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ABSTRACT

Comprehensive, synapse-resolution imaging of the brain will
be crucial for understanding neuronal computations and func-
tion. In connectomics, this has been the sole purview of vol-
ume electron microscopy (EM), which entails an excruciat-
ingly difficult process because it requires cutting tissue into
many thin, fragile slices that then need to be imaged, aligned,
and reconstructed. Unlike EM, hard X-ray imaging is com-
patible with thick tissues, eliminating the need for thin sec-
tioning, and delivering fast acquisition, intrinsic alignment,
and isotropic resolution. Unfortunately, current state-of-the-
art X-ray microscopy provides much lower resolution, to the
extent that segmenting membranes is very challenging. We
propose an uncertainty-aware 3D reconstruction model that
translates X-ray images to EM-like images with enhanced
membrane segmentation quality, showing its potential for de-
veloping simpler, faster, and more accurate X-ray based con-
nectomics pipelines.

Index Terms— Connectomics, reconstruction, segmenta-
tion, X-ray microscopy, electron microscopy.

1. INTRODUCTION

The field of connectomics investigates comprehensive maps
of neuronal wiring and connectivity of the nervous system.
Mapping the structure of neuronal networks is a key step to-
ward understanding their function. Until recently, electron
microscopy (EM) was the only approach that achieves com-
prehensive, nanometer-resolution imaging [1]. Unfortunately,
obtaining three-dimensional (3D) EM volumes can be time
and resource prohibitive. Because electrons are easily scat-
tered, EM requires slicing massive numbers of thin sections
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and imaging them at nanoscale. An emerging imaging tech-
nique, X-ray holographic nano-tomography (XNH), has re-
cently shown its potential to extract neuronal wiring, espe-
cially long-range myelinated axons [2]. XNH can provide 3D
imaging of whole specimens without nanoscale slicing during
the imaging process, and thus significantly reduces the acqui-
sition time and the potential existence of inter-slice alignment
errors. Unfortunately, the speed and the scalability of XNH
imaging on whole sample acquisition come, at least today, at
the expense of delivering lower resolution images compared
to EM. A large amount of time and resources could be saved
if the reconstruction quality of XNH could be brought closer
to that of EM.

Recent advances in deep learning based computer vision
techniques [3] have brought forth successful techniques that
can assist in the above task. In the field of image-to-image
translation, two pioneering works, [4] and [5], develop 2D
conditional generative adversarial networks (cGANs) [6] to
translate images from one domain to the other. Such methods
are further extended to 3D for processing medical data [7, 8,
9]. Several other works have demonstrated the potential to
use such techniques to further optimize the imaging process
[10, 11, 12].

However, to the best of our knowledge, such novel deep
learning techniques have not previously been used to bridge
the image quality gap between the EM and X-ray modalities
in connectomics. We aim to use cross-modality image recon-
struction to improve the quality of the X-ray image by lever-
aging its 3D consistency to achieve enhanced X-ray segmen-
tation quality. Achieving this goal could substantially reduce
the time needed for imaging large-scale volumes of densely
stained neuronal circuits.

In this work, we make a pioneering first step in this direc-
tion by showing that a 3D cGAN can be used to reconstruct
high-quality EM-like images from low-quality X-ray images,
mitigating the trade-off between imaging time and resolution
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Fig. 1. Overview of the proposed framework. The 3D generator G processes an image x from the X-ray image domain X to
look similar to an image y from the EM image domain Y and outputs a corresponding uncertainty map. The 3D discriminator
DY learns to distinguish between a real EM image y and a reconstructed output G(x). The fixed pre-trained segmentation
network Fs measures the distance between the predicted membrane probability map Fs(y) from the ground truth EM and the
predicted membrane probability map Fs(G(x)) from the EM-like reconstruction. The model is optimized with a weighted
combination of an adversarial loss, a negative log-likelihood (NLL), and a segmentation-consistency loss.

in connectomics. Our method allows us to reconstruct the de-
tails of neuronal borders (membranes) that are evident at the
EM level but hardly visible in the original X-ray images. Ma-
jor contributions of this work are as follows:

• The first utilization of deep learning techniques to trans-
late between the X-ray and EM modalities in connec-
tomics.

• Our model demonstrates state-of-the-art reconstruction
quality with 3D consistency and further improves the
membrane segmentation performance.

• Our model also provides interpretable uncertainty maps
during 3D reconstruction.

2. METHODS

2.1. Cross-modality image reconstruction framework

As shown in Fig. 1, we utilize a cGAN combined with seg-
mentation constraints to perform this image reconstruction
task. Given a target EM image y and an input X-ray image
x, we build a 3D generator G, a 3D discriminator DY , and a
fixed pre-trained segmentation network Fs. The 3D genera-
tor learns a mapping X → Y to reconstruct EM-like images
from X-ray images as well as generates corresponding uncer-
tainty maps and the 3D discriminator learns to distinguish the
reconstructed EM-like images from the ground truth EM im-

ages. Afterward, the fixed pre-trained segmentation network
will output segmentation probability maps of the ground truth
and the reconstruction, the distance between which is mini-
mized in order to provide additional structural constraints.

2.2. Training objectives

2.2.1. Adversarial loss

The adversarial loss is optimized as follows:

min
G

max
DY

LGAN(G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)]

+Ey∼pdata(x)[log(1−DY (G(x)))]
(1)

2.2.2. Negative log-likelihood

The reconstruction model (generator) is optimized on aligned
training pairs of X-ray and ground truth EM images (xi, yi).
Typically, we could have an additional L1 loss term which
further constrains the learning. Instead, to provide robust-
ness analysis and interpretability via uncertainty estimation,
we use the negative log-likelihood (NLL) [13] over an output
Gaussian distribution (G(xi), σ

2
yi
) for every pixel yi, where

G(xi) indicates the reconstructed image, σ2
yi

indicates the
measured uncertainty, N2 is the number of pixels, and we
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Fig. 2. Reconstruction results: visualization of images reconstructed by different methods along X-Y, X-Z Y-Z directions, in
comparison with input X-ray and ground truth EM.

have:

LNLL(G,X, Y ) =
1

N2

N2∑
i=1

‖yi −G(xi)‖22
2σ2

yi

+
1

2
log(2πσyi) (2)

2.2.3. Segmentation-consistency loss

We utilize a pre-trained membrane segmentation network ob-
tained from a related EM data domain [1]. It constrains the
predicted probability maps from the ground truth EM image
and the reconstructed EM-like image to be consistent in terms
of membranes. The constraint is defined as:

LSeg(G,X, Y ) = ‖Fs(G(X))− Fs(Y )‖22 (3)

2.2.4. Final objective

Our final objective is a weighted combination of the adver-
sarial loss LGAN, the negative log-likelihood LNLL, and the
segmentation-consistency loss LSeg:

L(G,DY , X, Y ) = wGANLGAN(G,DY , X, Y )

+wNLLLNLL(G,X, Y ) + wSegLSeg(G,X, Y )
(4)

3. EXPERIMENTS AND RESULTS

3.1. Datasets

3.1.1. X-Ray2EM dataset

For the EM modality, we have an EM dataset of mouse so-
matosensory cortex near the layer I/II boundary. The original

Model Dir. PSNR SSIM Dir. PSNR SSIM Dir. PSNR SSIM
Full 2D 14.670 0.140 14.490 0.124 14.500 0.106

Hybrid 3D 14.701 0.143 14.566 0.129 14.702 0.108
Full 3D w/ L1 X-Y 14.707 0.153 X-Z 14.702 0.133 Y-Z 14.734 0.115

Full 3D 14.774 0.150 14.763 0.134 14.793 0.114
Full 3D + Seg 14.738 0.149 14.722 0.132 14.745 0.116

Table 1. Quantitative evaluation on reconstruction quality.
PSNR: peak signal-to-noise ratio; SSIM: structural similar-
ity index measure; Dir.: direction; Bold Number: best score;
Underlined Number: second best score.

Model Dir. JS Dice Dir. JS Dice Dir. JS Dice Dir. JS Dice
X-ray 0.366 0.439 0.350 0.424 0.361 0.429 0.167 0.625

Full 2D 0.413 0.546 0.382 0.495 0.388 0.495 0.313 0.838
Hybrid 3D X-Y 0.403 0.521 X-Z 0.369 0.466 Y-Z 0.377 0.470 3D 0.279 0.824

Full 3D 0.399 0.506 0.383 0.498 0.392 0.505 0.424 0.919
Full 3D + Seg 0.400 0.507 0.386 0.502 0.393 0.506 0.433 0.922

Table 2. Quantitative evaluation on membrane segmentation.
JS: Jaccard Score; Dice: Dice score; Dir.: direction; Bold
Number: best score; Underlined Number: second best score.

voxel size of EM data is 4×4×45 nm, while the volumes we
used here have been downsampled by a factor of 16 in both
X and Y directions to a voxel size of 64 × 64 × 45 nm. The
overall volume size is 2700×2700×243 and is split into train-
ing/validation/test volumes with size of 2700 × 1620 × 243,
2560× 512× 243, and 2560× 512× 243, respectively.

For the X-ray modality, we have an XNH dataset with a
voxel size of 100×100×100 nm. However, the true resolution
is closer to 200× 200× 200 nm [2]. We warp this X-ray data
into the EM volume space (64 × 64 × 45 nm) using an elas-
tic alignment algorithm [14, 15]. The overall volume size is
also 2700×2700×243. The training/validation/test splits are
the same as the aforementioned EM dataset. It is important
to note that there are larger resolution gaps and misalignment



Fig. 3. Segmentation results: visualization of 2D segmentation probability map of membranes in the X-Z direction.

along the X-Z and the Y-Z directions than the X-Y direction
between X-ray and EM modalities, leading to a more chal-
lenging reconstruction task along these two directions.

3.1.2. Public EM segmentation benchmark dataset

To pre-train the segmentation network, we use a related EM
dataset of mouse cortex with corresponding membrane labels
from Kasthuri. et al [1].

3.2. Performance evaluation

We evaluate our proposed framework in comparison with
two baseline methods on both the reconstruction task and
the downstream segmentation task: (1) The original Pix2Pix
model [4], which uses a 2D generator and a 2D discriminator.
In this paper, we denote it as Full 2D and train with NLL
instead of L1 for a fair comparison. (2) A Hybrid 3D model
consisting of a 3D generator and a 2D discriminator, similar
to the method proposed in [7].

Fig. 2 shows the reconstruction results in three directions.
Enhancement of spatial consistency can be observed from im-
ages reconstructed by Full 3D methods compared to the Full
2D and Hybrid 3D methods, particularly along the X-Z and Y-
Z directions. Similarly in Fig. 3, when the reconstructed EM
images are evaluated by the downstream task, i.e., 2D mem-
brane segmentation, the visual quality of the results gener-
ated by Full 3D methods is better than two baseline methods.
Quantitatively, as shown in Table 1 and 2, Full 3D methods
outperform the Full 2D and the Hybrid 3D methods with con-
siderable margins in most cases, in terms of PSNR and SSIM
for reconstruction, as well as JS and Dice for segmentation.
Meanwhile, Table 1 shows that using NLL (Full 3D) instead
of L1 (Full 3D w/ L1) not only provides uncertainty measure-
ment but also enhances the reconstruction quality. And Table
2 shows that using segmentation-consistency loss (Full 3D +
Seg) can improve the segmentation quality.
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Fig. 4. Visualization of uncertainty estimation. Reconstruc-
tion & Uncertainty: Gaussian output distribution (mean &
variance) generated by the models. Error: L1 norm between
the reconstruction and the ground truth EM.

3.3. Uncertainty estimation

Intuitively, error maps are unable to capture visual ambigu-
ity, and are not always accessible in real application scenar-
ios. Uncertainty estimation, on the other hand, can highlight
the uncertain areas that are consistent with the artifacts in the
reconstructed images. For example, in the second row corre-
sponding to Hybrid 3D in Fig. 4, the model clearly halluci-
nates a long and slender object in the reconstruction which is
not shown in the ground truth EM. The uncertainty map cor-
rectly highlights this artifact, providing a richer interpretation
than the error map.

4. CONCLUSIONS

In this work, we propose a cross-modality reconstruction
approach to reconstruct high-quality EM-like images from
low-quality X-ray images for connectomics. We find that the
Full 3D model is the key to improving the reconstruction and



membrane segmentation results. Meanwhile, we also show
the utilization of negative log-likelihood could improve the
model performance as well as provide interpretable uncer-
tainty maps. We believe our proposed approach will poten-
tially allow the reconstruction of large-scale brain structures
achieved in a fast and scalable way.
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8. SUPPLEMENTARY MATERIAL

8.1. Visualization of domain differences

In this paper, we use a segmentation network pre-trained on
a public benchmark EM membrane segmentation dataset to
provide segmentation consistency constraints, in the absence
of segmentation labels in X-Ray2EM dataset. Both datasets
are EM images of mouse cortex and we show in Fig. 5 that the
domain difference between these two datasets has a negligible
negative effect on the segmentation results.

EM Image
Segmentation 

Probability Map

Public 

Benchmark

X-ray2EM

Fig. 5. Comparison of domain differences between bench-
mark EM dataset and X-Ray2EM dataset.

8.2. Additional 2D membrane segmentation results

In Fig. 6, the reconstructed EM images are evaluated by
downstream tasks, i.e., 2D membrane segmentation. It is con-
sistent with the results (X-Z direction) in the main paper that
along Y-Z and X-Y directions, the segmentation quality of
EM reconstructed by Full 3D method is also better than the
two baseline methods.

8.3. Ablation studies

8.3.1. L1 loss v.s. NLL

In our work, we use NLL as one of the training objectives
instead of L1 loss. Results in the main paper show that the
reconstruction results of Full 3D model trained with NLL are
better than or comparable with that of Full 3D w/ L1 model
in most cases, indicating that using NLL for training not only
provides the estimation of uncertainty but can also improve
the reconstruction performance.

8.3.2. W/ seg v.s. w/o seg

According to the results shown in the main paper, Full 3D
+ Seg method achieve comparable results to Full 3D w/o
Seg on the reconstruction task and prevails on the 2D mem-
brane segmentation task, indicating that features like neuronal
boundaries are better preserved by applying segmentation-
consistency constraints.

8.4. Software and hardware requirements

All experiments in the paper are implemented in Python
3.6.12 using PyTorch 1.8.0 framework on a computation
server with a 2.30GHz Intel(R) Xeon(R) Gold 5218 CPU and
a GeForce RTX 3090 GPU.

8.5. Segmentation network pre-training

The segmentation network has a U-Net architecture origi-
nated from [16]. We use a cross-entropy loss function and
train the network for 3000 iterations with a batch size of 4.
Adam [17] optimizer is used with an initial learning rate of
0.0001 and a weight decay of 0.00005.

8.6. Reconstruction framework training

The generator has a U-Net like architecture and the discrimi-
nator is a PatchGAN, both are 3D versions of the 2D Pix2Pix
model proposed in [4]. Input to the generator is randomly
cropped from the whole volume to a size of 128 × 128 × 64
and the output reconstruction also has the same size. As for
the pre-trained 2D segmentation network following the gen-
erator, we randomly select one section from each of the three
directions of the reconstructed EM volume to perform the
inference process, leading to three segmentation probability
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Fig. 6. Segmentation results: visualization of 2D segmentation probability map of membrane along the Y-Z and the X-Y
directions.

maps. Only the generator and the discriminator participate in
the training process, and the parameters of the segmentation
network are fixed. The whole framework is also trained using
Adam optimizer in an end-to-end fashion for 100 epochs, with
a constant learning rate of 0.0002 for the initial 50 epochs and
linearly decayed to 0 for the remaining 50 epochs. The batch
size is 1. Loss function weights wNLL, wGAN, and wSeg are
0.00002, 1.0, and 1.0, respectively.

8.7. X-Ray2EM dataset

For the EM modality, we have a serial section TEM dataset.
For the X-ray modality, we have an X-ray holographic nan-
otomography dataset [2]. These datasets can be found at:

• https://www.lee.hms.harvard.edu/kuan-phelps-et-al-2020

8.8. Public EM segmentation benchmark dataset

To pre-train the segmentation network, we use a serial section
SEM dataset of mouse cortex with corresponding membrane
labels from Kasthuri. et al [1]. This dataset can be found at:

• https://lichtman.rc.fas.harvard.edu/vast/
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