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Abstract—Although home IoT (Internet of Things) devices
are typically plain and task oriented, the context of their daily
use may affect their traffic patterns. That is, a given IoT
device will probably not generate the exact same traffic data
when operated by different people in different environments and
when connected to different networks with different topologies
and communication components. For this reason, anomaly-based
intrusion detection systems tend to suffer from a high false
positive rate (FPR). To overcome this, we propose a two-step
collaborative anomaly detection method which first uses an
autoencoder to differentiate frequent (‘benign’) and infrequent
(possibly ‘malicious’) traffic flows. Clustering is then used to
analyze only the infrequent flows and classify them as either
known (’rare yet benign’) or unknown (‘malicious’). Our method
is collaborative, in that (1) normal behaviors are characterized
more robustly, as they take into account a variety of user
interactions and network topologies, and (2) several features are
computed based on a pool of identical devices rather than just
the inspected device.

We evaluated our method empirically, using 21 days of
real-world traffic data that emanated from eight identical IoT
devices deployed on various networks, one of which was lo-
cated in our controlled lab where we implemented two popular
IoT-related cyber-attacks. Our collaborative anomaly detection
method achieved a macro-average area under the precision-recall
curve of 0.841, an F1 score of 0.929, and an FPR of only 0.014.
These promising results were obtained by using labeled traffic
data from our lab as the test set, while training the models
on the traffic of devices deployed outside the lab, and thus
demonstrate a high level of generalizability. In addition to its
high generalizability and promising performance, our proposed
method also offers benefits such as privacy preservation, resource
savings, and model poisoning mitigation. On top of that, as a
contribution to the scientific community, our novel dataset is
available online.

Index Terms—Internet of Things (IoT), Collaborative Anomaly
Detection, IoT Attack Detection, Autoencoders, Clustering, Bot-
nets, Distributed Denial-of-Service (DDoS), Cryptomining.

I. INTRODUCTION

IN recent years, numerous cyber-attacks involving Internet
of things (IoT) devices have taken place all over the

world [1], [2]. In the smart home sector [3], [4], these attacks
include the recruitment of IoT devices to botnets [5] for the
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execution of distributed denial-of-service (DDoS) attacks [6]
and the utilization of IoT devices for cryptocurrency min-
ing [7]–[9]. Given the consistent increase in the number of
IoT devices deployed [10]–[12], the yearly increase in the
rate of IoT malware development [13] (some of which is even
open-sourced [14]), and the stealthiness of IoT-related cyber-
attacks [15], it is clear why new attack detection methods are
needed for risk mitigation.

As a means of detecting IoT-related cyber-attacks, anomaly
detection in network traffic data has been studied exten-
sively [16]–[18]. However, the following shortcomings are
typically associated with existing methods of this kind:

• Limited generalizability. In many cases, e.g., [19], [20],
model training is limited, in that just one device from each
IoT model is deployed in only one network. Hence, the
transferability of the trained anomaly detector to other (iden-
tical) IoT devices cannot be guaranteed. This is especially
true if the monitored IoT devices are deployed in other
networks and other users interact with them.

• Indifference to the effect of user interaction. As noted
in [21], the traffic patterns of IoT devices can be heavily
influenced by a device’s interaction with the user(s), other
devices, and the environment. Accordingly, an IoT device’s
‘normal’ traffic behavior captured from an arbitrary location
(where, e.g., a smart streaming device user relies on just
a single streaming service source and always manually
changes the channel) might not generalize well to other
locations (where, e.g., users rely on numerous TV content
sources for their streaming device and frequently use the
voice assistant to change the channel).

• Excessive false alarms. Typically, anomaly detection meth-
ods only distinguish between normal and anomalous activ-
ities (i.e., a binary class label). However, when anomaly
detection is used for attack detection, non-malicious anoma-
lies could be mistakenly identified as cyber-attacks and thus
lead to an excessive number of false alarms and unnecessary
(automated) risk-mitigation responses. In other words, there
are also legitimate reasons for traffic anomalies, such as
infrequent user activities (booting a webcam or zooming
in/out), or contextual changes (e.g., domestic smart motion
detectors may send alerts more frequently during holidays
or pandemic-related lockdowns, when families spend more
time at home than usual).

To address these shortcomings, in this research we propose
incorporating three enhancements for anomaly detection, espe-
cially when it is used for IoT-related attack detection in smart
homes. The first enhancement is data sharing for collaborative
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model training. The idea is that instead of characterizing the
normal traffic behavior using just a single device from a single
environment, the traffic data of multiple identical IoT devices
is shared so that the training data represents a larger variety
of user interactions, network topologies, bandwidths, etc. With
data sharing, network- and interaction-related traffic variations
can be captured, contributing to the generalization of benign
traffic behaviors. Once deployed, when inspecting the first
local occurrence of a pattern which represents, e.g., a webcam
zooming in, an anomaly detector trained this way is less likely
to raise a false alarm, because a similar pattern was probably
already captured globally in at least one other environment.
The second proposed enhancement is collaborative feature
engineering, meaning that some features are calculated using a
pool of identical devices rather than just the inspected device.
For example, if an inspected device communicates with a
destination IP address it never contacted before, the suspicion
that such communication is malicious would decrease (leading
to fewer false alarms) if other devices have also commu-
nicated with the same destination IP address recently. Of
course, this kind of feature engineering also necessitates data
sharing. The third enhancement we propose is fine-tuning and
extending the set of possible class labels. Specifically, instead
of dichotomously labeling each instance as either normal or
abnormal (equivalent to benign or malicious, respectively, in
attack detection), we consider three types of behavior and
for each of them we define a corresponding attack detection-
related class label, as follows:

1) Frequent (‘benign’). A limited [22] set of typical predefined
operations which result in a limited number of normal traf-
fic patterns. For instance, frequent IoT operations include
sensing motion, detecting smoke, and sending video.

2) Known (‘rare yet benign’). A set of operations which occur
much less frequently but are still considered normal, e.g., a
webcam booting or zooming in/out. In the context of attack
detection, a known event that is labeled as an anomaly
is considered a false positive (FP). In our method, both
frequent and known behaviors are eventually treated the
same way, i.e, as an indication of a benign activity.

3) Unknown (‘malicious’). Extremely anomalous events
which are highly indicative of the occurrence of malicious
activity like a cyber-attack.

In this work, we propose CADeSH, a novel Collaborative
Anomaly Detection method for IoT attack detection in Smart
Homes. CADeSH is based on collaboration among IoT devices
of the same model, and as such it offers several important
benefits:

• Feasibility and privacy preservation. A key benefit in using
CADeSH is that instead of relying on raw network traffic
data, it makes use of metadata in IPFIX form (Internet
Protocol Flow Information Export) [23], [24] which (1)
is already natively supported by most routers [25], and
(2) is considered more privacy preserving [26] and less
resource consuming [27] than packet-level traffic analysis
approaches, such as deep packet inspection (DPI).

• Efficiency. Multiple identical IoT devices are monitored
simultaneously, so model retraining can be performed more

frequently, based on shorter data collection periods.
• Quality assurance of the training data. CADeSH includes a

collaborative mechanism in which not all of the monitored
traffic is used for training, but rather only instances that are
widely acknowledged (i.e., by multiple identical devices)
as benign and representative are used. Consequently, the
likelihood of model poisoning decreases.

• Robustness of the trained models. Although IoT devices
are typically designed to execute a relatively small set of
predefined operations [7], [19], the context of their use
(in different weather conditions, by multiple people of
different ages, etc.) might contribute to variability in a
device’s normal network traffic [21]. Collaborative anomaly
detection allows such traffic variations to be captured and
thus contributes to the model’s generalization.
In addition to the benefits listed above, we make the

following contributions:
• To improve the model’s performance, we propose data en-

richment using two additional (i.e., non-IPFIX) data sources:
DNS requests and the Webroot API [28].

• For evaluation, in addition to the benign and malicious
data captured in our lab, we also relied on real-world data
collected from five (real) home networks over a period of
21 days. This is the entire duration of network traffic data
collection. The data was provided to us by a company which
provides cyber-defense services for smart homes. To enable
reproducible research and facilitate future advancements in
research on collaborative IoT anomaly detection, we made
our (anonymized) dataset publicly available. We are not
aware of other similar publicly available online datasets.1

II. RESEARCH OBJECTIVE, SCOPE, AND ASSUMPTIONS

A. Objective and scope

The main objective of this research is to develop an efficient
and generalizable collaborative method for the detection of
various attacks involving IoT devices, while minimizing the
false positive rate (FPR).

Given the large variety of (1) IoT application domains [43]
and (2) viable IoT-related attacks [2], we focus on the smart
home domain and propose a means of detecting two common
malicious activities, namely the recruitment of devices to IoT
botnets (for later execution of DDoS attacks) and unauthorized
cryptocurrency mining (see Section V).

B. Assumptions

Considering the applicability of our proposed method, we
note that collaborative attack detection (training and ap-
plication) requires capturing and processing network traffic
data from multiple IoT devices connected to multiple home
networks. To enable this, we assume that the IoT devices
are continuously monitored and their network traffic data is
systematically collected into a central server. In real-world
settings, this mechanism of data capturing, followed by model
training and application, can be performed by Internet service
providers (ISPs) as an additional countermeasure [44] against

1https://doi.org/10.5281/zenodo.6406052
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TABLE I
OBJECTIVES OF PRIOR RESEARCH ON ANOMALY AND ATTACK DETECTION, MAINLY IN IOT SETTINGS

Ref. IoT-
related

Objective

[19] ! Identify DDoS attacks as soon as they are launched from IoT devices that were recruited to a botnet
[20] ! Create an IoT anomaly detection service
[29] ! Create an anomaly detection IoT system for smart cities
[30] ! Review machine learning (ML) and deep learning (DL) based intrusion detection systems (IDSs) used in IoT settings
[31] ! Overcome certain limitations of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
[32] ! Compare several ML algorithms for attack and anomaly detection in IoT systems
[33] ! Create an IDS for low-powered and resource-constrained IoT devices, using unsupervised learning
[34] ! Create a real-time, self-training, easily deployed, anomaly-based DDoS detection system for IoT networks
[35] ! Detect compromised IoT devices without sharing data
[36] Improve the effectiveness of traditional ML IDSs on low-frequency attacks in high-dimensional networks
[37] ! Propose a federated-based approach for the detection of botnet attacks, using on-device decentralized traffic data
[38] ! Create an anomaly detector for IoT network communication
[39] ! Create a DL-based botnet attack detector for compromised IoT devices
[40] ! Create a software-defined network (SDN) based security mechanism to detect and mitigate DDoS attacks on IoT networks
[41] ! Detect cyber-attacks based on user behavior
[42] Create an anomaly-based DDoS attack detector, using autoencoders (AEs)

This
paper

! Improve the performance of IoT-related cyber-attack detection, using a two-step collaborative anomaly detection method

IoT malware or by third-party security providers. Another
assumption we make in this research is that IoT devices of the
same model produce network traffic data which is relatively
similar to one another because of the common intended
functionality, however these traffic patterns might vary due to
either (a) differences in user interaction and network structure
or (b) cyber-attacks.

III. BACKGROUND AND RELATED WORK

A. Attack detection and anomaly detection in the IoT

In recent years, traffic-based IoT attack detection methods
have become more prevalent [45]–[47]. Many of the existing
methods for IoT attack detection [48] rely on anomaly de-
tection. In contrast to supervised methods [49], [50], which
necessitate high-quality and sufficiently-large labeled datasets
for training that cover both benign traffic and known attacks,
unsupervised methods typically only require benign traffic
(which is relatively easy to collect), and often, they can
also detect zero-day attacks [51]. The basic assumption in
relying on anomaly detection for attack detection is that the
accumulation of traffic data from an uninfected IoT device
during normal user interaction enables normal traffic patterns
of the device to be captured. Then, after modeling the normal
traffic patterns using various unsupervised machine learning
algorithms, extreme deviations from the norm seen in the
future could indicate malicious activity.

As can be seen in Table I, numerous past studies utilized
unsupervised machine learning algorithms for IoT attack de-
tection. Among them, the authors of [19] proposed training an
anomaly detector for each device separately. As part of their
method, outbound packets trigger the extraction of behavioral
snapshots of the network, to which an anomaly detection
algorithm is applied to detect DDoS attacks when they are

launched from IoT devices compromised by botnets (Mirai and
BASHLITE). The study compared the anomaly detection per-
formance when using the Isolation Forest (IF), Local Outlying
Factor (LOF), One-Class Support Vector Machines (OCSVM)
algorithms and autoencoders (AEs) and found that the latter
obtained the best detection results. Similarly, the authors
of [42] also proposed the use of AEs to differentiate benign
and malicious traffic (generated by DDoS attacks), based on
a flow of packets. Unlike those two studies, in this research
(a) we train the anomaly detector using data from multiple
networks (not just one), which increases generalizability, (b) in
our method, two algorithms (not just one) are applied and three
class labels are considered (rather than a binary class label),
and (c) the FPR is reduced by adding the rare yet benign class
label, which although considered abnormal, triggers no risk
mitigating response. Unlike [19], our data was captured from
multiple real home networks and not from just one network
in a controlled lab. Like [19], we make our unique dataset
publicly available. In the subsections that follow, we further
compare our research to existing work, focusing on aspects
such as the algorithmic complexity and flow, the breadth of
data sources for model training, and the availability of the
experimental data for reproducible research.

B. Algorithmic complexity and flow

In multiple studies on IoT attack detection (e.g., [19], [38],
[42]), only one algorithm was utilized. In contrast, we suggest
a two-step method, where within each step a different algo-
rithm is used (as further described and evaluated in Sections IV
and V):

1) AE - to discern between frequent (‘benign’) and infrequent
(possibly ‘malicious’) traffic
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TABLE II
ALGORITHMS IN PRIOR RESEARCH ON ANOMALY AND ATTACK DETECTION, MAINLY IN IOT SETTINGS

Ref. Algorithm(s) used Collaboration
approach

Shared
material

[19] AE
[20] k-means, BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
[29] ExtraTrees, Random Forest Collaborative Data
[31] Boruta, Firefly, Davies-Bouldin index-based k-medoid, DBSCAN,

kernel-based locality sensitive hashing, k-distance graphs
Collaborative Data

[32] Random forest
[33] OPTICS (Ordering Points to Identify the Clustering Structure) Collaborative Data
[34] ARIMA (Autoregressive Integrated Moving Average), MLP (Multilayer Perceptron),

LSTM (Long Short-Term Memory)
Collaborative Data

[35] GRU (Gated Recurrent Unit) Federated Weights
[36] k-means, mean shift, random forest
[37] AE Federated Weights
[38] AE Collaborative Data
[39] DNN (Deep Neural Network) Collaborative Data
[40] MCOD (Multi-Level Outlier Detection), MLP Collaborative Data
[41] Non-ML Collaborative Data
[42] AE, Decision Tree, PCA (Principal Component Analysis), IF, OCSVM
[52] Multinomial logistic regression Federated Weights
[53] AE Federated Weights

This paper AE, k-means Collaborative Data

2) k-means - to further analyze only the infrequent traffic and
discern between known (‘rare yet benign’) and unknown
(‘malicious’) traffic to reduce the FPR

Considering the existing methods (see Table II) that com-
bine more than one algorithm, the research presented in [36]
suggests feature extraction using clustering analysis, with
a combination of k-means and mean shift, followed by a
random forest classifier, to detect attacks. Another method [20]
combines two clustering techniques: First, based on the packet
interarrival time (IAT), clusters are built using k-means, and
the abnormality value is calculated by BIRCH clustering. As
opposed to our method, which was evaluated using flow-level
data from multiple real IoT devices connected to real smart
homes, this method was evaluated using emulated data from
seven virtual state layer (VSL) services and three emulated
IoT sites. Clustering was also employed in a more recent IoT-
related study [54], however in that research the aim was to
perform fingerprint-based classification rather than anomaly
detection for attack detection.

C. Collaborative anomaly detection

Although in many cases [19], [20], [40], traffic-based IoT
anomaly detection methods demonstrate excellent performance
in detecting cyber-attacks (i.e., high recall), such methods also
tend to suffer from a non-negligible FPR. One reason for
this commonly seen drawback is that traffic anomalies can
also be generated for non-malicious activities, such as infre-
quent (yet benign) user activities and contextual changes. Al-
though infrequent, such actions should not trigger unnecessary
risk-mitigating countermeasures for allegedly-detected cyber-
attacks. To address this issue and reduce the FPR, we propose
training the anomaly detector in a collaborative manner via
data sharing while enriching the data with collaboratively engi-
neered features. As part of our method, traffic data is collected
from multiple IoT devices of the same model (i.e., many
identical instances of an IoT product (of the same version),
such as streamer.Amazon.Fire TV Gen 3 [55]), which are

connected to various home networks and operated by different
people. The motivation for training the anomaly detector in a
collaborative manner using shared data is that the inherent
richness and heterogeneity of such data allows the capturing
of enough examples of similar local abnormalities which are
rare yet benign, whereby globally they would be identified by
the anomaly detector as sufficiently-frequent normal patterns.

Collaborative intrusion detection systems (CIDSs) are net-
work intrusion detection systems (NIDSs) whose data is col-
lected from various monitors that function as sensors (disparate
IoT devices in our use case); these systems are comprised
of several units that perform intrusion detection on the data
collected from the sensors [56]. There are a few main CIDS
architectures. The first is referred to as a centralized CIDS
(data sharing) in which the data is sent to a central unit
where the model performs computations on the data. Another
architecture is referred to as a decentralized CIDS where there
are several computation units located between the sensors and
the model that deal with data aggregation and preprocessing.
Distributed CIDSs are a form of collaboration architecture in
which there is no central component and the analysis is done
within the data monitors.

Many of the prior studies on (IoT-related) CIDSs are listed
in Table II. The authors of [33] based their method on the OP-
TICS algorithm for clustering (and cluster membership), and
evaluated their method using IoT datasets to detect malicious
traffic. In [38], the authors presented a CIDS with multiple
sparse AEs, one for each IoT device type. To evaluate their
method, they used a dataset from one smart home with four
different devices, however they did not publish their dataset,
so their results cannot be reproduced. Two additional CIDSs,
in which the proposed method is multi-staged (similar to our
approach), are [20] and [31]. The former combines ARIMA,
MLP, and LSTM to detect DDoS attacks, while the authors of
the latter proposed a multi-stage CIDS which also combines
active learning, however the experiments in both of these
studies were conducted using non-IoT datasets.
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TABLE III
DATASETS USED IN PRIOR RESEARCH ON ANOMALY/ATTACK DETECTION, MAINLY IN IOT SETTINGS

Ref. Type
of data

Capturing
environment

Number
of devices/models

Granularity
of instances

Number
of instances

Number
of features

Class labels Period
of time

Size
(GB)

Public

[19] Generated Laboratory 9 IoT devices Packet 555,932 115 Benign/attacks related
to Mirai and BASHLITE

1 week !

[20] Synthetic Virtual state layer 7 VSL services,
3 emulated IoT sites

Packet 357,952 13 Normal, DoS, data type
probing, malicious control,
malicious operation,
scan, spying, wrong setup

24 hours 0.062 !

[29] Generated Laboratory Packet 2,540,044 48 Normal/attack 1 hour 100 !

[31]
Generated Audit logs (DARPA) Flow 5,000,002 22 DoS, privilage esccalation, probing 7 weeks 0.003 !

Real University honeypots Packet 3,046,267 24 Attack or not 2 months 0.09 !

Real,
synthetic

Yahoo (S5) Time series 2,046,962 3 Outliers and change-points 0.016 !

[32] Generated Virtual state layer 7 VSL services,
3 emulated IoT sites

Packet 357,952 13 Normal, DoS, data type
probing, malicious control,
malicious operation,
scan, spying, wrong setup

24 hours 0.062 !

[33] Generated Laboratory 30 IoT devices Packet 9 Benign only 20 days 7.3 !

Generated Laboratory 5 IoT simulated scenarios Packet 72,000,000 14 Normal/attack 5 scenarios 16.7 !

[34]

Real Smart home 9 IoT devices Time window 500,000 23 Benign/anomalous 0.002 !

Real Smart home 28 IoT devices Packet 300 DDoS attack 6 months 5.110 !

Real Smart hospital 4 medical IoT devices DDoS attack 5 minutes 0.025 !

Real Network telescope 1 network telescope DDoS attack traces 656.6 !

Real DDoS-as-a-service 7 booters DDoS attack traces 250 !

Real University DDoS attack traces 1 !

[35]
Generated Laboratory 33 IoT devices Packet 2,087,280 7 Anomalous Y/N 165 hours 0.488
Real Smart homes 14 IoT devices Packet 2,286,697 7 Anomalous Y/N 2,352 hours 0.606
Generated Laboratory 5 IoT devices Packet 21,919,273 7 Anomalous Y/N 84 hours 8.110

[36] Simulated Laboratory (ISCX 2012) Devices in a testbed Flow 1,526,148 Normal/malicious 7 days 84.42 !
[38] Real Smart home 4 IoT devices TCP flow 46,796 16 Benign/anomalous 1 day

[39] Real Smart home 9 IoT devices Time window 500,000 23 Benign/anomalous 0.002 !

Generated Laboratory 5 IoT simulated scenarios Packet 72,000,000 14 Normal/attack 5 scenarios 16.7 !
[40] Synthetic Laboratory 1 simulation tool Flow 1,054 7 Benign/malicious
[41] Generated Laboratory 28 IoT devices Sensor data Anomalous Y/N 6 months

[42]
Synthetic Simulation (SYNT) 1 simulation tool Packet 152,230 27 Normal/attack
Generated Lab (UNB) 12 computers Packet 95,785 27 Normal/attack 5 days 51.1 !

Real US-Japan lines (MAWI) 5 sample points Packet 62,000 27 Normal 12 months !

This
paper

Real,
generated

5 Smart homes,
laboratory

8 identical IoT devices IPFIX 200,087 24 ‘Assumed benign,’ ’rare yet
benign,’ ’malicious’ (crypto-
mining, Nmap scanning)

21 days 0.0178 !

In this research, similar to some of the studies presented in
Table II, we chose to implement the CIDS via data sharing,
using a centralized architecture. The main reason for this
choice is that in our use case (see Subsection II-B), the
traffic data of the monitored IoT devices is already collected
in a central cloud server, and then it is preprocessed and
analyzed in another existing server, incurring little overhead.
Moreover, we do not assume a minimal level of processing
power of the monitored IoT devices or home routers, or
the users’ consent to access their devices and use them for
storage and/or computation; therefore, we prefer not to rely on
the monitored IoT devices but rather on the readily-available
central servers. As acknowledged by the authors of [57], in
reality, the communication and computational resources of the
end nodes are typically limited and there may also be a time
delay.

Given our preference for collaboration in the anomaly
detection model’s training, we could have opted for federated
learning (FL) [58], [59], which was previously used for IoT se-
curity purposes [35]. As part of the FL collaborative approach,
the sensors train (local) models and share their parameters
(e.g., AE weights [37]) instead of sharing traffic data, mainly
for privacy preservation and to limit the overhead of commu-
nication and storage [53]. However, in real-world scenarios,
the deployment of FL on (typically resource-constrained)
IoT devices might be infeasible due to memory, computing
power, and energy consumption limitations [52]; such FL

deployment would also necessitate obtaining the users’ consent
to remotely access their IoT devices to install the security
software, which may also be infeasible. Moreover, FL often
introduces a trade-off between privacy preservation and model
performance in terms of accuracy [60], efficiency [61], and/or
convergence [62]. Given the above, in this paper, as we wish
to develop a feasible and high-performing CIDS mechanism
for IoT device anomaly detection, we prefer the centralized
collaborative approach over FL.

D. Existing public datasets for IoT attack detection

The availability of a scientific dataset is important for
both (a) reproducing and validating related research, and (b)
quantitatively evaluating future methods. In the NIDS domain,
it was recently noted [63] that there is a dearth of datasets.
This is also seen in the subdomain of IoT-related NIDSs, where
there is a shortage of publicly available datasets, particularly
high-quality datasets that (a) contain data captured over a
long period of time and are (b) sufficiently representative
of real-world settings, (c) properly labeled with present-day
attacks, (d) comprised of data from multiple real devices and
locations, such that they can be reliably used to evaluate
novel methods for CIDSs. Table III provides a description
of the datasets used in prior research on (IoT) anomaly and
attack detection. As can be seen in the table, not all of the
datasets have been made publicly available. Of those that
are publicly available, in some cases the research addresses
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IoT anomaly or attack detection but uses non-IoT data for
evaluation [31]. The data of other datasets was captured in a
period of just minutes [34] or hours [20], [32]. Other studies
used data which is simulated [36], synthetic [31], or generated
in a lab [19], [33], [39], sometimes using Raspberry PIs [53]
instead of real IoT devices. Even if the data was captured from
real-world settings, usually the dataset includes the data from
just a small number of IoT devices [38] or a honeypot [31],
preventing the proper evaluation of a CIDS. With regard to
the empirical evaluation of collaborative and FL approaches,
another major limitation of existing datasets is that in most
cases, the separation into nodes is only superficial. That is,
traffic data is collected from just one IoT device deployed
in one location and is later split using various strategies [37],
[64]. These data splits mimic nodes that perform collaboration,
however the data splits fail to represent the diversity of
identical devices which are deployed separately and interacted
with by different users.

In comparison, in this research we utilize (and make pub-
licly available) a novel dataset whose data was collected from
eight identical IoT devices, deployed in six disparate networks,
five of which are real home networks where the data is
assumed benign, and one of which is in our controlled lab’s
network where we could implement IoT-related attacks and
accurately label the traffic accordingly. In all of the homes
the same IoT model was monitored, while different people in
different surroundings and network settings freely interacted
with the same IoT model. This allows us to quantitatively
evaluate the proposed CADeSH method and set a benchmark
for future (IoT-related, collaborative) NIDSs. In addition, our
unique dataset covers a period of 21 days, which is relatively
long time period compared to that of the datasets listed in
Table III. Another important aspect of our dataset is that unlike
most datasets used thus far (some of which were published),
it is not comprised of packet-level raw traffic data but rather
is comprised mainly of IPFIX-level aggregated metadata,
which results in lower communication/storage overhead while
preserving privacy. We note that in [65], a large and diverse
IPFIX-based dataset was collected from an IoT testbed, how-
ever it (1) only contains benign data, limiting attack detection
evaluation, (2) emanates from a single network only, such that
collaborative learning can not be properly evaluated, and (3)
reflects a limited frequency of human interaction, which is
performed by just the lab staff, as opposed to the ongoing and
natural real-world interaction with a diverse range of people
in multiple disparate home networks reflected in our dataset.

Further details regarding the acquisition and properties of
our novel dataset are provided in Section V.

IV. PROPOSED METHOD

Overall, as illustrated in Fig. 1, the method we propose for
(collaborative) IoT anomaly/attack detection in smart homes
consists of two main steps. We refer to each of those steps
as a filter, as some flows continue to the next step for further
analysis while others are assigned a final label. Our method is
trained (and is later used for inference) based on shared flow-
level traffic data Fm that is collected from multiple identical

Fig. 1. Our two-step method for collaborative IoT anomaly detection

model m IoT devices Dm : {dm1 , dm2 , . . . , dmn }, deployed
in disparate home networks and interacted with by different
users. As in any anomaly-based IDS, during training we rely
on data which is assumed to be mostly benign so that a profile
of the normal traffic patterns can be learned. To be on the
safe side, our method includes also data selection, cleans-
ing, and sanitization stages prior to training, as described in
Subsection V-D. Later, during inference, each outbound traffic
flow fm is first labeled by Filterm1 as frequent (i.e., ‘benign’
in terms of attack detection) or infrequent (i.e., somewhat
anomalous, but not necessarily ‘malicious’). Afterwards, if
labeled as infrequent by Filterm1 , the flow is further labeled
by Filterm2 as known behavior (i.e., ‘rare yet benign’) or
unknown (i.e., highly anomalous, presumably ‘malicious’).

To implement Filterm1 and Filterm2 , we propose (and
empirically evaluate, see Sections V and VI) the use of AEs
and clusters, respectively. The reason for the former choice
is that AEs have demonstrated effectiveness in binary IoT
anomaly detection [19], [38], [42], [53] and therefore could
also facilitate the distinction between frequent and infrequent
behaviors. Regarding the latter choice, the intuition is that
rare yet benign traffic data can be divided into multiple
clusters which represent various infrequent activities (slight
anomalies such as a webcam booting or zooming in/out, etc.).
A traffic flow fm which is too far from any of the rare yet
benign clusters is considered a strong anomaly, presumably
representing a cyber-attack.

To describe our method in further detail, we use the follow-
ing notation:

m: An IoT model, defined [66] as the combina-
tion of type, manufacturer, and model number.
For instance, webcam.D Link.CS 930LB1 [67]
and webcam.D Link.DCS 933L [68] are two
distinct IoT models that share the same type
and manufacturer.

Dm: A set of n identical IoT devices
{dm1 , dm2 , . . . , dmn } defined by their MAC
addresses, all of which are instances of model
m.

fm
i : A single traffic flow that emerged from device

dmi , enriched with features from additional data
sources such as DNS requests or the Webroot
API; interchangeably referred to in this paper
as an IPFIX, flow, record, or instance.
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Fm
i : A set of x traffic flows {fm

i1 , . . . , f
m
ix} that

emerged from dmi .
Fm: A superset of Fm

i , containing flows from all of
the devices in Dm. We partition Fm chrono-
logically into three mutually exclusive parts:
Fm
training for training the filters, Fm

validation

for model optimization and anomaly threshold
calibration, and Fm

test for anomaly/attack de-
tection evaluation.

Filterm1 : The first anomaly detector, trained to determine
whether a flow fm

i represents a frequent or
infrequent activity of device dmi .

Filterm2 : The second (subsequent) anomaly detector,
trained to determine whether fm

i , which was
already labeled by Filterm1 as infrequent, rep-
resents a known or unknown activity of device
dmi .

k∗: The optimal number of clusters in Filterm2 ,
assuming k-means is used.

MSEm
f : The mean squared error (i.e., the AE’s recon-

struction error), obtained by applying Filterm1
to a flow fm. Since Filterm1 is trained us-
ing only assumed-benign data, a high MSEm

f

value indicates a severe abnormality as the AE
fails to reconstruct fm.

epochsmax: A parameter to limit the number of epochs
during which the AE’s weights in Filterm1 are
updated.

deltamin: A parameter to limit the duration of Filterm1 ’s
training and decrease the chances that Filterm1
overfits the training data. delta is the differ-
ence between the current and previous MSEm

which is calculated using Fm
validation.

patiencemax: An upper bound for the number of subsequent
AE training epochs where delta < deltamin

(i.e., no substantial decrease in MSE is ob-
tained). Reaching patiencemax is an indication
of model convergence, and it is used to stop the
AE’s training even if epochsmax has not been
reached.

THm
frequent: Frequency threshold on MSEm. Any (fu-

ture or test) flow fm is labeled as infre-
quent if its reconstruction error MSEm

f ex-
ceeds THm

frequent, or as frequent otherwise.
We propose setting THm

frequent as a certain
percentile (denoted as pctlfrequent) of MSEm

on Fm
validation, e.g., the 60th or 70th percentile.

ˆfm
frequent: The label assigned to a flow fm by Filterm1 ;

it could be either frequent or infrequent. In
our empirical evaluation, we denote the sub-
sets of flows which were labeled infrequent
by Filterm1 as Fm, infrq

training , Fm, infrq
validation, and

Fm, infrq
test .

THm
known: A set of k∗ distance thresholds thm

known, one
for each cluster in Filterm2 . Any (future or
test) flow fm which was labeled as infrequent
by Filterm1 is labeled by Filterm2 as unknown

if its distance df, cluster from the trained clus-
ter to which it is assigned exceeds the related
thm

known or as rare yet benign otherwise. We
propose setting the cluster-specific thresholds
in THm

known as a certain percentile (denoted
as pctlknown) of the related cluster distances
Dcluster on Fm, infrq

validation, e.g., the 95th, 98th,
or 100th percentile.

ˆfm
known: The label assigned to a flow fm by Filterm2 ;

could be either known (‘rare yet benign’) or
unknown (‘malicious’).

A. Filterm1 : frequent behavior or not

For a given IoT model m, the first step of CADeSH handles
the training, optimization, and application of an anomaly de-
tector Filterm1 , which labels each outbound flow fm

i from an
IoT device dmi as either frequent or infrequent. As described in
Algorithm 1, Filterm1 is trained and optimized using Fm

training

and Fm
validation, respectively, which are collected from multi-

ple identical IoT devices Dm deployed in multiple domestic
networks and thus are regarded as highly representative of the
typical traffic data associated with m. Since we do not have
the actual ground truth label (i.e., ‘benign’ or ‘malicious’) for
each flow fm

i gathered from outside our controlled lab, we
assume that most of the flows in Fm are benign and represent
normal activity of the IoT devices of the respective model m.
To increase the probability of using benign flows, we perform
data sanitization (see Subsection V-D). The weights of the AE
underlying Filterm1 are updated using Fm

training with MSE
serving as the loss function. Training is stopped once the
number of epochs exceeds epochsmax or when the conditions
for early stopping [69] are met, namely a sequence of epochs
without a significant decrease of the MSE.

Algorithm 1 Train the AE-based Filterm1
Input: Fm

training , Fm
validation, epochsmax, deltamin, patiencemax

Output: Filterm1
1: epoch← 1
2: epoch low MSE ← 1
3: delta←∞
4: MSEprevious ← 0
5: while epoch < epochsmax & delta > deltamin &

epoch low MSE < patiencemax do
6: Filterm1 ← filterm1 .update weights(Fm

training)
7: MSEcurrent ← filterm1 .calc. MSE(Fm

validation)
8: delta←MSEcurrent −MSEprevious

9: MSEprevious ←MSEcurrent

10: epoch← epoch+ 1
11: if delta < deltamin then
12: epoch low MSE ← epoch low MSE + 1

13: return Filterm1

Algorithm 1 is used to train an anomaly detector Filterm1
which captures assumed-benign activity of model m’s IoT
devices. After Filterm1 has been trained, a decision regarding
how to label each future or test fm (’frequent’ or ‘infre-
quent’) must be made. In order to set the frequency threshold
THm

frequent, as described in Algorithm 2, we apply the AE-
based Filterm1 to Fm

validation and observe the distribution
of the MSE. The higher the MSE value, the less frequent
(more abnormal) fm is considered to be. We set the value
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Algorithm 2 Set a frequency threshold for Filterm1
Input: Filterm1 , Fm

validation, pctlfrequent

Output: THm
frequent

1: MSE validation← []
2: for fm in Fm

validation do
3: MSEm

f ← filterm1 .calc. MSE(fm)
4: MSE validation←MSE validation.append(MSEm

f )

5: MSE validation←MSE validation.sort()
6: THm

frequent ←MSE validation.calc. percentile(pctlfrequent)
7: return THm

frequent

of THm
frequent as a certain percentile of MSEm

f ’s distribu-
tion on Fm

validation, e.g., the 60th or 70th percentile. This
number reflects our expectation, based on findings from prior
research [7], [19], [21], [22], [70], that for IoT devices, a large
portion of the normal traffic data is relatively repetitive, stable,
and predictable, and thus its MSE should be rather low.

Eventually, as described in Algorithm 3, the label ˆfm
frequent

of a given test flow is determined by comparing its MSEm
f

(calculated using Filterm1 ) with the threshold thm
frequent. A

flow whose MSEm
f < thm

frequent is labeled as frequent (i.e.,
no suspicion of any malicious activity), while a flow whose
MSEm

f ≥ thm
frequent is temporarily labeled as infrequent and

then inspected by Filterm2 to assign a final label, either known
(rare yet benign) or unknown (malicious).

Algorithm 3 Determine whether a flow is frequent or not using
Filterm1

Input: fm, Filterm1 , thm
frequent

Output: ˆfm
frequent

1: MSEm
f ← filterm1 .calc. MSE(fm)

2: if MSEm
f < thm

frequent then
3: ˆfm

frequent ← True
4: else
5: ˆfm

frequent ← False

6: return ˆfm
frequent

B. Filterm2 : known behavior or not

This component of our method only handles the flows
that were previously classified by Filterm1 as infrequent and
determines whether their abnormality is extreme enough to
be considered a completely unknown behavior (presumably
indicating a malicious activity) or is a known/legitimate behav-
ior, i.e., rare yet benign. In this component, we propose (and
empirically evaluate) the use of a clustering algorithm such
as k-means [20], [36], assuming that the trained clusters in
Filterm2 can represent various rare yet benign traffic patterns
of an IoT model m.

To train and optimize the clustering model which im-
plements Filterm2 , we use Fm, infrq

training , which is a subset
of Fm

training where MSEm ≥ THm
frequent (i.e., training

instances previously classified as infrequent by Filterm1 ).
This allows the model to focus only on data which is not
entirely normal, such that better separation can be learned
between real (malicious) anomalies and mediocre (rare yet
benign) anomalies. As outlined in Algorithm 4, we find the
optimal number of clusters k∗ by training a k-means model

Algorithm 4 Train the (k-means) clustering-based Filterm2
Input: Fm, infrq

training , kmin, kmax

Output: Filterm2
1: Avg Sil. Scores← []
2: for ktemp in range(kmin, kmax) do
3: clust. assignmentstemp ←

k means.fit predict(Fm, infrq
training , ktemp)

4: Avg Sil. Scoretemp ← calc Avg Sil. Score(clust. assignmentstemp)
5: Avg Sil. Scores← Avg Sil. Scores.append(Avg Sil. Scoretemp)

6: k∗ ← arg max(Avg Sil. Scores)

7: Filterm2 ← k means.fit(Fm, infrq
training , k∗)

8: return Filterm2

for each k from the range [kmin, ..., kmax] and selecting k
which maximizes the average silhouette score [71].

Algorithm 5 Set distance thresholds for Filterm2
Input: Filterm2 , Fm, infrq

validation, pctlknown

Output: THm
known

1: THm
known ← []

2: for cluster in Filterm2 do
3: Dcluster ← []

4: for f in Fm, infrq
validation do

5: if f ∈ cluster then
6: df, cluster ← distance(f, clustercenter)
7: Dcluster ← Dcluster.append(df, cluster)

8: Dcluster ← Dcluster.sort()

9: thm, cluster
known ← Dcluster.calc. percentile(pctlknown)

10: THm
known ← THm

known.append(th
m
known)

11: return THm
known

Then, to set a maximum distance threshold THm
known for

each of the trained k∗ clusters, beyond which a (future or
test) instance is considered abnormal enough to be labeled
as unknown (malicious), we use Algorithm 5: We assign
each (infrequent though assumed-benign) instance f from
Fm, infrq
validation to its nearest cluster using Filterm2 and observe

the distribution of distances Dcluster between each instance
and the center of its assigned cluster. For each cluster, the
abnormality threshold thm

known is set to be a certain percentile
of that cluster’s distance distribution, e.g., the 99th or 95th

percentile of Dcluster. The rationale for doing so is that
the distribution of cluster distances on Fm, infrq

validation should
be representative of infrequent though assumed-benign data,
so that extremely high distances ought to raise suspicion
concerning malicious activities.

Algorithm 6 Determine whether a flow is known or not using
Filterm2

Input: f , Filterm2 , thm
known

Output: ˆfm
known

1: cluster ← arg min(distance(f, clustercenter))
2: df, cluster ← distance(f, clustercenter)
3: if df, cluster < thm

known then
4: ˆfm

known ← True
5: else
6: ˆfm

known ← False

7: return ˆfm
known

Eventually, as outlined in Algorithm 6, a final decision for
infrequent test instances is made based on (1) assigning them
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TABLE IV
NUMBER OF MONITORING DAYS, DEVICE LOCATIONS, MONITORED DEVICES, AND IPFIXS FOR EACH LABEL ACROSS OUR DATA PARTITIONS

Data Number of Device Number of Number of IPFIXs
partition monitoring days location(s) monitored devices Total Assumed benign Being scanned by Nmap Is executing cryptomining

Fm
training 13

5 X Non-lab 7
133,351 133,351

Fm
validation 3 39,481 39,481

Fm
test 5 1 X Lab only 1 27,255 22,472 3,080 1,703

to the nearest cluster and (2) comparing them to their cluster-
specific distance threshold thm

known.

V. EVALUATION METHOD

A. Experimental setup

We were motivated to conduct this research by a company
that provides cyber-defense services for smart homes, and
this company provided the data used in our experiments.
To protect the company’s subscribers against various IoT-
related attacks, flow-level traffic data is continuously captured
from the monitored home networks, stored in a cloud server,
and then augmented and analyzed centrally to enable risk-
mitigating responses. As can be seen in Fig. 2, in each home
network various devices (both IoT and non-IoT devices) are
connected to the Internet via a router. This router sends the
traffic data to a designated cloud storage server, from which
data is sent to another server for analysis. Note that our lab
network has the exact same setup as the home networks.
The only difference is that in our lab we connected a laptop
(denoted as ‘Attacker’ in Fig. 2), which was used to implement
cyber-attacks, to the network (see Subsection V-C).

Fig. 2. Our experimental setup

The abovementioned cyber-defense company kindly shared
the following data with us: network traffic flows which were
collected during a period of 21 days (see Table IV), plus the
related DNS requests and responses and reputation intelligence
of the destination IP addresses, produced by Webroot. To
evaluate our IoT anomaly/attack detection method, we imple-
mented the cyber-attacks during that 21 day period, such that
the company’s network traffic flows were collected at the same
time, using the same setup as the other (home) networks. In

our lab, as described next, we merged the various data sources,
added a number of engineered features, and formed a single
dataset for experimentation. For this process of data merging,
engineering, preprocessing, and analysis, we used a Windows
2016 server with a 2GHz E5-2620 CPU and 256GB RAM.

B. Dataset

Instances. Each instance in our dataset represents an out-
bound network traffic flow (in the form of an IPFIX [23],
[72], [73]), enriched using additional data sources. An IP-
FIX is a 5-tuple aggregation of the raw traffic data (source
IP address, destination IP address, source port, destination
port, and IP protocol). Most of the IPFIXs in our dataset
were collected from real home networks by the company
we cooperated with, and the remaining flows were collected
in our lab, using the same setup used by the company’s
home subscribers. In our experiments, we concentrated on the
IoT model, streamer.Amazon.Fire TV Gen 3 [55], because
it was deployed in five monitored home networks and we
could empirically evaluate our collaborative algorithm and its
generalizability to a sixth network (in our lab).

Features. Each instance is comprised of several feature
groups (Appendix A contains a list of the feature names in
each feature group, as well as brief descriptions):

1) Raw IPFIX features, such as IP protocol identifier, number
and size of packets in a flow, destination network, flow end
reason, etc.

2) Features calculated using the raw features of the same
IPFIX, such as flow IAT.

3) DNS-related features, such as the percentage of numerical
characters in the requested domain, etc.

4) Reputation intelligence features [28], such as the reputation
status of the destination IP address, which denotes whether
the destination is likely to be associated with phishing
attacks, spam, mobile threats, etc.

5) ‘Time-based’ features (which partially resemble the stateful
features used in [70]), calculated using the raw features
of the preceding IPFIXs of the other devices of the same
IoT model. These two ‘time-based’ features count the
number of times during the previous complete hour in
which any of the other devices contacted (1) the network
of the current IPFIX’s destination IP address and (2) its
destination port, as another means of collaboration for
anomaly/attack detection. The rationale is that an outbound
flow whose destination network and/or port were not re-
cently contacted by the counterparts of the inspected device
could indicate an anomalous or even malicious behavior,
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e.g., communication with the C&C (command and control)
server of a botnet [74].

C. Implemented attacks and corresponding labels

In our lab, we infected streamer.Amazon.Fire TV Gen 3
with a cryptominer [75] and executed cryptomining from this
device. To imitate a scanning activity typically performed
by some botnets, we also scanned the network using Nmap
(Network Mapper), as in [76]. In accordance, we labeled
these malicious activities as (1) ‘is executing cryptomining,’
or (2) ‘being scanned by Nmap.’ All of the remaining IPFIXs
captured in our lab or on the home networks were labeled
as ‘assumed benign,’ mainly because we could not clearly
substantiate the ground truth.

D. Data merging, enrichment, preprocessing, and partitioning

The first stage of turning the raw data into a
dataset ready for experimentation was selecting the out-
bound IPFIXs in which the source was the monitored
streamer.Amazon.Fire TV Gen 3 devices (as opposed to in-
bound IPFIXs where these devices were the destination) and
combining the selected outbound IPFIXs with their DNS
requests and responses and their destinations’ reputation intel-
ligence data. Then we enriched the merged data by extracting
features such as flow duration and IAT, DNS-related features,
and (collaborative) time-based features. Afterwards, as part
of preliminary data preprocessing, we removed IPFIXs whose
source MAC address or IAT were missing, removed the first
two recorded hours of traffic data (because its time-based
features could not be calculated properly), and in cases in
which the time-based features were missing values, we input
a value of zero.

After constructing the preliminary dataset and perform-
ing preprocessing, we labeled and partitioned it chronologi-
cally into three mutually-exclusive subsets, namely Fm

training,
Fm
validation, and Fm

test (13, 3, and 5 days, respectively, 21
days altogether). The total number of IPFIXs for each la-
bel in these data partitions is provided in Table IV. Then,
as a final stage of preparing the dataset for experimen-
tation, we performed several data selection and cleansing
operations, mostly (1) ensuring that Fm

test only includes in-
stances captured in our controlled lab (and thus could reliably
be used to evaluate anomaly/attack detection performance),
while (2) ensuring that Fm

training and Fm
validation only in-

clude instances that were captured in another network where
streamer.Amazon.Fire TV Gen 3 was deployed. This data
selection strategy enabled us to evaluate the generalizability
of our collaborative method and answer the question: Can
an anomaly detector, which was trained and optimized using
shared traffic data from multiple identical IoT devices de-
ployed in various other networks, effectively detect IoT-related
cyber-attacks that involve an identical IoT device that was
not represented in Fm

training or Fm
validation? Additional data

cleansing operations included (3) keeping only external com-
munications (i.e., communication sent outside each device’s
network) [65]; (4) keeping only assumed-benign flows in
Fm
training and Fm

validation, as opposed to Fm
test which contains

both malicious and assumed-benign flows; and (5) sanitizing
Fm
training [77], [78] in order to avoid model poisoning [64] by

removing extreme outliers, i.e., excluding training flows whose
destination ports are too scarce, collaboratively considering all
of the IoT devices in Fm

trn.
The entire process of data partitioning and analytical flow is

illustrated in Fig. 3. To remove ambiguity and enable research
reproducibility, we share the final cleansed and preprocessed
dataset with the public, anonymized and ready for experimen-
tation.

Fig. 3. Data partitioning and analytical flow for evaluation of our method

E. Hyperparameter tuning

In our experiments we sought to optimize the following
five hyperparameters that we suspected would have an effect
on our method’s performance, as follows:
1) Destination IP addresses have been used extensively in

past research [79] for IoT device fingerprinting, since
IoT devices regularly communicate with a limited set
of (their manufacturers’) servers. However, when one-hot
encoding the destination IP address, dimensionality and
sparsity are likely to increase and thus harm model perfor-
mance. Moreover, while a domain name typically remains
unchanged, the associated IP addresses can change, so
the model generalizability might decrease over time. To
address these challenges, in our experiments we tested
whether completely disregarding the IP addresses improves
performance. We also tested the effect of using (and then
one-hot encoding) only the prefixes of the destination IP
addresses, which indicate the networks of the hosts [66],
[80].

2) Different transformations of numerical features were previ-
ously found [81] to have varying levels of impact on model
performance, depending on the dataset and algorithm se-
lected. In our experiments we chose to compare the use of
numerical features as is vs. log-transforming them.

3) As noted in Subsection IV-A, we expect most of the normal
outbound flows of an IoT device (presumably around 2

3 ) to
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TABLE V
METRICS USED TO EVALUATE OUR METHOD

Metric Abbreviation Calculation Coverage

True positives TP #(actual = malicious, predicted = ‘malicious′)

A given
attack
scenario

False positives FP #(actual = benign, predicted = ‘malicious′)

True negatives TN #(actual = benign, predicted = ‘benign′)

False negatives FN #(actual = malicious, predicted = ‘benign′)

False positive rate FPR FP
(FP+TN)

Precision TP
(TP+FP )

Recall TP
(TP+FN)

F1 score F1 2 · precision·recall
precision+recall

Area under the precision-recall curve AUPRC

Macro-average <metric>
∑

<metric>
#(attack scenarios)

Multiple attack scenarios

be relatively stable. So, in order to set Filterm1 ’s threshold
THm

frequent we compared between choosing the 60th or
the 70th percentile of the MSE using Fm

validation. Lower
thresholds are expected to increase the number of FPs using
Fm
test, while higher values are likely to increase the number

of FNs.
4) Having accumulated a large variety of features in the

dataset, we decided to compare four options of the feature
set to be used to implement the cluster-based Filterm2 :
(1) all of the available features, (2) a manually selected
feature subset which is comprised of the ‘immediate
suspects,’ namely octet delta count, avg packet size,
flow duration milliseconds, same dest ip count pool,
and same dest port count pool (see Appendix A for
feature descriptions), (3) a PCA transformation of the
original features, and (4) the hidden layer of the AE
underlying Filterm1 , as in [82] and [83].

5) In Filterm2 , the distance of a flow f from the cluster
to which it is assigned is used as a measure of abnor-
mality. In our experiments we compared two approaches
for calculating this distance: (1) the raw Euclidean dis-
tance between f and the cluster centroid, and (2) the
normalized Euclidean distance, i.e., the number of stan-
dard deviations from the mean. In order to restrict these
distance measures to the range [0, 1], as in probability, we
eventually compared tanh(rawEuclideandistance) with
tanh(normalized Euclidean distance).

VI. RESULTS

In this section, we present the results of the hyperparame-
ter tuning process, providing the hyperparameter values that
resulted in the best performance using Fm

test. Then, using
the best-performing combination of hyperparameter values,
we present the results obtained by Filterm1 and Filterm2
(Subsections VI-B and VI-C, respectively) using Fm

test. In
Subsection VI-D, we summarize the overall empirical results
of our two-step method and compare these results to those
of classical one-step anomaly detection algorithms, and in
Subsection VI-E, we analyze the sensitivity of our method to a
high-importance training consideration, namely the quantity of

most recent IPFIXs present in the training set. Throughout this
section we evaluate our results using the performance metrics
defined in Table V.

A. Hyperparameter tuning results

Table VI lists the five hyperparameters tuned throughout our
experiments (described in Subsection V-E) and indicates the
value that performed best using Fm

test in terms of the macro-
average AUPRC (area under the precision-recall curve). We
denote this best-performing combination as hyp∗. We chose
to use the macro-average, because our dataset is imbalanced
with respect to the malicious labels. We reached hyp∗ after
conducting an exhaustive grid search, where the duration of
a single end-to-end experiment was approximately 48 ± 24
minutes (Mean ± St.Dev.), using the experimental setup
described in Subsection V-A.

TABLE VI
HYPERPARAMETER TUNING PERFORMED IN OUR EXPERIMENTS

Hyperparameter Evaluated values
Performed

best

Treatment of the

destination IP address

Remove completely !

Use only the prefix (network)

Treatment of numeric features
Log transform !

Use as is

MSE threshold between ‘frequent’

and ‘infrequent’ (Filterm1 )

60th percentile using Fm
validation !

70th percentile using Fm
validation

Features used for clustering

(Filterm2 )

All available features !

AE’s hidden layer

PCA

Manually selected feature subset

Cluster distance to differentiate between

‘known’ and ‘unknown’ (Filterm2 )

Centroid distance !

Normalized distance from the mean

Based on the grid search we conducted, the macro-average
AUPRC using Fm

test was 0.286 ± 0.206, out of which the
highest value (0.841) was attained by using the hyp∗ values
presented in Table VI. Overall, as can be seen in Fig. 4, four of
the five hyperparameters tuned had no significant effect on the
macro-average AUPRC using Fm

test. The fifth hyperparameter
was the clustering feature treatment. An ANOVA test found a
significant difference in means (P−value = 0.0 (see Fig. 4d)).
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0.0 0.2 0.4 0.6 0.8 1.0
Macro-Avg. AUPRC on the test set

class_network

remove completely

Effect of destination IP address treatment
 T-Test: CI 95% = (-0.017, 0.126)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Macro-Avg. AUPRC on the test set

as_is

log

Effect of numeric features treatment
 T-Test: CI 95% = (-0.06, 0.084)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Macro-Avg. AUPRC on the test set

60

70

Effect of percentile used as frequency threshold
 T-Test: CI 95% = (-0.063, 0.082)

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Macro-Avg. AUPRC on the test set

AE_hidden

all

manually_predefined

pca

Effect of clustering features treatment
 ANOVA: F-value = 5.47, DF = 3, P-value = 0.0

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Macro-Avg. AUPRC on the test set

centroid_distance

normalized_dist_from_mean

Effect of distance used for normality determination
 T-Test: CI 95% = (-0.008, 0.135)

(e)
Fig. 4. Effect of the various tested hyperparameters on the macro-average AUPRC using Fm

test, estimated through 95% confidence intervals (CIs) and ANOVA

This ANOVA test was followed by pairwise Tukey-HSD post-
hoc tests which found that using the hidden AE layer is inferior
to using all of the original features (P − value = 0.034)
and to the manually-predefined subset of the original features
(P − value = 0.011).

B. Results for Filterm1

We used the Keras library [84] to implement Filterm1 as an
AE with three hidden layers, i.e., a total of five dense fully-
connected layers, including the input and output layers. We
set the number of neurons in those layers to be 100-50-25-50-
100% of the input dimension. ReLU was used in all of the
layers, except for the output layer, where we used a sigmoid

activation function. We used a batch size of 64 and the Adam
optimizer [85]. Although we allowed epochsmax = 200, in
most cases the training of Filterm1 stopped much earlier:
37.8± 21.1 epochs due to meeting the early stopping criteria:
deltamin = 0.00001, patiencemax = 5. The rapid conver-
gence when using hyp∗ can be seen in Fig. 5.

The results presented in Table VII show that for the most
part, the MSE of the trained AE-based Filterm1 is very low for
benign IPFIXs, indicating the ability of Filterm1 to accurately
reconstruct benign inputs. Moreover, the MSE on benign test
records is almost identical to the MSE on benign training and
validation records. This indicates the ability of Filterm1 to
generalize to data on which it was not trained. It is also worth
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Fig. 5. MSE (loss) convergence during training using hyp∗

TABLE VII
MSE DISTRIBUTION ACROSS PARTITIONS

Percentile MSEtraining MSEvalidation MSEtest
benign MSEtest

malicious

Min. 0.0000 0.0000 0.0000 0.0010

25% 0.0002 0.0002 0.0002 0.0546

50% 0.0004 0.0003 0.0004 0.0565

75% 0.0011 0.0010 0.0226 0.0565

Max. 0.1801 0.1802 0.1960 0.1984

noting that the 25th and 50th percentiles of MSEtest
malicious’s

distribution are much larger than the respective values on
MSEtest

benign by more than two orders of magnitude. This
bolsters the very basic assumption behind anomaly-based
NIDSs, namely that there is an association between (network
traffic) data anomalies and malicious activity.

To differentiate between a frequent and infrequent IPFIX,
we set the threshold THm

frequent as the 60th percentile of
the MSE’s distribution on Fm

validation. Using this threshold, as
can be seen in Table VIII, Filterm1 did not produce any FNs
on Fm

test, meaning that none of the actually malicious IPFIXs
were mistakenly labeled by Filterm1 as frequent. The 10,489
IPFIXs labeled as infrequent, which could actually be ‘rare
yet benign’ or ‘malicious’, proceeded to Filterm2 for further
labeling as known or unknown, respectively.

TABLE VIII
NUMBER OF PREDICTED VS. ACTUAL LABELS FOR Filterm1 AND Filterm2

USING Fm
test AND hyp∗

Actual
Predicted

Filterm1 Filterm2
Frequent Infrequent Total Known Unknown Total

Assumed benign 11,983 10,489 22,472 10,174 315 10,489
Being scanned by Nmap - 3,080 3,080 48 3,032 3,080

Is executing cryptomining - 1,703 1,703 - 1,703 1,703

C. Results for Filterm2

To implement Filterm2 , we used k-means clustering and
found that within the range of [kmin = 2, kmax = 20]
the number of clusters that maximizes the average silhouette
score [86] using Fm, infrq

training is k∗ = 15 (see Fig. 6). To
differentiate between a known and unknown behavior, we
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Fig. 6. Determination of k based on the average silhouette score using
Fm, infrq
validation

utilized the distance of the inspected IPFIX from the nearest
cluster. To align this metric with a probability expression, we
considered tanh(cluster−distance) ≈ p(abnormality). The
distribution of the raw distances from the k∗ = 15 cluster
centers is illustrated in Fig. 7 for each cluster separately
(ranging up to ∼ 1.7 using Fm, infrq

validation).

Fig. 7. Distribution of the distance from each cluster in Fm, infrq
validation

In contrast, as shown in Fig. 8, the distribution of
tanh(cluster − distance) using Fm

test is bounded to within
the range of [0, 1], where it can also be seen that a threshold of
0.75 offers a good separation between most assumed-benign
IPFIXs and malicious IPFIXs.

Fig. 8. Tanh(distance) in Fm
test to differentiate between known and unknown

IPFIXs
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Fig. 9. Performance of the KPIs as a function of the threshold on tanh(Euclidean distance from cluster centers) in Filterm2 for two attack scenarios: The
IoT device is (a) being scanned by Nmap, and (b) executing cryptomining

D. Overall results and benchmarking

The KPIs which summarize the overall performance of
our method using Fm

test and hyp∗ are presented in Table IX.
The bottom row of the table shows that the sequential use
of Filterm1 and Filterm2 achieves a 0.841 macro-average
AUPRC. In contrast to this KPI, which considers a multitude
of threshold values on tanh(cluster−distance) in Filterm2 ,
the top four rows relate only to one threshold, denoted as
THm

known. As can be seen in Figs. 9a and 9b, this threshold
has a substantial impact on the precision, recall, F1 score, and
FPR for the detection of Nmap scanning and cryptomining
execution, respectively. Setting THm

known = 0.75 yields a
0.929 macro-average F1 score. The recall is also very high
(it is actually perfect for cryptomining execution detection),
while the FPR has a relatively low value of 0.014 for both of
the evaluated attacks.

TABLE IX
SUMMARY OF OUR METHOD’S KPIS USING Fm

test AND hyp∗

Metric
Being scanned

by Nmap
Is executing

cryptomining
Macro-
average

THm
known

Precision 0.906 0.844 0.875

0.75
Recall 0.984 1.000 0.992
F1 score 0.944 0.915 0.929
FPR 0.014 0.014 0.014

AUPRC 0.827 0.855 0.841

For benchmarking, we compared our two-step method with
a variety of classical one-step algorithms widely used for
anomaly and novelty detection in general [42], [87]–[90],
and for IoT attack detection in particular [19], [91]. Two of
these algorithms are the building blocks of CADeSH (namely,
AE and k-means clustering, which we used to implement
Filterm1 and Filterm2 , respectively). The remaining three
are OCSVM [92], LOF [93], and IF [94]. This algorithm
comparison (summarized in Table X) takes into account both
attack detection performance (in terms of AUPRC) and the
upper bound of computational complexity (denoted using the
big O notation). As can be seen in Table X, on macro-average,

our two-step CADeSH method outperformed all of the one-
step algorithms in terms of the AUPRC. That is, although
k-means and OCSVM performed better than CADeSH in the
detection of Nmap scanning, they performed much worse in
detecting cryptomining execution, and vice versa; the AE per-
formed better than CADeSH in the detection of cryptomining
execution, however it performed (much) worse in detecting
Nmap scanning. In terms of computational complexity, we
note that CADeSH is relatively expensive. Still, it is our
opinion that attack detection performance is much more crucial
in real-life scenarios. Moreover, when solutions like parallel
execution using, e.g., graphics processing units (GPUs) are
widely available, the actual time differences between the
algorithms become less and less significant.

E. Sensitivity analysis

In our experiments, we also explored an issue that might
need to be dealt with when considering real-world application
of the proposed method, namely the quantity of training
data required for (re-)training and how the value selected
affects CADeSH’s performance. The results of this experiment
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Fig. 10. Sensitivity of CADeSH to the quantity of most recent training data
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TABLE X
COMPARISON OF OUR TWO-STEP METHOD’S WITH VARIOUS ONE-STEP NOVELTY DETECTION ALGORITHMS

Attack detection AUPRC using Fm
test and hyp∗ Computational complexity [95]–[99]

Method Being scanned by Nmap Is executing cryptomining Macro-average Upper bound Terms

CADeSH 0.827 0.855 0.841 O(k -Means) +O(AE) d: number of dimensions (features)
k: number of clusters to train
r: number of records
I: number of iterations until convergence
t: number of trees in the ensemble
s: sub-sampling size

k-Means 0.970 0.167 0.569 O(d× k × r × I)

AE 0.176 0.917 0.547 O(d2) for each layer
OCSVM 0.885 0.129 0.507 O(r × d2) for non-linear kernels
LOF 0.590 0.240 0.415 O(d2)

IF 0.338 0.089 0.214 O(t× s× log(s))

using hyp∗ and Fm
test are presented in Fig. 10, where the

macro-average precision, recall and F1 score are presented
as a function of the number of most recent IPFIXs used
for model training. In each iteration of this experiment, the
selected IPFIXs were chronologically divided into a training
and validation set, 80% and 20% of the data, respectively.

As can be seen in Fig. 10, although the best performance
is attained using the entire training data (a total of 172,832
IPFIXs), an almost-identical performance level is attained
using less than a quarter of this quantity (40,000 IPFIXs). On
the one hand, smaller quantities of data might not represent
enough human interactions and behaviors that are captured in
the network traffic data, thus they lead to model under-fitting.
On the other hand, in most cases larger quantities of training
data lead to model over-fitting. A possible explanation is that
these 40,000 IPFIXs (equivalent to approximately four days of
traffic capturing) were the closest to the test set, such that they
best represent the most recent normal activity based on which
anomalies are detected. For example, if a given domain that
is often contacted by model-m IoT devices via DNS requests
is not associated with a static IP address, then outdated data
(from, e.g., over a week ago) might confuse the model.

VII. DISCUSSION

Despite its promising attack detection performance, our
method has the following limitations. First, it requires the same
data collection setup (hardware and/or software) across all of
the monitored networks for efficient and reliable data sharing,
and thus it might not be easy to scale. In our use case, the
company we cooperated with supplied a piece of hardware
to home subscribers as a third-party cyber-security service.
This hardware enabled both the service of continuous smart
home monitoring for malicious activities, and the standardized
collection of data which can be shared and used for model
training; however, it is possible that in the future ISPs would
offer such a service themselves and preinstall the necessary
software on the home routers they supply, instead of an
additional hardware. Second, our method requires correct IoT
model identification prior to anomaly detection, in order to
enable the training and deployment of an anomaly detector
for each IoT model separately; to this end, there are already
promising research results regarding IoT identification based
on IPFIX records, even behind a NAT [65], [66] (which is a
typical setting in home networks). Third, as noted by [65],
behavioral changes are not rare in the IoT, which could
have an effect on the profile of normal network patterns.

This might necessitate relatively frequent model retraining,
depending on the degree to which the traffic patterns of each
monitored IoT model m are sensitive to behavioral changes.
Yet, as described in Subsection VI-E, only a small amount of
(recent) training data is sufficient to produce a high-performing
anomaly detector. Retraining might also be required following
software updates, something which has yet to be empirically
evaluated.

VIII. CONCLUSION AND FUTURE WORK

In this work, we proposed CADeSH, a novel collaborative
two-step anomaly detection method. Using this method, an ISP
can detect anomalous behaviors, which are indicative of mali-
cious activities on specific IoT devices, locally (e.g., in a smart
home). We evaluated our method empirically using real-world
data from seven distinct streamer.Amazon.Fire TV Gen 3
devices deployed in the networks of five real homes and
interacted with naturally by different people over a period of
21 days. In our experiments we trained the anomaly detection
models using data from those home networks (for which we
did not have ground truth labels) and then tested the models
using an identical device deployed in our controlled lab and
carefully labeled this device’s outbound traffic as ‘assumed
benign,’ ‘being scanned by Nmap’ (imitating a botnet scan), or
‘is executing cryptomining.’ These two well-known IoT-related
cyber-attacks were detected by our method with a recall value
of 0.929 (on macro-average), precision of 0.875, and an FPR
as low as 0.014. A grid search conducted for hyperparameter
tuning, followed by sensitivity analysis, revealed that training
data of just 40,000 IPFIXs was enough to obtain excellent
performance in this study.

Although in this work we focused on detecting anomalous
behaviors locally, in the future our method could also be
leveraged by an ISP to detect abnormal nationwide trends.
In other words, an IPFIX that is labeled as highly abnormal
(i.e., representing a behavior which is both infrequent and
unknown) is a strong indication of local malicious activity.
In comparison, a multitude of such abnormalities identified
simultaneously on many IoT devices from a sufficiently large
number of networks is likely to indicate the propagation of
a cyber-attack, e.g., botnet scanning or DDoS execution. We
plan to design and evaluate this in our future work. Further
extensions to this research include the evaluation of additional
IoT device models, additional IoT-related attack scenarios,
and additional algorithms and configurations for implementing
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Filterm1 and Filterm2 , i.e., more complicated than a five-layer
AE and k-means clustering.
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APPENDIX

A. Features in our publicly available dataset

The following is a brief description of the features in our
publicly available dataset:
1) IPFIX identifiers

• device id: An identifier of the inspected device from
which this flow emanated (0-6 represent the devices
deployed in the home networks, 7 represents the device
in our lab)

• flow start day: The day of the first packet of this flow
• flow start hour: The hour of the first packet of this flow
• flow start minute: The minute of the first packet of this

flow
• flow start second: The second of the first packet of this

flow
• flow start millisecond: The millisecond of the first

packet of this flow
• source network id: An identifier of the home network

from which this flow emanated (0-4 represent the home
networks, 5 represents the network in our lab)

2) Raw IPFIX features [24]
• protocol identifier: The protocol number in the IP packet

header, which identifies the IP packet payload type (6
represents TCP, 17 represents UDP)

• flow duration milliseconds: The difference in time [mil-
liseconds] between the first observed packet of this flow
and the last observed packet of this flow

• octet delta count: The number of octets sent in this flow,
including IP header(s) and IP payload

• packet delta count: The number of packets sent in this
flow

• avg packet size: The average size of packets in this flow,
calculated as octet delta count/packet delta count

• flow end reason: The reason for this flow’s termination,
e.g., idle timeout, TCP FIN flag, etc.

• tcp control bits: The TCP control bits observed for the
packets of this flow (SYN, ACK, FIN, PSH, RST, URG),
encoded as a bit field (1 if present in any of this flow’s
packets, 0 otherwise)

3) Features calculated using the raw features of the same
IPFIX
• network class of destination IP address: Determines

which part of the IP address belongs to the network
prefix and which part belongs to the host suffix
(see [100])

• network prefix of destination IP address anonimized:
An anonimized prefix of the destination IP address,
which indicates [66], [80] the network of the host

• inter arrival time milliseconds: The time [milliseconds]
between the previous flow’s start time and this
flow’s start time, calculated for this device id as
flow start(t) − flow start(t−1)

4) Reputation intelligence features [28]
• reputation status: A flag indicating whether the destina-

tion IP address is suspected of being involved in any
of the following categories of malicious activity: spam,

windows exploits, web attacks, botnets, scanners, DoS,
reputation, phishing, proxy, mobile threats, or tor proxy.

5) ‘Time-based’ features (calculated using the full complete
hour preceding flow start)
• same dest port count pool: A collaborative feature in-

dicating the number of times in which the destination
port was contacted by any of the monitored devices
(identified by their device id) within the said time win-
dow

• same dest IP count pool: A collaborative feature
indicating the number of times in which
network prefix of destination IP address anonimized
was contacted by any of the monitored devices within
the given time window

6) DNS-related features
• has DNS request from pool: A (collaborative) flag in-

dicating whether a preceding DNS request that can be
associated with this flow was captured

• DNS host percentage of numerical chars from pool:
Percentage of numerical characters in the requested
DNS host

7) Experiment-specific features
• actual label: The actual label of this flow (either ‘as-

sumed benign’ or any of the attacks we implemented in
our lab)

• partition: The subset to which this flow belonged in our
experiments (either training, validation, or test)

B. Nomenclature

The following is a list of the acronyms we used in this paper
(presented in alphabetical order), as well as their definitions.

AE Autoencoder
ARIMA Autoregressive Integrated Moving Average
AUPRC Area under the precision-recall curve
BIRCH Balanced Iterative Reducing and Clustering using

Hierarchies
C&C Command and control
CADeSH (The name of our proposed method) Collaborative

Anomaly Detection for IoT attack detection in
Smart Homes

CIDS Collaborative intrusion detection system
DBSCAN Density-Based Spatial Clustering of Applications

with Noise
DDoS Distributed denial-of-service
DL Deep learning
DNN Deep Neural Network
DPI Deep packet inspection
FL Federated learning
FP False positive
FPR False positive rate
GPU Graphics processing unit
GRU Gated Recurrent Unit
IAT Interarrival time
IDS Intrusion detection system
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IF Isolation Forest
IoT Internet of things
IPFIX Internet Protocol Flow Information Export
ISP Internet service provider
LOF Local Outlying Factor
LSTM Long Short-Term Memory
MCOD Multi-Level Outlier Detection
ML Machine learning
MLP Multilayer Perceptron
MSE Mean squared error
NIDS Network intrusion detection system
Nmap Network Mapper
OCSVM One-Class Support Vector Machines
OPTICS Ordering Points to Identify the Clustering Structure
PCA Principal Component Analysis
SDN Software defined network
VSL Virtual state layer
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