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GBMST: An Efficient Minimum Spanning Tree
Clustering Based on Granular-Ball Computing

Jiang Xie, Shuyin Xia*, Guoyin Wang, Xinbo Gao,

Abstract—Most of the existing clustering methods are based
on a single granularity of information, such as the distance and
density of each data. This most fine-grained based approach is
usually inefficient and susceptible to noise. Therefore, we propose
a clustering algorithm that combines multi-granularity Granular-
Ball and minimum spanning tree (MST). We construct coarse-
grained granular-balls, and then use granular-balls and MST to
implement the clustering method based on "large-scale priority”,
which can greatly avoid the influence of outliers and accelerate
the construction process of MST. Experimental results on several
data sets demonstrate the power of the algorithm. All codes have
been released at https://github.com/xjnine/GBMST.

Index Terms—Granular computing, Granular-Ball, Clustering,
MST-based clustering.

I. INTRODUCTION

S an unsupervised learning, the purpose of the clustering

algorithm is to divide the data into target clusters, the
data of the same cluster are similar, but the data of other
clusters are different. As a basic machine learning method,
clustering has a wide range of applications and research in the
fields of image processing and data mining [1]. As a classic
partitional method, K-means [2] is simple and efficient, but
it has good clustering effect only for spherical clusters and
is greatly affected by the initial clustering center. Chameleon
[3] is one of the hierarchical clustering. It can automatically
and adaptively merge clusters, which is suitable for arbitrary
shape clusters. However, it needs to set more parameters, and
the worst time complexity is O(n?). DBSCAN [4] based on
density, which is suitable for arbitrary shape clusters and can
automatically determine the number of clusters. However, it
cannot handle data with large density changes, and the density
needs to be determined in advance; Spectral [5] clustering can
cluster high-dimensional data by introducing the concept of
graph cutting.

Recently, graph-based clustering has received increasing
attention. Chen [6] proposed a graph-based approach to rep-
resent data with k-nearest neighbor relations. Based on the
same graph theory idea as spectral clustering, Zahn Zahn [7]
proposed a clustering method using MST. The core problem
of graph theory algorithm is to find a graph suitable for data
sets. In general, the method of graph theory selects the MST
more because the weight of the connected edges in the MST
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is the smallest, which is consistent with the basic idea of
clustering. In the graph theory algorithm, all data points in
the data to be clustered are regarded as a fully connected
undirected graph G = (V, E). Then, the distance between any
two points (generally taking the Euclidean distance) is defined
as the weight of the edge, and the MST is constructed for the
undirected graph G using Prim or Kruskal algorithm.

For MST-based clustering, it is completed if inconsistent
edges between clusters can be found and removed accurately
in MST. Many data to be studied can be represented as
graphs. The set of nodes in graphs represents data points,
and the edges connecting nodes represent the relationship
between data points. Generally, the clustering algorithm based
on MST includes the following three steps: 1) constructing
a MST; 2) removing inconsistent edges to obtain a set of
connected clusters between nodes; 3) repeating step 2 until
the termination condition is satisfied.

Since Zahn [7] first proposed MST-based clustering al-
gorithm, many scholars have focused on how to determine
inconsistent edges. Under the ideal condition that the dis-
tance between clusters is large and there is no outlier, the
inconsistent edge is the longest edge. Due to the existence of
outliers and noise points, the edge information in MST will be
seriously disturbed. The longest cut edge is not the correct one.
Xu et al [8]. expressed multidimensional gene expression data
using MST. They define three objective functions. Minimizing
the weight of the subtree by removing the K —1 longest edges
is the first objective function. Minimizing the total distance
between data points and cluster centers is the second objective
function. Obtaining the global optimal solution by combining
different data points around the representative data point is the
third objective function. Moving inconsistent edges according
to the edge length is easily affected by outliers. Laszlo [9]
proposed to solve this problem by limiting the size of the
smallest cluster. Based on Euclidean distance, a cascaded MST
algorithm was proposed by Grygorash et al [10]. By inputting
the number of clusters K, the method uses the sum of the mean
and variance of the edge weights of MST as the threshold,
deletes edges with weights greater than the threshold, and
repeats this process until K clusters are generated. In addition
to inconsistent edges, how to define the node density also
has an important impact on the clustering results. However,
these methods often require manual adjustment of parameters
to achieve better results.

Traditional MST clustering algorithms usually only use edge
information to complete clustering. Due to the limitation of
information, these algorithms are very susceptible to outliers.
Therefore, many MST clustering methods based on local



density have been proposed. These methods [11] typically
use the number of adjacent nodes and the degree of a point
to define the density of nodes. Combining density and MST,
Chowdhury [12] assumes that the density of index points is
the lowest compared to its surrounding neighbors, and then
finds the area composed of these index points to complete
the clustering. Zhong et al. [13] detected distance-separated
and density-separated clusters through two rounds of MST
construction. In recent years, many MST clustering methods
combined with multivariate Gaussian [14] and information
theory [15] have also been widely studied.

Most of the existing clustering methods are based on a
single granularity of information, such as the distance and
density of each data. Therefore, the MST clustering algorithm
is greatly affected by outliers, and the process of establishing
MST is slow. Inspired by Chen’s "large-scale priority” [16]
published in the journal Science in 1982, we use granular-ball
to represent the data in a coarse-grained way. We propose a
clustering algorithm that combines multi-granularity Granular-
Ball and MST (GBMST). GBMST first divides the data set by
the granular-ball and establishes the fully connected graph of
the granular-ball. With the idea of MST algorithm, each hyper
ball is regarded as a sample point, and the MST is generated by
Prim algorithm. Then input the parameter K of the generated
cluster, and the maximum weight edges are pruned each time
to generate the corresponding number of clusters. GBMST not
only reduces the influence of outliers on cluster formation, but
also accelerates the process of MST establishment by using the
hyper ball as a sample point generation.

The main contributions of this paper are as follows:

1) Self-adaption: The generation of coarse-grained granular-
balls is based on the data distributed measurement, which
is completed through adaptive iteration. Therefore, the con-
struction of minimum spanning tree based on granulation is
adaptive.

2) Efficiency: Because the number of granular-balls is far
less than the number of data, the efficiency of constructing
the minimum spanning tree based on granular-balls is higher,
and the efficiency of the proposed clustering algorithm is also
improved.

3) Robustness: Since each granular-ball covers many points
and only contains two data, namely center and radius, a small
number of noise points can be smoothed, so that the granular-
ball will not be affected.

We have arranged the rest of this paper as follows. In
Section II, we review related work based on three classes
of classical clustering algorithms, MST clustering algorithms
and granular computing. Section III introduces the proposed
clustering algorithm GBMST. In Section IV, we present and
analyze the relevant experimental results. In Section V, we
give a summary of this paper.

II. RELATED WORK
A. Classical Clustering Algorithms

K-means [2] is the most widely used partition algorithm,
and its main drawback is that the clustering results are subject
to the cluster shape, and better clustering results can be

obtained only on spherical clusters. When the boundary of
the cluster is irregular, the clustering result is poor. Because
the algorithm randomly selects the initial clustering center
and uses the mean value of the data points in the class as
the representative point while ignoring the density distribution
in the class, the clustering result cannot obtain the global
optimum, but starts to converge at the local optimum. To
overcome these shortcomings, many researchers focus on how
to select the initial cluster centers. For example, Gonzalez [17]
proposed the maximum and minimum distance algorithm. The
core idea of the algorithm is to take the data points as far as
possible. However, this method still needs to randomly select
the first initial clustering center, which will lead to unstable
clustering results. Similarly, David Arthur et al [18] proposed
the K-means++ algorithm, which has the same problem as
the maximum and minimum distance algorithm. In addition
to these methods based on the distance between data points,
there is a clustering center initialization method CCIA based
on data compression principle proposed by Khan et al. [19],
which is not suitable for the initial clustering center selection
of high dimensional data sets. Stephen J. Redmond et al.
[20] proposed a clustering method based on KD-Tree, which
estimates the density of data at different locations to select the
initial clustering center. This method uses the mean value of
all data points in the data box to replace the data points in
the data box, which cannot correctly express the distribution
of data points in the box; if an attribute of all data points in
a data box is the same, the data box volume is 0, resulting in
infinite density and meaningless results. Density-based cluster-
ing algorithms [4], [6] identify different high-density regions
formed by low-density segmentations through the definition
of density. Density-based applied spatial clustering with noise
(DBSCAN) [4], as the most classic density-based clustering
technique, can effectively detect clusters of complex shapes.
DBSCAN defines density as the number of data points that
lie within the scan radius and the radius is fixed, so the
density is dynamically changing, making DBSCAN unsuitable
for datasets with different densities. Therefore, the existing
problems of DBSCAN have also been extensively studied [6],
[21], [22].The DP [22] algorithm assumes that the density of
the cluster center is much higher than that of the surrounding
neighbors, and it is farther away from other high-density
points. As a new density-based clustering method, DP only
needs to use density and distance to get the cluster centers,
and then assign other points to the cluster centers to complete
the clustering. However, this assumption cannot handle data
with complex shapes and large variations in density.

B. MST Clustering Algroithms

The key challenge of MST clustering algorithms is how
to solve the two problems of inconsistent edges and node
density. Chowdhury [12] assumes that sparse regions must
lie between the boundaries of any two clusters, and through
these sparse regions, inconsistent edges can be located. Based
on neighborhood density difference estimation in MST-based,
Luo et al. [23] proposed a clustering algorithm. Wang et al.
[24] eliminated outliers by obtaining the local density factor
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Fig. 1. The traditional MST-Based clustering algorithm. (a) Minimum spanning tree of the original data. (b) The green edge is cut edge. (c) The clustering

results. (d) The correct clustering results.

of each data point, and then constructed the MST method for
clustering.

Real datasets may have different densities, imbalanced
clusters, and arbitrary shapes [25], and it is difficult to obtain
a method that can accurately identify inconsistent edges with
a single MST structure. Therefore, many methods based on
MST and other fields are cross-combined to improve the
clustering results [26]. SAM [11], [27] combines hierarchical
clustering and obtains the initial points through the information
of MST, and then uses K-mean to obtain the final clustering
result. KP [28], [29] is a hybrid clustering algorithm. KP uses
natural neighborhoods to adaptively obtain the K value and
natural density of each object. In this search process, MST is
built from natural cores. This method is suitable for complex
manifold patterns and data sets with large variation in density.

In order to reduce the interference of noise and outlier, noise
and outlier can be excluded before constructing the minimal
generation [24]. Its working principle is to calculate the density
factor and threshold in the process of building the MST, and
use the data below the threshold as noise, thereby reducing the
interference to the cluster, and after the MST is obtained, the
longest edge is continuously removed until the target cluster is
obtained. Recently, a clustering method LDP_MST [30] was
proposed to construct a MST by replacing all data with local
density cores. Based on the density core, LDP_MST has strong
robustness to noise.

C. Granular-Ball Computing

Given a data set D = p;(i=1,2,...,n), where
n 1is the number of samples on D. Granular balls
GB1,GBs,,...,GB,, are used to cover and represent the data
set D. Suppose the number of samples in the j** granular-ball
G B is expressed as |GB;|, then its coverage degree can be
expressed as > ;" (|GB;|) /n. The basic model of granular-
ball coverage can be expressed as

min Ap * n/z (IGBj|) /n+ Ag *m,
j=1
s.t. quality(GB;) > T,
where A\; and )\, are the corresponding weight coefficients,
and m is the number of granular balls. When other factors
remain unchanged, the higher the coverage, the less the sample
information is lost, and the more the number of granular-
balls, the the characterization is more accurate. Therefore,

(1)

the minimum number of granular-balls should be considered
to obtain the maximum coverage degree when generating
granular-balls. By adjusting the parameters A; and Ag, the
optimal granular-ball generation results can be obtained to
minimize the value of the whole equation. In most cases, the
two items in the objective function do not affect each other
and do not need trade off, so Ay and A\, are set to 1 by
default. Granular-ball computing can fit arbitrarily distributed
data [31], [32].

III. GBMST

Like most existing machine learning methods, existing
MST-based clustering algorithms use the finest granularity,
treating each data sample as a node and using only edge
information to divide clusters. As a result, the construction
of MST is easily disturbed by noise, boundary points and
outlier, and the construction efficiency is also low. As shown
in Fig.1, Due to the influence of outliers, the information
of inconsistent edges that need to be cut cannot be obtained
correctly, the traditional MST-Based clustering algorithm cuts
off the wrong edges, resulting in incorrect clustering results.
The correct clustering result is shown in Fig 1d. In view of
this, our paper presents a granular-ball clustering clustering
algorithm based on MST. (GBMST). Taking the dataset shown
in Fig.2 as an example, GBMST are mainly divided into three
stages. In stage 1, we generate granular-ball based on the
similarity of the data distribution of the original dataset [17]. In
stage 2, after filtering out some outliers and outlier granular-
balls, we treat each ball as a sample point, and generate a
MST according to the prim algorithm. In stage 3, the MST is
pruned according to the parameter k, and then cut the longest
k—1 edges, to generate k connected branches, each connected
branch represents a cluster, and then the noises and outlier
granular-balls are grouped into clusters of granular-ball closest
to them.

A. The Process of Generating Granular-Balls

In this section, we mainly improve the granular-ball gener-
ation method proposed in [33] to better deal with the noise.

Definition 1.Given a dataset D € R?, there are two quan-
tities: Granular-Ball (GB;) and Distribution Measure (DMj).
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Fig. 2. The process of generateing granular-balls on a simplified example. (a) Raw data points in hyperball A. (b) Child hyperball of A. (c) Blue balls with
radii that are too large. (d) The final hyperball sets after removing hyperball with a radius that is too large.

For each G Bj, the c; is the center of GB; and r; is the radius
of GB;. The definitions of ¢; and r; are as follows:

1
¢ =—> pi ©))
"=
rj = maz(||lpi — ¢;)- 3)
Where ||.| | denotes the 2-norm and n; represents the number

of data located in GB;. The optimization model of granular-
ball needs to distinguish between supervised and unsupervised
cases. For unsupervised cases, we define the DM; value
based on Formula (1) to guide the adaptive iterative generation
process of granular-ball.

Definition 2 (DM). DM; is measured by computing the
ration of the number data point n; and the sum radius s; in
GBj, Where s; = 377 |Ipi — ;.

DM, = 1. )

Ny

The center is the data point that best represents the granular-
ball, so a smaller value of DM; means that the data points
in the granular-ball are closer to the center, and these data
points more similar to each other. In other words, DM; is the
average distance from all data points in the granular-ball to
the center, which is used to measure the similarity of the data
in the granular-ball. The value of ranges from 0 to r; , and
the smaller the value, the higher the similarity.

The granular-ball was divided according to DM . As shown
in Fig.2: Firstly, we treat the whole dataset as a granular-ball
A; Then, we choose the two farthest points Cy and C5 to split
the ball A into two sub-balls A; and A,; third, We calculate
the DMy, DM 4, and DM 4, values for A, A; and As; At
last, We judge whether to split the ball by comparing DM 4
and DM 4, with DM 4,. In [33], both DM 4, and DM4,
need to be greater than DM, for GB4 to split. However,
when there is a lot of noise, this splitting rule will cause a
large number of granular-balls to fail to split.

Definition 3(Weighted DM value). Therefore, we use a
weighted DM value for comparison in this paper, which
can better adapt to noisy situations. DM,eigne is defined as
follows:

DMayeignt = AL DMay + A2 DM 5. ®)
na na

where n4, na, and ny4, represent the number of data in
the corresponding granular-ball, respectively. If DM, eign: is
greater than DMy, the granular-ball A splits. In Fig. 2c,
the final splitting result is illustrated. However, in Fig. 2c,
some granular-balls with radii that are too large may still be
affected by some boundary or noise points and need to be
split; if r; > 2 x max(mean(r), median(r)) , GB; needs
to be split. mean(r) and median(r) represent the mean and
median of all hyperball radii, respectively. After granular-balls
with radii that are too large are removed, the splitting process
is completed, and the result is shown in Fig. 2d. Based on the
above descriptions, the generation of granular-balls algorithm
is shown in Algorithm 1.

Algorithm 1 Generation of Granular-Balls.

Input D(data set)
Output GB sets

1 For each granular-ball GB; in D do

2 calculate DM 4, DMyeight,

3 according to Eq.1, Eq.2, Eq.3,Eq.4;

4 If DMyeight > DM 4 Then

5 Split G By;

6 End If

7 If the number of GBs is not changing Then
8 break;

9 End For

10 For each granular-ball GB; in D do

11 calculate mean(r), median(r),

12 If r; > 2 x max(mean(r), median(r)) Then
13 Split GBj;

14 End If

15 If the number of GBs is not changing Then
16 break;

17 End For

18 return GB sets;

B. Constructing a MST based on Granular-Balls

In this section, we construct the MST (MST) with granular-
balls. In order to solve the defects of the traditional MST
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Fig. 3. The overview of GBMST. (a) Original data set. (b) The granular-balls set. (c) The MST based on granular-balls. (d) The red edge is cut edge. (e)

The clustering result of GBMST

clustering method, we propose a method of using the granular-
ball as a sample point to construct a MST, and this method
can also effectively solve the problem of outliers participating.
As shown in Fig.3a-Fig.3c, We substitute the data sample with
the center of the granular-ball. The distance of two granular-
ball is defined as the distance between the centers of the two
granular-balls minus the radii of the two granular-balls. If the
two balls overlap, the distance is set 0. The granular-balls
participating in the construction of the MST do not include
all granular-balls belonging to the outlier set. The distance
dis(GBj1,GBjs) and outlier set are defined as follows:

diS(Gle, GB]'Q) = diS(le, ng) — (le -+ 7”']'2). (6)

outlier = {GBj|n; < 2}. (7

C. Clustering Based on Granular-Ball and MST (GBMST)

In this section, we prune the MST generated in the previous
section to generate clusters. First, according to the parameter k,
the k edges with the largest distance are removed to generate
k+1 connected branches, each branch representing a cluster.
Then, we assign outlier ball to its nearest neighbor granular-
ball with cluster label. As shown in Fig.3d, the two longest
edges are cut off to get the clustering result. The red dotted
lines in the graph are the edges we cut, and the final result of
the cluster is shown in Fig.3e. Based on the above descriptions,
the granular-ball based MTS clustering algorithm is designed
and shown in Algorithm 2.

As shown in the above algorithm, GBMST mainly consists
of three stages: generating granular-balls, generating a MST
with granular-balls, and clustering Based on Granular-Ball and
MST. Suppose the number of hyper balls is IV, n is the number
of points in a data set and m is the number of edges. The time
complexity of first step is O(nlogn). And the time complexity
of constructing the MST of granular-ball is O(mlogN). Then
we cut the longest edge each time and repeat k — 1 times to
generate k clusters. The time complexity of this step is O(N).
Finally, if the number of outliers is u, the time complexity
of process of outliers ball into the corresponding clusters is
O(@*N). Because N << n, u << n and m << n, the
complexity of GBMST is close to O(nlogn).

Algorithm 2 GBMST algorithm.

Input GB sets, outlier = 0.k
Output The Clutering result
For each granular-ball GB; in GB set do
If n; < 2 Then
outlier = outlier U GB; ;
End For
V ={GB;||GB; ¢ outlier}
construct M ST(V, E)
Cut the longest k-1 edge
Assign cluster labels to k connected components
For each granular-ball GB; in outlier set do
Assign cluster labels according to
its nearest granular-ball’s cluster lable;
return clustering result;
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IV. EXPERIMENTAL EVALUATIONS

To validate the GBMST algorithm, we conduct experimental
analysis on synthetic data, biological cell segmentation data,
and UCI data set. To verify the effectiveness,We choose to
compare with three classical clustering methods K-means [2],
DBSCAN [4] and DP [22], and compare with two methods
based on MST, Normal_MST [7] and LDP_MST [30].

We used the python scikit learning toolbox to conduct
experiments on a normal performance PC. The detailed con-
figuration is as follows: Intel(R) Core(TM) 19-10920X CPU
@ 3.50GHz, 64GB memory, Windows 10 operating system.

A. Experiment on Synthetic Data Sets without Noise

We first conduct experiments on 6 complex synthetic
datasets without noise. Table 1 shows the detailed information
of the 6 data sets, and the visualization results are shown in
Figure 4.

K-means, Normal_MST and GBMST only need to set the
desired number of clusters K. The settings of the two param-
eters of DBSCAN have a great influence on the clustering re-
sults. In order to obtain better clustering results, it is necessary
to repeatedly test with different values.The cutoff distance dc
for DP is set to be 2%. The parameters of LDP_MST include
the desired number K and the Minsize. According to [30], the
K for LDP_MST is set to the true number of clusters and the
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Fig. 4. The original synthetic data sets without noise.
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Fig. 5. The clustering results of GBMST on synthetic data set without noise.

Minsize is set to 0.018. The detailed parameter settings for get ideal results for all the synthetic data sets without noise.

synthetic data set without noise are shown in Table 2. Fig.1-Fig.5 of the supplementary shows the results of the

other five comparison algorithms on the noise-free synthetic

As shown in Fig.5, the clustering result of GBMST on dataset. Fig.1 displays the clustering results of K-means. We
synthetic data sets without noise indicate that GBMST can



TABLE I
SYNTHETIC DATA SETS WITHOUT NOISE.

Instances  Clusters  Source
D1 899 2 [34]
D2 944 2 [34]
D3 630 4 [34]
D4 788 7 [34]
D5 1016 4 [34]
D6 1741 6 [34]
TABLE II

PARAMETERS SETTINGS ON SYNTHETIC DATA SETS WITHOUT NOISE.

K-means DBSCAN DP
D1 K=2 Minpts=3, Eps=0.06  K=2, dc=2%
D2 K=2 Minpts=4, Eps=0.06  K=2, dc=2%
D3 K=4 Minpts=4, Eps=0.05  K=2, dc=2%
D4 K=7 Minpts=5, Eps=0.04  K=2, dc=2%
D5 K=4 Minpts=4, Eps=0.05 K=2, dc=2%
D6 K=6 Minpts=4, Eps=0.04 K=2, dc=2%

Normal_MST LDP_MST GBMST

D1 K=2 K=2, Minsize=0.018 K=2
D2 K=2 K=2, Minsize=0.018 K=2
D3 K=4 K=4, Minsize=0.018 K=4
D4 K=7 K=7, Minsize=0.018 K=7
D5 K=4 K=4, Minsize=0.018 K=4
D6 K=6 K=6, Minsize=0.018 K=6

can see that K-means cannot deal with manifold data sets. The
clustering results shown in Fig.2 indicate that DBSCAN fail
to detect clusters in Dataset 3 and Dataset 4. The clustering
results in Fig.3 show that DP is not suitable to manifold data
sets. Due to the interference from boundary points, as shown in
Fig.4a and Fig.4d, Normal_MST cannot get correct clustering
results. But the results on several other data sets in Fig.4 show
that Normal_MST is able to handle complex manifold data.
As shown in Fig.5, by setting two parameters, K and Minsize,
LDP_MST can get correct clustering results in several data
sets.

B. Experiment on Synthetic Data Sets with Noise

TABLE III
EXPERIMENT DATA SETS WITH NOISE.

Instances  Noises  Clusters Source
D7 1043 43 2 [35], [36]
D8 1039 41 4 [35], [36]
D9 1641 45 3 [35], [36]
D10 1427 71 4 [35], [36]

To verify the algorithm’s adaptability to noise, we conduct
experiments on 4 synthetic data sets with noise.The detailed
information of data sets is shown in Table 3, and the visual-
ization of synthetic data sets is shown in Fig.6. The detailed

TABLE IV
PARAMETERS SETTINGS ON SYNTHETIC DATA SETS WITH NOISE.

K-means DBSCAN DP
D7 K=2 Minpts=4, Eps=0.04  K=2, dc=2%
D8 K=4 Minpts=4, Eps=0.04 K=2, dc=2%
D9 K=3 Minpts=4, Eps=0.03  K=2, dc=2%
D10 K=4 Minpts=5, Eps=0.04  K=2, dc=2%

Normal_MST LDP_MST GBMST

D7 K=2 K=2, Minsize=0.018 K=2
D8 K=4 K=4, Minsize=0.018 K=4
D9 K=3 K=3, Minsize=0.018 K=3
D10 K=4 K=4, Minsize=0.018 K=4

parameter settings for synthetic data set with noise are shown
in Table 4.

Since GBMST uses hypers-balls to build a MST, it is more
robust to noise, which is illustrated by the clustering results
in Fig.7. The clustering results of the other five comparison
algorithms on the noisy synthetic dataset are shown in Sup-
plementary Fig.6-Fig.10. As shown in Fig.6c and Figure.8c,
k-means and DP algorithms cannot obtain correct clustering
results on data with large variations in density. The results of
DBSCAN are shown in Figure 7, which shows that DBSCAN
is robust to noise and can identify clusters with more complex
shapes, but it requires manual adjustment of two parameters
and cannot handle data with large density changes. As shown
in Figure 9, traditional MST clustering Normal_MST fails on
all four noisy data due to noise interference. By combining
density kernel and MST, LDP_MST can eliminate the inter-
ference of noise, as shown in Fig.10, its clustering results are
robust to noises.

From the clustering results of the above synthetic datasets,
it can be seen that the DBSCAN algorithm can handle
clusters of complex shapes without being sensitive to noise,
but cannot handle datasets of various densities. But K-means
and DP algorithms cannot handle complex-shaped clusters.
Normal_MST are suitable for complex manifold data, but are
sensitive to noise and boundary points. By setting Minsize,
LDP_MST can handle data containing complex manifolds and
noise. Based on hypber-balls, GBMST can obtain suitable
clustering results for all datasets with large density variation
or datasets containing multiple clusters and noise.

C. Clustering on Biomedical Data Set

We apply our method to biomedical data segmentation, a
challenging spatiotemporal biomedical dataset including 8681
instances [37], [38]. This dataset contains both spherical and
non-spherical shapes with potential contact [39], and images
of immune cells that exhibit high plasticity are particularly
relevant.

In Fig.8, we show the results of an analysis performed for
the immune cells. The ground truth of the immune cells is
displayed in Fig.8a. The bar graph (Fig.8e) shows the Rand
Index [40] performance of K-Means, DBSCAN, DP, Nor-
mal_MST, LDP_MST and GBMST. This shows that GBMST
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Fig. 7. The clustering results of GBMST on synthetic data set with noise.
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Fig. 8. Cluster analysis of immune cells by confocal microscopy. (a) The ground truth immune cells. (e)The performance of K-Means, DBSCAN, DP,
Normal _MST, LDP_MST and GBMST. (b) The clustering result of the K-Means. (c) The clustering result of the DBSCAN. (d) The clustering result of the
DP. (f)The clustering result of the Normal_MST. (g) The clustering result of the LDP_MST. (h) The clustering result of the GBMST.

achieves the best performance. In Fig.8, we depict the clusters with different colors. We can see that K-Means, DPeak and



LDP_MST split one cell into multiple parts, and disjoint cells
are classified into one cluster in Fig.8b, Fig.8d and Fig.8g.
As shown in Fig.8c, we find that DBSCAN can detect the
upper cluster in the dotted box. In Fig.8f, Normal_MST can
also detect the upper cluster in the dotted box. However,
multiple clusters are split into one cluster represented in green.
From the Fig.8h, GBMST can detect immune cells well in the
biomedical data segmentation. Only two clusters in proximity
are spited into one cluster in the dotted box.

D. Clustering on UCI Data sets

We further validate the algorithm GBMST by conducting
experiments on the UCI dataset. The details of the UCI data
are shown in Table 5. The comparison of ACC and NMI scores
[41] on clustering results of UCI are shown in Table 6.

TABLE V
UCI DATA SETS.

Datasets  Instances  Clusters  Dimensions
Iris 150 3 4
Wine 178 3 13
Control 600 6 60
Segment 2310 7 19
letter 20000 26 16
TABLE VI
THE SCORES OF CLUSTERING RESULTS ON UCI DATA SETS.
Datasets K-means DBSCAN DP Normal_MST LDP_MST GBMST
Tris ACC 0875 0.658 0.907 0.532 0.973 0.973
NMI  0.732 0.751 0.806 0.621 0.901 0.901
Wine  ACC  0.944 0.691 0.853 0.456 0.983 0.991
NMI 0816 0.527 0.656 0.412 0.928 0.953
Control ~ ACC 0582 0.312 0.567 0.332 0.678 0.723
NMI  0.709 0.122 0.757 0.084 0.700 0.715
Segment ACC  0.476 0.525 0.907 0.512 0.780 0.801
NMI  0.456 0.601 0.806 0.522 0.817 0.792
leter ~ ACC 0375 0.528 0.907 0.391 0.546 0.532
NMI  0.563 0.588 0.806 0.488 0.699 0.682

In general, their ACC values are lower than GBMST and
LDP_MST. For Iris and Wine, K-means and DP have high
accuracy, but they do not perform well in several other more
complex datasets. Since the Normal_MST is sensitive to noise,
the scores of clustering results are generally low. For the data
sets of control and segment with complex shapes, the NMI
value of DBSCAN is relatively high. Except for Segment data
set, algorithm GBMST scores higher than other methods on
all other data sets.

E. Evaluation on Running Time

In this section, we analyze the time of all the contrasting
algorithms on the experimental dataset. The time complexity
of each comparison algorithm is listed in Table 7. We take the
average of 10 runs of the algorithm on each data set as the
running time displayed in Table 8.

As shown in Table 8, DP algorithm has the lowest time effi-
ciency and K-means has the highest time efficiency. Compared
with the DP and LDP_MST algorithms with higher clustering
accuracy, the time complexity of GBMST is better than both.
When the data set is small, the time efficiency of DBSCAN

TABLE VII
THE TIME COMPLEXITY.

K-means DBSCAN DP
O(nkt) O(n?), 0O(n?)
Normal MST LDP_MST GBMST
O(nlogn) O(nlogn)  O(nlogn)
TABLE VIII

THE RUNNING TIME ON ALL DATA SETS (S)

Datasets K-means DBSCAN DP Normal_MST LDP_MST GBMST
D1 0.023 0.31 2.92 0.31 0.28 0.27
D2 0.037 0.34 3.36 0.34 0.27 0.29
D3 0.033 0.35 0.37 0.35 021 0.19
D4 0.069 0.34 228 0.34 0.20 0.18
D5 0.038 0.35 3.76 0.33 0.41 0.31
D6 0.085 0.42 10.58 0.40 091 0.80
D7 0.021 0.34 3.77 0.31 0.42 0.35
D8 0.028 0.35 3.86 0.31 0.87 0.39
D9 0.043 0.38 9.53 0.32 1.13 0.81
D10 0.044 0.37 7.25 0.33 0.63 0.58
Cell 0.27 0.70 263.36 0.59 64.24 33.89
Iris 0.011 0.23 0.29 0.12 0.13 0.27

Wine 0.013 0.11 0.27 0.16 0.18 0.27

Control 0.023 0.21 0.45 0.31 0.11 0.27

Segment 0.025 0.51 3.86 0.45 1.15 1.01
letter 0.18 77.82 369.88 0.31 78.23 50.18

algorithm and GBMST algorithm is not much different, but
when the data set is large, GBMST is obviously better than
DBSCAN. Overall, GBMST outperforms other algorithms in
both accuracy and efficiency.

V. CONCLUSION

In this paper, we improve the granular-ball generation
process to obtain suitable granularity for the dataset. The MST
construction efficiency can be improved and noise interference
can be reduced by multi-granularity granular-ball. There-
fore, we propose a clustering algorithm that combines multi-
granularity Granular-Ball and MST (GBMST). The clustering
results show that GBMST can efficiently identify datasets
containing complex shapes and noise. The GBMST only needs
to input a cluster number K, and the generation of both
granular-ball and MST is done adaptively.

There are still many directions for future research and
exploration. Next, we will investigate how to improve the
splitting method of granular-ball to improve the efficiency of
GBMST. We will try to construct the MST with a larger-
grained structure by taking the overlapping granular-balls as a
whole to improve the accuracy and efficiency of the algorithm.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant Nos. 62176033 and
61936001.

REFERENCES

[1] Chenping, Hou, Feiping, Nie, Dongyun, Yi, Dacheng, and Tao, “Dis-
criminative embedded clustering: a framework for grouping high-
dimensional data.” IEEE transactions on neural networks and learning
systems, 2015.

[2] J. Macqueen, “Some methods for classification and analysis of mul-
tivariate observations,” Proc of Berkeley Symposium on Mathematical
Statistics and Probability, vol. 22, no. 3, pp. 281-297, 1967.



[3

[t}

[4

flnari

[3]

(6]

[7

—

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

JF, Wang, KL, and LD, “Chameleon based on clustering feature tree
and its application in customer segmentation,” ANN OPER RES, 2009.
M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” AAAI
Press, 1996.

A. Y. Ng, M. L. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural and Synthetic, 2001.
Y. Chen, S. Tang, L. Zhou, W. Cheng, and S. Pei, “Decentralized
clustering by finding loose and distributed density cores,” Information
Sciences, 2016.

Zahn and T. C., “Graph-theoretical methods for detecting and describing
gestalt clusters,” Computers, IEEE Transactions on, vol. C-20, no. 1, pp.
68-86, 1971.

X. Ying, O. Victor, and X. Dong, “Clustering gene expression data using
a graph-theoretic approach: an application of minimum spanning trees.”
Bioinformatics, no. 4, pp. 536-545.

Laszlo, M., Mukherjee, and S., “Minimum spanning tree partitioning
algorithm for microaggregation,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 17, no. 7, pp. 902-911, 2005.

O. Grygorash, Z. Yan, and Z. Jorgensen, “Minimum spanning tree
based clustering algorithms,” in 18th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2006), 13-15 November 2000,
Washington, DC, USA, 2006.

C. Zhong, D. Miao, and P. Fr?Nti, “Minimum spanning tree based split-
and-merge: A hierarchical clustering method,” Information Sciences, vol.
181, no. 16, pp. 3397-3410, 2011.

N. Chowdhury and C. A. Murthy, “Minimal spanning tree based cluster-
ing technique: Relationship with bayes classifier,” Pattern Recognition,
vol. 30, no. 11, pp. 1919-1929, 1997.

C. Zhong, D. Miao, and R. Wang, “A graph-theoretical clustering method
based on two rounds of minimum spanning trees,” Pattern Recognition,
vol. 43, no. 3, pp. 752-766, 2010.

A. Vathy-Fogarassy, A. Kiss, and J. Abonyi, “Hybrid minimal span-
ning tree and mixture of gaussians based clustering algorithm,” in
Foundations of Information and Knowledge Systems, 4th International
Symposium, FolKS 2006, Budapest, Hungary, February 14-17, 2006,
Proceedings, 2006.

A. M. S. Nowozon and C. H. Lampert, “Information theoretic clustering
using minimum spanning trees,” in Symposium of the German Associa-
tion for Pattern Reocgnition (DAGM), 2012.

L. Chen, “Topological structure in visual perception,” Science, vol. 218,
no. 4573, pp. 699-700, 1982.

T. F. Gonzalez, “Clustering to minimize the maximum intercluster
distance,” Theoretical Computer ence, vol. 38, no. 2-3, pp. 293-306,
1985.

D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana,
USA, January 7-9, 2007, 2007.

S. S. Khan and A. Ahmad, “Cluster center initialization algorithm for
k-modes clustering,” Expert Systems with Applications, vol. 40, no. 18,
pp. 7444-7456, 2013.

S. J. Redmond and C. Heneghan, “A method for initialising the k-means
clustering algorithm using kd-trees,” Pattern Recognition Letters, vol. 28,
no. 8, pp. 965-973, 2007.

M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” acm sigmod record,
1999.

A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, p. 1492, 2014.

T. Luo and C. Zhong, “A neighborhood density estimation clustering al-
gorithm based on minimum spanning tree,” in International Conference
on Rough Set and Knowledge Technology, 2010, 2010.

X. Wang, X. L. Wang, C. Chen, and D. M. Wilkes, “Enhancing minimum
spanning tree-based clustering by removing density-based outliers,”
Digital Signal Processing, vol. 23, no. 5, pp. 1523-1538, 2013.

P. Xi, H. Tang, Z. Lei, Y. Zhang, and S. Xiao, “A unified framework
for representation-based subspace clustering of out-of-sample and large-
scale data,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 27, no. 12, pp. 2499-2512, 2015.

Q. He, W. Zhao, and Z. Shi, “Chsmst:a clustering algorithm based on
hyper surface and minimum spanning tree,” Soft Computing, vol. 15,
no. 6, pp. 1097-1103, 2011.

Y. Ma, H. Lin, Y. Wang, H. Huang, and X. He, “A multi-stage
hierarchical clustering algorithm based on centroid of tree and cut edge
constraint,” Information Sciences, vol. 557, no. 2, 2021.

[28]

[29]

(30]

(31]

(32]
[33]

[34]

[35]
[36]

(371

[38]

[39]

[40]

[41]

J. Huang, R. Xu, D. Cheng, S. Zhang, and K. Shang, “A novel hybrid
clustering algorithm based on minimum spanning tree of natural core
points,” IEEE Access, vol. PP, no. 99, pp. 1-1, 2019.

G. Mishra and S. K. Mohanty, “A fast hybrid clustering technique based
on local nearest neighbor using minimum spanning tree,” Expert Systems
with Application, vol. 132, no. OCT., pp. 28-43, 2019.

D. Cheng, Q. Zhu, J. Huang, Q. Wu, and L. Yang, “Clustering with
local density peaks-based minimum spanning tree,” IEEE Transactions
on Knowledge and Data Engineering, vol. PP, no. 99, pp. 1-1, 2019.
S. Xia, Y. Liu, D. Xin, G. Wang, and Y. Luo, “Granular ball comput-
ing classifiers for efficient, scalable and robust learning,” Information
Sciences, vol. 483, 2019.

S. Xia, G. Wang, X. Gao, and X. Peng, “Gbsvm: Granular-ball support
vector machine,” arXiv preprint arXiv:2210.03120, 2022.

S.-y. Xia, J. Xie, and G.-y. Wang, “An adaptive granularity clustering
method based on hyper-ball,” arXiv preprint arXiv:2205.14592, 2022.
Aristides, Gionis, Heikki, Mannila, Panayiotis, and Tsaparas, “Clustering
aggregation,” Acm Transactions on Knowledge Discovery from Data,
2007.

J. Ha, S. Seok, and J. S. Lee, “A precise ranking method for outlier
detection,” Information Sciences, vol. 324, pp. 88-107, 2015.

——, “Robust outlier detection using the instability factor,” Knowledge-
Based Systems, vol. 63, no. jun., pp. 15-23, 2014.

J. B. Beltman, A. F. M. Marée, and R. J. De Boer, “Analysing immune
cell migration,” Nature Reviews Immunology, vol. 9, no. 11, pp. 789—
798, 2009.

D. U. Pizzagalli, Y. Farsakoglu, M. Palomino-Segura, E. Palladino, and
S. F. Gonzalez, “Leukocyte tracking database, a collection of immune
cell tracks from intravital 2-photon microscopy videos,” entific Data,
vol. 5, p. 180129, 2018.

D. U. Pizzagalli, S. F. Gonzalez, and R. Krause, “A trainable clus-
tering algorithm based on shortest paths from density peaks,” Science
Advances, vol. 5, no. 10, p. eaax3770, 2019.

D. Steinley, “Properties of the hubert-arabie adjusted rand index,”
Psychological Methods, vol. 9, no. 3, pp. 386-396, 2004.

W. Y. Chen, Y. Song, H. Bai, C. J. Lin, and E. Y. Chang, “Parallel
spectral clustering in distributed systems,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 3, pp. 568-586, 2011.



(d) (e) (f)

Fig. 1. The clustering results of K-means on synthetic data set without noise.
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Fig. 2. The clustering results of DBSCAN on synthetic data set without noise.
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Fig. 3. The clustering results of DP on synthetic data set without noise.
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Fig. 4. The clustering results of Normal_MST on synthetic data set without noise.
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Fig. 5. The clustering results of LDP_MST on synthetic data set without noise.
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Fig. 6. The clustering results of K-means on synthetic data set with noise.
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Fig. 7. The clustering results of DBSCAN on synthetic data set with noise.
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Fig. 8. The clustering results of DP on synthetic data set with noise.
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Fig. 9. The clustering results of Normal_MST on synthetic data set with noise.
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The clustering results of LDP_MST on synthetic data set with noise.
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