework based on comparative analysis of four

mechanisms using LDP as the same measurement of privacy leak-

age.
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1 INTRODUCTION

Local differential privacy (LDP), proposed in [24] as the first equiv-

alent definition and further developed by Duchi et al. [11], is an

algorithm which quantifies privacy by having users randomly per-

turb their data locally and send the perturbed data to a (possibly

un-trusted) data collector. Since the data collector does not hold the

original personal data, it is a strong privacy model [3–5, 7, 9, 29, 30,

33, 34]. LDP has been adopted by many industry organizations, in-

cluding Apple [26], Google [13], and Microsoft [10]. For instance,

Apple [26] deploys LDP on iOS to know popular health data types

for future improvement in the Health app. Google [13] has adopted

RAPPOR to Chrome Web browser, collecting data about Chrome

clients from approximately 14million respondents who have opted

to send usage statistics to Google. Microsoft [10] integrates LDP in

Windows 10 to collect the number of seconds that a user has spent

using a particular app.

In social science and epidemiologic research, surveying sensi-

tive questions such as cheat, gamble, drug or alcohol abuse, or an-

tisocial behavior, is likely to lead to refusals or untruthful answers.

To address this issue, Warner et al. [31] proposed a procedure as

randomized response, the most classical LDP mechanism, in 1965.

Since then, many mechanisms [8, 14, 16–18, 21, 22] for surveying

sensitive questions have been proposed, two iconic ones being [17]

and [8]. Simmons et al. [17] suggested in 1967 that the level of coop-

eration would increase if two unrelated questions (or statements)

were used. Christofides et al. [8] proposed a generalization random-

ized response technique in 2003, where users only have to answer

with numbers instead of yes or no.

Waseda et al. [32] evaluated Warner, Kuk [18], negative survey

mechanism [14] and its variants [2] by using differential privacy.

They showed that these mechanisms have a tradeoff between pri-

vacy and utility, but did not compare the performance of differ-

ent mechanisms nor suggest ways to improve them. Giordano et

al. [15] compared the variance of the estimators of three dichoto-

mous unrelated question mechanisms ( [17, 23, 25]) under equal

levels of confidentiality measures introduced by Lanke [19], Leysi-

effer and Warner [20], but also did not improve the performance

of variance.

With the development of big data and artificial intelligence, peo-

ple can collect data not by sampling, but by surveying the popula-

tion, such as in U.S. Census 2020 and the US presidential election

of 2020. And with that in mind, we modified three mechanisms

(Warner, Simmons and Christodfides mechanisms) for conducting

surveys on sensitive topics by drawing a sample from the popula-

tion without replacement. Since drawing a sample from the pop-

ulation without replacement can reduce the randomness of the
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estimated mean in our case, we improved modified Christofides

mechanism by drawing cards from device without replacement.

The improvement is remarkable for the variance of the improved

Christofides mechanism is the smallest when the proportion of

people with sensitive attributes is small if we use LDP as the same

measurement of privacy leakage. In fact, the variance decreases

to 28.7% that of modified Christofides mechanism in our experi-

ment base on a read world dataset. As a result, we find a new LDP

mechanism for mean estimation with smaller variance and a better

degree of cooperation from data providers.

Contributions. Our contributions are threefold:

(1)We analyzemodifiedWarner, Simmons and Christodfidesmech-

anisms by drawing samples from the population without replace-

ment.

(2)We propose an improved Christofidesmechanismwith a small

but effective change tomodified Christofides mechanismwhen the

proportion of people with sensitive attributes is small.

(3)We compare the variance ofmodifiedWarner, Simmons, Chris-

todfides and the improved Christofides mechanisms by theoretical

analysis and numerical simulation using LDP as the samemeasure-

ment of privacy leakage. We find that the improved Christofides

mechanisms has the smallest variance when the proportion of peo-

ple with sensitive attributes is small, and can be used as a better

LDP mechanism to replace Warner mechanism.

Organization. Section 2 presents the background, including

the definition of LDP and the procedures of Warner, Simmons and

Christofides mechanisms. Section 3 presents the procedures and

variances ofmodifiedWarner, and Simmons and Christofidesmech-

anisms by theoretical analysis. In section 4, we introduce the im-

proved Christofides mechanism and analyze its variance. In sec-

tion 5, we analyze the variance of modified Warner, Simmons and

Christofides and the improved Christofides mechanism by using

LDP as the measurement of privacy leakage. In section 6, we com-

pare the variance and minimum sample size of four mechanisms

by theoretical analysis and numerical simulation. In section 7, we

give the conclusion.

2 BACKGROUND

2.1 Local Differential Privacy

In the LDP setting, a user perturbs the private value G using an

algorithm A and sends A(G) to the untrusted collector. The col-

lector learns statistical information about users.

Definition 2.1 (Y-LDP [11]). A randomization mechanism A sat-

isfies Y-LDP, if and only if for any pair of input values G , G ′ and for
all randomized output$ , it holds that

P[A(G) = $] ≤ 4Y × P[A(G ′) = $].

The notation P means probability.

2.2 Three Randomized Response Mechanisms

This section briefly introducesWarnerMechanism, Simmonsmech-

anism and Christofides mechanism.

2.2.1 Warner Mechanism [31]. Suppose that each respondent in a

population belongs to either Group � or �̄ and that it is required

to estimate the proportion of Group � by survey. Each respondent

is required to respond ~4B or => to one of the two statements:

(a) I am a member of group �.

(b) I am a member of group �̄.

The respondent responds to statement (a) with probability ?

(? < 1/2 in this paper.) and to statement (b) with probability 1 − ?

using a random device, e.g., by the toss of a (biased) coin and in the

absence of the interviewer. The investigator, such as the govern-

ment or school, can get the unbiased estimate of the true propor-

tion of people with sensitive attributes according to the answers.

2.2.2 Simmons Mechanism [17]. It is noted that both statements

of Warner mechanism are sensitive. In Simmons mechanism, we

change the second statement of Warner mechanism to an unre-

lated one, which leads to a higher degree of cooperation for the

respondent compared with that of Warner mechanism.

Simmons mechanism uses two statements:

(a) I am a member of Group �.

(b) I am a member of Group �.

, where the unrelated statement in Group � is unsensitive. For

instance, the two statements posed might be:

(a) I cheated in an exam.

(b) I was born in the first half of the year.

The investigator, such as the government or school, can get the

unbiased estimator of the true proportion of people with sensitive

attributes according to the answers.

2.2.3 Christofides Mechanism [8]. In Christofides mechanism, ev-

ery respondent is provided with a card which produces the inte-

gers 1, 2,...,! with proportions ?1,?2,...,?! respectively (These pro-

portions are not all equal). The respondent reports how far away

the integer is from ! + 1 if he/she has the sensitive attributes or

from 0 if he/she does not have it. For instance, suppose that ! is 3

and the respondent reports the number 3. This means that either

the respondent has sensitive attributes and the drawn number is 1

or the respondent does not have sensitive attributes and the drawn

number is 3. Notice that when ! = 2, Christofides mechanism is

substantially equivalent to Warner mechanism.

The investigator, such as the government or school, can get the

unbiased estimate of the true proportion of people with sensitive

attributes according to the answers.

3 ANALYZING THREE MODIFIED
MECHANISMS

This section analyzes modified Warner, Simmons and Christofides

mechanisms. We assume the whole procedure is completed by the

respondent and unobserved by the investigator with all respon-

dents being truthful in their answers.

In [31] [17] and [8], the authors assumed a random sampling

from the population with replacement. However, due to the devel-

opment of the Internet, people can let the number of samples and

populations be equal, such as in U.S. Census 2020 [6] and the US

presidential election, which means sampling without replacement.

Let G8 be the integer representing the sensitive attributes of re-

spondent 8 , which is 1 if the respondent is a member of sensitive

group (persons with no health insurance coverage at the time of in-

terview), and 0 if the respondent is not amember of sensitive group

2



(persons with health insurance coverage at the time of interview

in our experiment). We have

G8 =

{
1, respondent 8 ∈ Group �

0, respondent 8 ∈ Group �̄.

3.1 Analyzing Modified Warner Mechanism

Algorithm 1 illustratesmodifiedWarnerMechanism.We select from

the population of size # a random sample without replacement of

size # . Let c� be the true proportion of being a member of group

� in the population.

Algorithm 1 modified Warner Mechanism

Input: G8 (8 = 1, 2, ..., # ), ?
Output: -8

1: Sample a Bernoulli variable D such that % (D = 1) = ?

2: if D < ? then

3: -8 = G8
4: else

5: -8 = 1 − G8
6: end if

7: return -8

8: Experiment with the next respondent 8 + 1.

Introduce random variables

-8 =

{
1, the 8 th respondent answers yes

0, the 8 th respondent answers no.

Random variables -1, -2, . . ., -# are dependent. The number

of yes answers obtained from # respondents is #1 =
∑#
8=1-8 .

According to the formula of total probability, the theoretical pro-

portion of the respondent who answered ~4B to question (a) or (b)

is approximately equal to #1/# , shown as follows,

?c� + (1 − ?)(1 − c�) ≈
#1

#
.

The parameter ĉ� is estimated based on the indirect responses

of all respondents via the estimator

ĉ� =

#1
# − (1 − ?)

2? − 1
.

The estimator ĉ� is unbiased estimation according to the Law

of large numbers [12].

The variance of ĉ� [28] is

Varĉ� =

Var(∑#
8=1-8)

# 2 (2? − 1)2

=
c�? (1 − ?) + (1 − c�)(1 − ?)?

# (2? − 1)2

=
? (1 − ?)

# (2? − 1)2
.

(1)

The variance is decreased by [c� (1 − c�)]/# compared with

that in [31] that samples with replacement, which is

Varĉ� =
c� (1 − c�)

#
+ ? (1 − ?)
# (2? − 1)2

.

3.2 Analyzing Modified Simmons Mechanism

Algorithm 2 illustrates modified Simmons Mechanism. We select

from the population of size # a random sample without replace-

ment of size # . Let c� be the true proportion of being a member

of group A in the population.

Algorithm 2 modified Simmons Mechanism

Input: G8 (8 = 1, 2, ..., # ), ?, c�
Output: -8

1: Sample a Bernoulli variable D such that % (D = 1) = ?

2: if D < ? then

3: -8 = G8
4: else

5: Sample a Bernoulli variable E such that % (E = 1) = c�
6: if E < c� then

7: -8 = 1
8: else

9: -8 = 0
10: end if

11: end if

12: return -8

13: Experiment with the next respondent 8 + 1.

Introduce random variables

-8 =

{
1, the 8 th respondent answers yes

0, the 8 th respondent answers no.

Random variables -1, -2, . . ., -# are dependent. The number

of yes answers obtained from # respondents is #1 =
∑#
8=1-8 .

According to the formula of total probability, the theoretical pro-

portion of the respondent who answered ~4B to question (a) or (b)

is approximately equal to #1/# , shown as follows,

?c� + (1 − ?)c� ≈ #1

#
.

The parameter c� is estimated based on the indirect responses

of all respondents via the estimator

ĉ� =

#1
# − (1 − ?)c�

?
.

The estimator ĉ� is an unbiased estimation according to the

Law of large numbers [12].

The variance of ĉ� is

Varĉ� =

Var

(
1
#

∑#
8=1-8

)

?2

=
c� [? + (1 − ?)c� ] [1 − ? − (1 − ?)c� ]

#?2
+

(1 − c�) [(1 − ?)c� ] [1 − (1 − ?)c� ]
#?2

=

c� (1 − ?) − c2
�
(1 − ?)2

#?2
+

c�
1 − ? − 2c� (1 − ?)

#?
.

(2)

3



The variance is decreased by [c� (1 − c�)]/# compared with

that in [17] which samples with replacement,

Varĉ� =
c� (1 − c�)

#
+
c� (1 − ?) − c2

�
(1 − ?)2

#?2
+

c�
1 − ? − 2c� (1 − ?)

#?
.

3.3 Analyzing Modified Christofides
Mechanism

Algorithm 3 illustratesmodifiedChristofidesMechanism.We draw

a sample of size # from the population of size # without replace-

ment. To formulate the algorithmmathematically, prepare" cards,

which produce integers 1, 2, ..., ! with proportions ?1, ?2, ..., ?! re-

spectively (These proportions are not all equal). Let c� be the true

proportion of being a member of group � in the population.

Algorithm 3 modified Christofides Mechanism

Input: G8 (8 = 1, 2, ..., # ), !, ?1, ?2, ..., ?!
Output: -8

1: prepare a device consist of " cards, each card showing one

of the integers 1, 2, ..., ! with proportions ?1, ?2, ..., ?! respec-

tively;

2: randomly select a card, assume the number is : ;

3: if G8 = 1 then
4: -8 = : ;

5: else

6: -8 = ! + 1 − :

7: end if

8: return -8 ;

9: Put the card back to device.

10: Experiment with the next respondent 8 + 1.

For convenience, we introduce the following notations:.8 is the

number he/she draws and -8 is the number he/she answers.

We have

-8 =

{
1, the 8 th respondent answers yes

0, the 8 th respondent answers no

, where

-8 = (! + 1 − .8) G8 + .8 (1 − G8 ) .

The expectation of - is

E- = E. + c (! + 1 − 2E. ).

Thus the estimation of c� is

ĉ� =

1
#

∑#
8=1-8 − E(. )

! + 1 − 2E(. ) .

The estimator ĉ� is an unbiased estimation according to the

Law of large numbers [12].

Theorem 3.1 (Modified Christofides mechanism variance).

The variance of ĉ� is

Varĉ� =

Var

(∑#
8=1-8

)

# 2 (! + 1 − 2E(. ))2

=
Var.

# (! + 1 − 2E(. ))2
.

Proof. The proof is in Appendix A. �

The variance is decreased by [c� (1 − c�)]/# compared with

that in [8] which samples with replacement,

Varĉ� =
c� (1 − c�)

#
+ Var.

# (! + 1 − 2E(. ))2
.

By modifying Warner, Simmons and Christofides by sampling

without replacement, the variance is decreased by [c� (1−c�)]/#
compared with that in [31] [17] and [8], which samples with re-

placement. This is our first contribution.

4 THE IMPROVED CHRISTOFIDES
MECHANISM

Since drawing a random sample from the population without re-

placement can reduce the randomness of the estimatedmean in our

case. What will happen if respondent draws cards without replace-

ment? To clarify this issue, we proposed the improved Christofides

mechanism, which is illustrated as Algorithm 4.

Algorithm 4 the improved Christofides Mechanism

Input: G8 (8 = 1, 2, ..., # ), !, ?1, ?2, ..., ?!
Output: -8

1: prepare a device consist of # cards, each card showing one

of the integers 1, 2, ..., ! with proportions ?1, ?2, ..., ?! respec-

tively;

2: randomly select a card, assume the number is : ;

3: if G8 = 1 then
4: -8 = : ;

5: else

6: -8 = ! + 1 − :

7: end if

8: return -8 ;

9: The respondent keeps the card. (Do not put the card back to

device.)

10: Experiment with the next respondent 8 + 1.

We select from the population of size # a sample without re-

placement of size # . To formulate the algorithm mathematically,

prepare# cards, which produce integers 1, 2, ..., !with proportions
?1, ?2, ..., ?! respectively (These proportions are not all equal).

For convenience, we introduce the following notations:.8 is the

number he/she draws and -8 is the number he/she answers.

We have

-8 =

{
1, the 8 th respondent answers yes

0, the 8 th respondent answers no,

where

4



-8 = (! + 1 − .8) G8 + .8 (1 − G8 ) .
The expectation of - is

E- = E. + c (! + 1 − 2E. ).
Thus the estimation of c� is

ĉ� =

1
#

∑#
8=1-8 − E(. )

! + 1 − 2E(. ) .

The estimator ĉ� is an unbiased estimation according to the

Law of large numbers [12].

Theorem 4.1 (the improved Christofides mechanism vari-

ance). The variance of ĉ� is

Varĉ� =

Var

(∑#
8=1-8

)

# 2 (! + 1 − 2E(. ))2

=
4c� (1 − c�) Var(. )

(# − 1)(! + 1 − 2E(. ))2
.

(3)

Proof. The proof is in Appendix B. �

Since the estimation ofc� formodifiedChristofidesmechanisms

and the improved Christofides mechanism are all unbiased estima-

tions, we compare the utility of the two mechanisms by calculat-

ing the difference between the variance of modified Christofides

(Var�� ) and the improved Christofides mechanism (Var"� ).

Theorem 4.2 (Comparison Modified Christofides and the

Improved ChristofidesMechanismsby TheoreticalAnalysis).

The comparison can be summarized as follows:

(i.) When proportion c� is in interval
(
0, 1/2 − 1/2

√
#

)
∪ (1/2 +

1/2
√
#, 1), we get that VarIC is smaller than VarMC.

(ii.) When proportion c� is in interval (1/2 − 1/2
√
#, 1/2 + 1/2√

# ), we get that VarIC is larger than VarMC.

Proof.

VarICĉ� − VarMCĉ�

=

[
4c� (1 − c�)

# − 1
− 1

#

]
Var.

(! + 1 − 2E. )2

=

[
−4#c2

�
+ 4#c� − # + 1

# (# − 1)

]
Var.

(! + 1 − 2E. )2

= − 4(1/2 + 1/2
√
# − c�)(1/2 − 1/2

√
# − c�)Var.

(# − 1)(! + 1 − 2E. )2
.

As long as c� < 1/2 − 1/2
√
# or c� > 1/2 + 1/2

√
# , we have

Var�� ĉ� < Var"� ĉ� . �

Because # is a large number, the interval [1/2 − 1/2
√
#, 1/2 +

1/2
√
# ] is small. For example, when# = 104, the interval is [0.495, 0.505].

Especially, since 1/2
√
# ≤ 1/4(for # ≥ 3), as long as c� < 0.25 or

c� > 0.75, we have VarIC < VarMC for any # (# > 3).
Moreover, we will prove in section 6 that the variance of the

improved Christofides mechanism is smaller than that of modified

Warner and Simmons mechanisms under certain assumption, in

using LDP as a measurement of privacy leakage. The assumption

is do satisfied usually in the real world. We improved Christofides

mechanism by sampling cards without replacement. This is our

second contribution.

5 ANALYZING FOUR MECHANISMS
VARIANCES USING LDP

In this section, we analyzed the variance of four mechanisms by

theoretical analysis using LDP as the samemeasurement of privacy

leakage.

5.1 Modified Warner Mechanism using LDP

Theorem 5.1 (Warner mechanism). Modified Warner mecha-

nism satisfies Y−differential privacy, where Y = ln[(1 − ?)/?] (with-
out losing of generality, suppose that ? < 1/2.).

Proof. We consider four cases:

Case 1: The respondent has sensitive attributes, and the proba-

bility of answering yes under this condition is ? .

Case 2: The respondent has sensitive attributes, and the proba-

bility of answering no under this condition is 1 − ? .

Case 3: The respondent does not have sensitive attributes, and

the probability of answering yes under this condition is 1 − ? .

Case 4: The respondent does not have sensitive attributes, and

the probability of answering no under this condition is ? .

For any two respondents with the same answer, the maximum

ratio of proportions is (1 − ?)/? . �

Substitute Y = ln[(1 − ?)/?] and ? < 1/2 into equation (1). The

variance VarMW can be written as

Varĉ� =
4Y

# (4Y − 1)2
.

5.2 Modified Simmons Mechanism using LDP

Theorem 5.2 (Simmons mechanism). Modified Simmons mech-

anism satisfies Y−differential privacy, where

Y =




ln ?+(1−?)c�
(1−?)c� , c� ≤ 1

2

ln
?+(1−?) (1−c� )
(1−?) (1−c� ) , c� >

1
2 .

(4)

Proof. We consider four cases:

Case 1: The respondent has sensitive attributes, and the proba-

bility of answering yes under this condition is ? + (1 − ?)c� .
Case 2: The respondent has sensitive attributes, and the proba-

bility of answering no under this condition is (1 − ?)(1 − c� ).
Case 3: The respondent does not have sensitive attributes, and

the probability of answering yes under this condition is (1 − ?)c� .
Case 4: The respondent does not have sensitive attributes, and

the probability of answering no under this condition is ? + (1 −
?)(1 − c� ).

For any two respondents with the same answer, the maximum

ratio of proportions is

Y =




ln
?+(1−?)c�
(1−?)c� , c� ≤ 1

2

ln ?+(1−?) (1−c�)
(1−?) (1−c� ) , c� >

1
2 . �
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Theorem 5.3 (Modified Simmons mechanism variance ver-

sus epsilon). When c� = 1/2, the variance VarMS obtains its min-

imum as following

Varĉ� =
4Y

# (4Y − 1)2
.

which is the same with that of modified Warner mechanism.

Proof. The proof is in Appendix C. �

5.3 Modified Christofides Mechanism using
LDP

Theorem 5.4 (Modified Christofides mechanism). Modified

Christofides mechanism satisfies Y-differential privacy, where

Y = max

(
ln

?!+1−:
?:

, : = 1, 2, · · · , !
)
.

Proof. We consider four cases:

Case 1: The respondent has sensitive attributes and draws: . The

probability of answering ! + 1 − : under this condition is ?: .

Case 2: The respondent has sensitive attributes and draws !+1−
: . The probability of answering : under this condition is ?!+1−: .

Case 3: The respondent does not have sensitive attributes and

draws : . The probability of answering : under this condition is ?: .

Case 4: The respondent does not have sensitive attributes and

draws ! + 1 − : . The probability of answering ! + 1 − : under this

condition is ?!+1−: .
For any two respondents with the same answer, the maximum

ratio of probabilities is

Y = max

(
ln

?!+1−:
?:

, : = 1, 2, · · · , !
)
.

�

We fix number ! = 3, so the privacy budget Y is

Y = max

{
ln

?1

?3
, ln

?3

?1

}
.

Theorem 5.5 (Modified Christofides mechanism variance

versus epsilon). For the case ! = 3, the variance of the modified

Christofides mechanism VarMC arrives its minimum

Varĉ� =
1

4#

[
(4n + 1)2

(4n − 1)2 (1 − ?2)
− 1

]
.

under the situation that proportions

?1 = (1 − ?2) /
(
4Y + 1

)
, ?3 =

[
4Y (1 − ?2)

]
/
(
4Y + 1

)

or

?1 =
[
4Y (1 − ?2)

]
/
(
4Y + 1

)
, ?3 = (1 − ?2) /

(
4Y + 1

)
.

Proof. The proof is in Appendix D. �

Notice thatwhen proportion?2 = 0, modifiedChristofidesmech-

anism is substantially equivalent to modified Warner mechanism.

5.4 Improved Christofides Mechanism using
LDP

Theorem 5.6 (the improved Christofides mechanism). Sup-

pose that any respondent does not know the cards others drew and

the numbers others answered. Then the improved Christofides mech-

anism satisfies Y-differential privacy, where

Y = max

(
ln

?!+1−:
?:

, : = 1, 2, · · · , !
)
.

Proof. We consider four cases:

Case 1: The respondent has sensitive attributes and draws: . The

probability of answering ! + 1 − : under this condition is ?: .

Case 2: The respondent has sensitive attributes and draws !+1−
: . The probability of answering : under this condition is ?!+1−: .

Case 3: The respondent does not have sensitive attributes and

draws : . The probability of answering : under this condition is ?: .

Case 4: The respondent does not have sensitive attributes and

draws ! + 1 − : . The probability of answering ! + 1 − : under this

condition is ?!+1−: .
For any two respondents with the same answer, the maximum

ratio of probabilities is

Y = max

(
ln

?!+1−:
?:

, : = 1, 2, · · · , !
)
.

�

We fix number ! = 3, so the privacy budget Y is

Y = max

{
ln

?1

?3
, ln

?3

?1

}
.

Theorem 5.7 (the improved Christofides variance versus

epsilon). For the case ! = 3, the variance of the improvedChristofides

mechanism VarIC arrives its minimum

Varĉ� =
c� (1 − c�)
(# − 1)

[
(4n + 1)2

(4n − 1)2 (1 − ?2)
− 1

]

under the situation that proportions

?1 = (1 − ?2) /
(
4Y + 1

)
, ?3 =

[
4Y (1 − ?2)

]
/
(
4Y + 1

)

or

?1 =
[
4Y (1 − ?2)

]
/
(
4Y + 1

)
, ?3 = (1 − ?2) /

(
4Y + 1

)
.

Proof. The proof is similar with that in Appendix D. �

6 COMPARING FOUR MECHANISMS USING
LDP

Since the estimation ofc� formodifiedWarner/Simmons, Christofides

mechanisms and the improved Christofides mechanism are all un-

biased estimations, we compare variance of the four mechanisms

by theoretical analysis and numerical simulation.
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6.1 Comparing four Mechanisms using LDP by
Theoretical Analysis

This section compares the utility of these four mechanisms by cal-

culating variances under the same privacy budget Y .

Theorem 6.1 (Comparison four Mechanisms using LDP by

Theoretical Analysis). The comparison can be summarized as

follows:

(i.) When proportion c� is in interval
(
0, c�1

)
∪

(
c�2 , 1

)
, VarIC <

VarMW/MS < VarMC. c�1 and c�2 are shown in equation (5).

(ii.) When proportionc� is in interval (c�1 , 1/2−1/2
√
# )∪(1/2+

1/2
√
#, c�2 ), VarMW/MS < VarIC < VarMC.

(iii.) When proportion c� is in interval (1/2 − 1/2
√
#, 1/2 + 1

/2
√
# ), VarMW/MS < VarMC < VarIC.

Proof. Firstly, according to theorem 4.2, when proportion c�
is in interval (1/2−1/2

√
#, 1/2+1/2

√
# ), we have VarIC > VarMC,

while VarIC < VarMC when proportion c� is in interval (0, 1/2 −
1/2

√
# ) ∪ (1/2 + 1/2

√
#, 1).

Secondly, we compare the variance ofmodifiedChristofidesmech-

anism VarMC with that of the of modified Warner/Simmons mech-

anisms (VarMW/MS).

Since

VarMCĉ� − VarMW/MSĉ�

=
(4Y + 1)2 ?2

4# (4Y − 1)2 (1 − ?2)
,

≥ 0.

the variance ofmodifiedChristofides mechanism VarMC is large

than that of modified Warner/Simmons mechanisms VarMW/MS.

Then, we compare the variance of the improved Christofides

mechanism VarIC with that of modified Warner/Simmons mech-

anisms VarMW/MS. The difference between the variances of the

improved Christofides mechanism and modifiedWarner/Simmons

mechanisms is

VarICĉ� − VarMW/MSĉ�

=
c� (1 − c�)

# − 1

[
(4Y + 1)2

(4Y − 1)2 (1 − ?2)
− 1

]
− 4Y

# (4Y − 1)2

=

[
44Y + (4Y − 1)2 ?2

]
c� (1 − c�) − (# − 1) (1 − ?2) 4Y

# (# − 1) (4Y − 1)2 (1 − ?2)

Let

0 = 44Y +
(
4Y − 1

)2
?2, 2 = (# − 1) (1 − ?2) 4Y

We have

VarICĉ� − VarMW/MSĉ�

=

−0c2
�
+ 0c� − 2

# (# − 1) (4Y − 1)2 (1 − ?2)

=
−0

(
c� − c�1

) (
c� − c�2

)

# (# − 1) (4Y − 1)2 (1 − ?2)

c�1 =
0 −

√
Δ

20

c�2 =
0 +

√
Δ

20

Δ = 02 − 402.

c�1 =
1

2
− 1

2

√
1 − 42

0

=
1

2
− 1

2

√

1 − 44Y (# − 1) (1 − ?2)
#

[
44Y + ?2

(
42Y − 24Y + 1

) ]

=
1

2
− 1

2

√√√
1 − (# − 1) (1 − ?2)

#
[
1 + ?2

4

(
4Y + 1

4Y − 2
)] .

c�2 =
1

2
+ 1

2

√
1 − 42

0

=
1

2
+ 1

2

√

1 − 44Y (# − 1) (1 − ?2)
#

[
44Y + ?2

(
42Y − 24Y + 1

) ]

=
1

2
+ 1

2

√√√
1 − (# − 1) (1 − ?2)

#
[
1 + ?2

4

(
4Y + 1

4Y − 2
)] .

Let

3 = 4Y + 1

4Y
− 2.

So

c�1 =
1

2
− 1

2

√
1 − # − 1

#
· 1 − ?2

1 + ?23
4

c�2 =
1

2
+ 1

2

√
1 − # − 1

#
· 1 − ?2

1 + ?23
4

.

(5)

As long as c� < c�1 or c� > c�2 , we have

VarICĉ� − VarMW/MSĉ� < 0. �

The improved Christofides mechanism performs worst in inter-

val [c�1 , c�2 ]. The interval [c�1 , c�2 ] depends on # , Y and ?2. Be-

cause the interval is symmetric about 0.5, we calculate the inter-

val length under different proportions ?2 and privacy budgets Y

after fix # = 104. The results are reported in Table 1. The interval

[c�1 , c�2 ] is usually small.

Table 1: The length of interval [c�1 , c�2 ] under different pro-
portion ?2 and privacy budget Y.

?2

Y
0.01 0.05 0.25 0.5

0.01 0.100 0.101 0.101 0.104

0.05 0.224 0.224 0.225 0.230
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6.2 Comparing four Mechanisms using LDP by
Numerical Simulation

To plot the curve of variance versus privacy budget Y by numerical

simulation for four mechanisms, we fix sample size # = 102 and
proportion c� = 0.1 for four mechanisms, fix proportion c� = 0.5
for modified Simmons mechanism, and proportion ?2 = 0.5 for

modified Christofides and the improved Christofides mechanisms.

Then experiment according to algorithm 1 to 4. We report the re-

sults averaging 10000 runs. The theoretical analysis and numerical

simulation result of four mechanisms is shown in Fig.1. The theo-

retical analysis value is verified by numerical simulation value. It

shows that for these four mechanisms, the larger the privacy bud-

get Y is, the smaller the variance is.

0.1 0.2 0.3 0.4 0.5

privacy budget ( )

0

1

2

3

4

5

6

7

8

va
ria

nc
e
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modified Warner/Simmons (theoretical analysis)
modified Warner/Simmons (numerical simulation)
modified Christofides (theoretical analysis)
modified Christofides (numerical simulation)
the improved Christofides (theoretical analysis)
the improved Christofides (numerical simulation)

Figure 1: The variance versus privacy budget Y of four mech-

anismswhen fix sample size# = 102 and proportion c� = 0.1
(by theoretical analysis and numerical simulation).

We then report curves that variance versus privacy budget Y of

four mechanisms by numerical simulation under different condi-

tions in theorem 6.1.We fix sample size# = 9 for fourmechanisms,

fix proportions c� = 0.5 for modified Simmons mechanism, fix

proportion ?2 = 0.36 for modified Christofides and the improved

Christofides mechanisms, and set proportion c� ∈ {1/9, 2/9, 4/9}.
The results are reported in Fig. 2 to 4.

Fig. 2 shows that when proportion c� is in interval
(
0, c�1

)
∪(

c�2 , 1
)
, the improved Christofidesmechanism is the best, andmod-

ified Warner/Simmons mechanism is suboptimal, while modified

Christofides mechanism is the worst.

Fig. 3 shows that when proportion c� is in interval (c�1 , 1/2
−1/2

√
# )∪

(
1/2 + 1/2

√
#, c�2

)
, modifiedWarner/Simmons mech-

anism is the best, and the improved Christofides mechanism is sub-

optimal, while modified Christofides mechanism is the worst.

Fig. 4 shows thatwhen proportionc� is in interval (1/2−1/2
√
#, 1/2+

1/2
√
# ), modified Christofides mechanism is the best, and modi-

fiedWarner/Simmonsmechanism is suboptimal,while the improved

Christofides mechanism is the worst.

In the real world, the proportion of people with sensitive at-

tributes is usually small. This means the improved Christofides

mechanism is usually the best method at most time.

Actually, in section 6.3, we experiment based on a read world

dataset.
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Figure 2: The variance versus privacy budget Y of four mech-

anisms when fix sample size # = 9 and proportion c� = 1/9
(by numerical simulation).
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Figure 3: The variance versus privacy budget Y of four mech-

anisms when fix sample size # = 9 and proportion c� = 2/9
(by numerical simulation).

6.3 Comparing four Mechanisms using LDP on
a Real World Dataset

Dataset.HCOVANY Dataset [27]. We conduct our experiments on

an open real world dataset. HCOVANY indicates whether persons
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Figure 4: The variance versus privacy budget Y of four mech-

anisms when fix sample size # = 9 and proportion c� = 4/9
(by numerical simulation).

had any health insurance coverage during the interview, as mea-

sured by employer-provided insurance(HINSEMP), privately pur-

chased insurance (HINSPUR), Medicare (HINSCARE), Medicaid or

other governmental insurance (HINSCAID), TRICARE or othermil-

itary care (HINSTRI), or Veterans Administration-provided insur-

ance (HINSVA). The Census Bureau does not consider the respon-

dents with health insurance coverage if their only coverage is from

Indian Health Services (HINSIHS), as IHS policies are not always

comprehensive. Codes of 2 indicate that a person is covered (ei-

ther directly or through another household member’s policy) by

the given type of insurance; codes of 1 indicate that a person is not

covered. We select the subset of HCOVANY Dataset in our exper-

iment (the health insurance coverage of 1% of total population in

USA in 2021, the sampling size # = 3252599).
Privacy Budget Y. According to Harvard’s list [1] of varying

levels of sensitivity for datasets and reasonable privacy loss pa-

rameters for each level, we set privacy budget Y from 0.05 to 0.5,

since health insurance coverage information that could cause risk

of material harm to individuals if disclosed.

We fix proportion ?2 = 0.01 for modified Christofides mecha-

nism and the improved Christofides mechanism. Then experiment

according to algorithm 1 to 4. We report the results averaging 104

runs. The comparison of variance of these four mechanisms versus

the privacy budget Y are shown in Fig. 5.

The variance of modified Warner mechanism is the same with

that of modified Simmons mechanism. The variance of modified

Christofides mechanism is slightly larger than that of modified

Warner and Simmons mechanism. The variance of the improved

Christofides mechanism is the smallest of mechanisms. In fact, we

decrease the variance to 28.7% of modified Christofides mecha-

nism’s variance based on HCOVANY dataset.
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Figure 5: The comparison of variance versus privacy budget

Y of four mechanisms based on HCOVANY dataset.

Var�� ĉ�

Var"� ĉ�
=

4#c� (1 − c�)
# − 1

=
4 × 3252599 × 0.0778 × (1 − 0.0778)

3252599 − 1
= 28.7%.

6.4 Comparing the Minimum Sample Size of
the four Mechanisms

Since an important task for statisticians is to determine the mini-

mum number of samples # under given constraints, we compare

the minimum sampling size # for the given proportion c� = 0.1,
varianceVarĉ� = 0.1 and privacy budget Y of fourmechanisms(modified

Warner, Simmons, Christofides (?2 = 0.01) and the improved Christofides

mechanisms (?2 = 0.01)). The result is shown in Table 2. The re-

sult shows that the larger the privacy budget Y is, the smaller the

sample size # is for the four mechansims. The minimum num-

ber of samples # of modified Warner and Simmons mechanisms

are the same. The minimum number of samples # of modified

Christofides mechanism is slightly larger than that of modified

Warner/Simmons mechanisms. The minimum number of samples

# of the improved Christofides mechanism is the smallest one.

Table 2: Theminimumsampling size# for given proportion

c� = 0.1, variance Varĉ� = 0.1 and privacy budget Y of four

mechanisms.

Mechanisms

Privacy Budget
0.01 0.05 0.25 0.5

modified Warner/Simmons 100000 4000 160 40

modified Christofides 101011 4040 161 40

the improved Christofides 36365 1456 59 16
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Especially, if we do not know that the proportion belongs to sen-

sitive groupwhen using the improved Christofides mechanism, for

example, under constraints of variance Var ≤ 0.1, privacy budget

Y = 0.01 and choosing proportion ?2 = 0.01, since the variance

get the maximum when c� = 0.5, sample size # should be at least

101011(# > 101010.3).
Since the second statement of modified Simmons mechanism

is unrelated and insensitive, the degree of cooperation of the re-

spondents with sensitive attributes is higher than that of modified

Warner mechanism. On account of the respondent is only the re-

quirement to report numbers in modified Christofides and the im-

proved Christofides mechanisms. The degree of cooperation of the

respondents with sensitive attributes is higher than that of modi-

fiedWarner and Simmonsmechanism. In the improved Christofides

mechanism, none of the respondent knows the numbers others

drew and the numbers others answered, which is proper in the

real world. The freedom to know numbers others drew and num-

bers others answered is sacrificed in exchange for smaller variance

under the same privacy budget Y .

We compare the variance and minimum sample size of modi-

fied Warner, Simmons, Christofides and the improved Christofides

mechanisms using LDP as the common measurement of privacy

leakage by theoretical analysis, numerical simulation and experi-

ment based on a real world dataset. As a result, we find the im-

proved Christofides mechanism for LDP framework. This is our

third contribution.

7 CONCLUSION

In conclusion, we havemodifiedWarner, Simmons andChristofides

mechanism by drawing samples without replacement, thus reduc-

ing the variance of each mechanism. We then improve modified

Christofides mechanism by sampling cards without replacement.

Considering theoretical analysis, numerical simulation and experi-

ment based on a real world dataset, we compared modifiedWarner,

Simmons, Christofides and the improved Christofides mechanism

using LDP as the measurement of privacy leakage. We found that

the variance of modified Christofides mechanism was the smallest

when the proportion of people with sensitive attributes c� < c�1

or c� > c�2 , which is usually proper in the real world, and that

the improved Christofides mechanism can be used to replace the

Warner mechanism in sensitive issue investigation and LDP sce-

narios, as it offers a better trade-off between privacy budget, vari-

ance, and the degree of cooperation.

APPENDICES

A PROOF OF THEOREM 3.1

Theorem 3.1 (Modified Christofides mechanism variance).

The variance of ĉ� is

Varĉ� =

Var

(∑#
8=1-8

)

# 2 (! + 1 − 2E(. ))2

=
Var.

# (! + 1 − 2E(. ))2
.

Proof. Firstly, we have

Var

(
#∑

8=1

-8

)

=#c�



!∑

:=1

:2?!+1−: −
(

!∑

:=1

:?!+1−:

)2
+

# (1 − c�)


!∑

:=1

:2?: −
(

!∑

:=1

:?:

)2

=#c�

[
!∑

:=1

(! + 1 − :)2?: −
!∑

:=1

:2?:

]

+

#c�

[

−(
!∑

:=1

(! + 1 − :)?: )2 + (
!∑

:=1

:?: )2
]

+

#



!∑

:=1

:2?: −
(

!∑

:=1

:?:

)2

=#c�

[
!∑

:=1

((! + 1)2 − 2(! + 1):)?:

]

−

#c�

[

−(
!∑

:=1

(! + 1 − :)?: )2 + (
!∑

:=1

:?: )2
]

+

#c�

[

(
!∑

:=1

((! + 1)?: )(
!∑

:=1

((! + 1 − 2:)?: )
]

=#



!∑

:=1

:2?: −
(

!∑

:=1

:?:

)2
.

Thus

Varĉ� =

Var

(
1
#

∑#
8=1-8

)

(! + 1 − 2� (. ))2

=
Var.

# (! + 1 − 2� (. ))2
. �

B PROOF OF THEOREM 4.1

Theorem 4.1 (the improved Christofides mechanism vari-

ance). The variance of ĉ� is

Varĉ� =

Var

(∑#
8=1-8

)

# 2 (! + 1 − 2E(. ))2

=
4c� (1 − c�) Var(. )

(# − 1)(! + 1 − 2E(. ))2
.

Proof. Since the estimator of c�

ĉ� =

1
#

∑#
8=1-8 − E.

(! + 1 − 2E. ) .

with the variance

Varĉ� = Var

(
1
#

∑#
8=1-8 − E.

! + 1 − 2E.

)

=
1

# 2(! + 1 − 2E. )2
Var

#∑

8=1

-8

,where
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Var

#∑

8=1

-8 = E(
#∑

8=1

-8)2 − (E
#∑

8=1

-8)2

=

#∑

8=1

E(- 2
8 ) +

∑

8≠ 9

E
(
-8- 9

)
− (E

#∑

8=1

-8)2 .

In the improved Christofidesmechanism,-8 and- 9 are no longer

i.i.d. case, which yields difficulty in the proof. Here, both the par-

ticipants and cards are sampled without replacement, which gives

us dependent .8 and .9 , G8 and G 9 , but .8 and G8 are independent.

Firstly,

#∑

8=1

E

(
- 2
8

)
=

#∑

8=1

E
[
(! + 1 − .8 )2 G28 + . 2

8 G
2
8

]

= #
[
E(! + 1 − . )2EG28 + E. 2

E (1 − G8 )2
]

= #
[
(! + 1)2 + E. 2 − 2(! + 1)E.

]
EG28 +

#E. 2
E

(
1 − 2G8 + G28

)

= #E. 2 − 2# (! + 1)c�E. + # (! + 1)2c� .

(6)

Secondly,

For 8 ≠ 9

E-8- 9 = E ((! + 1 − .8 )G8 + .8 (1 − G8 )) ·
(
(! + 1 − .9 )G 9 + .9 (1 − G 9 )

)
,

= E(! + 1 − .8 )(! + 1 − .9 )EG8G 9
+ E.8.9E(1 − G8 )(1 − G 9 )
+ 2E.8 (! + 1 − .9 )E(1 − G8 )G 9 .

Because we have

E.8.9 =

#∑

<=1

#∑

==1

<=P(.8 =<, .9 = =)

=

#∑

<=1

<

(
#∑

:≠<

=?<
?=#

# − 1
+<?<

?<# − 1

# − 1

)

=
#

# − 1
E.

#∑

<=1

<?< − 1

# − 1

#∑

<=1

<2?;

= (E. )2 − 1

# − 1
Var. .

and

EG8 = P(G8 = 1) = c�

EG8G 9 = P(G8 = 1, G 9 = 1) =
�2
#c�

�2
#

E(1 − G8 )(1 − G 9 )(8 ≠ 9) = P(G8 = 0, G 9 = 0) =
�2
#−#c�

�2
#

E(1 − G8 )G 9 (8 ≠ 9) = P(G8 = 0, G 9 = 1) =
�1
#c�

�1
#−#c�

�2
#

.

We can get

E-8- 9 = E[(! + 1)2 − .8 (! + 1) + .8.9 ]EG8G 9 + E.8.9

E(1 − G8 )(1 − G 9 ) + E(! + 1 − .8).9EG8 (1 − G 9 )+
E.8 (! + 1 − .9 )E(1 − G8 )G 9
= E.8.9 [EG8G 9 + E(1 − G8 )(1 − G 9 ) − EG8 (1 − G 9 )−
E(1 − G8 )G 9 ] + E. [−2(! + 1)EG8G 9 + (! + 1)EG8
(1 − G 9 ) + (! + 1)E(1 − G8 )G 9 ] + (! + 1)2EG8G 9
= [#c� (#c� − 1) + (# − #c�)(# − #c� − 1)−
2# + c� (# − #c�)]E.8.9 + [−2(! + 1)#c� (#c�−
1) + 2(! + 1)#c� (# − #c�)]E. + (! + 1)2#c�

(#c� − 1)
= [4# 2c2� − 4# 2c� + # 2 − # ]E.8.9 + 2(! + 1)
#c� [1 + # − 2#c�]E. + (! + 1)2#c� (#c� − 1)

= [4# 2c2� − 4# 2c� + # 2 − # ] [(E. )2 − 1

# − 1

Var. ] + 2(! + 1)#c� [1 + # − 2#c�]E. + (! + 1)2

#c� (#c� − 1).

(7)

Thirdly,

E(
#∑

8=1

-8)2 = # 2 [E. + c� (! + 1 − 2E. )]2

= # 2 [(! + 1)c� + (1 − 2c�)E. ]2

= # 2 [(! + 1)2c2� + (1 − 2c�)2 (E. )2 + 2(! + 1)c�
(1 − 2c�)E. ] .

(8)

Finally, combine equation(6), (7) and (8), the variance of the es-

timator ĉ� is

Varĉ� =
1

# 2(! + 1 − 2E. )2
Var

#∑

8=1

-8

=
4c� (1 − c�)Var.

(# − 1)(! + 1 − 2E. )2
. �

C PROOF OF THEOREM 5.3

Theorem 5.3 (Modified Simmons mechanism variance ver-

sus epsilon). When c� = 1/2, the variance VarcA obtains mini-

mum as following

Varĉ� =
4Y

# (4Y − 1)2
.

Proof. Substitute (4) into (2). The variance can be written as

(1)When c� ≤ 1

2
,

Varĉ� =

(
1

4Y−1 + c�

) (
1 + 1

(4Y−1)c�

)

#
− 1

# (4Y − 1)2

− (4Y + 1) c�
# (4Y − 1)

minVarĉ� =Varĉ� |
c�=

1
2

=
4Y

# (4Y − 1)2
.
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(2)When c� >

1

2
,

Varĉ� =

(
1

4Y−1 + c�

) (
1 + 1

(4Y−1) (1−c� )

)

#
− 1

# (4Y − 1)2

− (4Y + 1) c�
# (4Y − 1)

minVarĉ� =Varĉ�c�=
1
2
=

4Y

# (4Y − 1)2
.

So the variance of the estimator ĉ� is

Varĉ� =
4Y

# (4Y − 1)2
. �

D PROOF OF THEOREM 5.5

Theorem 5.5 (Modified Christofides mechanism variance

versus epsilon). For the case ! = 3, the variance of the modified

Christofides mechanism VarMC arrives its minimum

Varĉ� =
1

4#

[
(4n + 1)2

(4n − 1)2 (1 − ?2)
− 1

]

under the situation that proportions

?1 = (1 − ?2) /
(
4Y + 1

)
, ?3 =

[
4Y (1 − ?2)

]
/
(
4Y + 1

)

or

?1 =
[
4Y (1 − ?2)

]
/
(
4Y + 1

)
, ?3 = (1 − ?2) /

(
4Y + 1

)
.

Proof. The expectation of . is

E. = ?1 + ?2 + 3 (1 − ?1 − ?2)
= 3 − 2?1 − ?2.

The variance of . is

Var. = ?1 + 4?2 + 9 (1 − ?1 − ?2) − (3 − 2?1 − ?2)2

= 4?1 + ?2 − 4?21 − ?22 − 4?1?2.

Varĉ� =
Var.

# (3 + 1 − 2E. )2

=

4?1 + ?2 − 4?21 − ?22 − 4?1?2

# [3 + 1 − 2 (3 − 2?1 − ?2)]2

=

4?1 + ?2 − 4?21 − ?22 − 4?1?2

# (4?1 + 2?2 − 2)2
= 5 (?1, ?2).

Now let’s minimize the function 5 (?1, ?2).
Since

m5 (?1, ?2)
m?2

=
(1 − 4?1 − 2?2) (4?1 + 2?2 − 2)2

# (4?1 + 2?2 − 2)4
−

4
(
4?1 + ?2 − 4?21 − ?22 − 4?1?2

)
(4?1 + 2?2 − 2)

# (4?1 + 2?2 − 2)4

=

(
?1 + 1−?2

2

) (
?1 − 1−?2

2

)

# (2?1 + ?2 − 1)4
≠ 0.

the function 5 (?1, ?2) has no extremum. The maximum or min-

imum points must be boundary points.

Since

1

4Y
?1 ≤ ?3 = 1 − ?1 − ?2 ≤ 4Y?1

thus

1 − ?2

4Y + 1
≤ ?1 ≤

4Y

4Y + 1
(1 − ?2).

Because the function for the two bounding points

5 (?1, ?2) |?1= 1−?2
4Y+1

=

4 1−?24Y+1 + ?2 − 4
(
1−?2
4Y+1

)2
− ?22 − 4 1−?24Y+1 ?2

#
[
4
1−?2
4Y+1 + 2?2 − 2

]2

=
1

4#

[
(4Y + 1)2

(4Y − 1)2 (1 − ?2)
− 1

]

5 (?1, ?2) |?1= 4Y (1−?2 )
4Y+1

=

4
4Y (1−?2)
4Y+1 + ?2 − 4( 4

Y (1−?2)
4Y+1 )2

# [ 4Y

4Y+1 (1 − ?2) + 2?2 − 2]2
−

?22 + 4 4Y

4Y+1 (1 − ?2)?2
# [ 4Y

4Y+1 (1 − ?2) + 2?2 − 2]2
.

=
1

4#
[ (4Y + 1)2
(4Y − 1)2 (1 − ?2)

− 1]

and

5 (?1, ?2) |?1= 1−?2
2

→ ∞.

Therefore

min 5 (?1, ?2) = 5

(
1 − ?2

4Y + 1
, ?2

)
= 5

(
4Y (1 − ?2)
4Y + 1

, ?2

)
.

So

Varĉ� =
1

4#

[
(4Y + 1)2

(4Y − 1)2 (1 − ?2)
− 1

]
. �
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