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Abstract

Fracture phenomena in soft materials span multiple length- and timescales. This poses a

major challenge in computational modeling and predictive materials design. To pass quantita-

tively from molecular- to continuum scales, a precise representation of the material response

at the molecular level is vital. Here, we derive the nonlinear elastic response and fracture char-

acteristics of individual siloxane molecules using molecular dynamics (MD) studies. For short

chains, we find deviations from classical scalings for both the effective stiffness and mean

chain rupture times. A simple model of a non-uniform chain of Kuhn segments captures the

observed effect and agrees well with MD data. We find that the dominating fracture mecha-

nism depends on the applied force scale in a non-monotonic fashion. This analysis suggests

that common polydimethylsiloxane (PDMS) networks fail at crosslinking points. Our results

can be readily lumped into coarse-grained models. Although focusing on PDMS as a model

system, our study presents a general procedure to pass beyond the window of accessible rup-

ture times in MD studies employing mean first passage time theory, which can be exploited for

arbitrary molecular systems.
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1 Introduction

Most things in life start small. This basic concept also applies to the failure of soft materials, emerg-

ing from the rupture of interatomic bonds. Predicting the fracture journey that follows becomes a

question of failure mechanisms and lengthscales.1–3 In view of failure mechanisms, Lake-Thomas

theory has formed our understanding of how much energy it takes to break an elastic chain.4 When

a crack propagates within a stretched elastic material, each repeat unit within chains crossing the

fracture plane stores energy. The resultant fracture energy should thus reflect the elastic energy

stored within the entire chain instead of pure single bond scission. Recent works on tough hydro-

gels hint at a more complicated picture, in which network characteristics such as entanglements

have a crucial effect on fracture.5,6

Multiple lengthscales form the basis of the classical fracture mechanics picture. In the ideally

brittle limit, dissipation and material failure occur on the scale of the atomistic separation length.

In soft tough materials, the characteristic lengthscale in the continuum limit is the so-called elasto-

adhesive length. This lengthscale is typically microscopic and represents the region of nonlinear

elastic deformation around a macroscopic crack tip.3 It can be coupled to molecular failure pro-

cesses at small scales,4,7 as well as energy dissipation at the mesoscale8–10 and macroscopic effects

such as crack blunting.11,12 In a recent work, scale-free cavity growth at constant driving pres-

sure was accessed in the mesoscopic region.13 In this picture, no well defined crack tip exists and

corresponding process zones for the calculation of fracture energies becomes obsolete.

Fracture in soft solids thus displays manifold characteristics that are deviating from classical

theories. To get further insight into what governs these deviations, multiple length- and timescales

need to be bridged, which poses a major computational challenge. Here, we address this challenge

by providing a detailed description of the nonlinear elastic response of molecular building blocks

up to fracture. These building blocks can then provide starting grounds for higher level coarse

grained models.

Previous studies on the force-extension relation and fracture of individual molecules encom-

pass both experimental- and computational investigations. Experimental studies include atomic
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force microscopy (AFM),14–17 optical tweezers,18–20 as well as magnetic tweezers.21–23 Due to its

large accessible force range up toO(nN) and high resolution, AFM has been widely adopted.24 In-

vestigations using AFM comprise a wide spectrum, ranging from proteins,25,26 DNA,27,28 polysac-

charides,29 poly(ethylene glycol)30 and poly(methacrylic acid)31 to polydimethylsiloxane (PDMS).32

Using computational methods, ab initio molecular dynamics (AIMD)33,34 simulations allow

for an on-the-fly computation of electronic structures based on quantum mechanics. While bond

fracture can be modeled in this setting, high computational costs limit AIMD studies to O(nm)

and O(ps).35–37 At higher length- and timescales, steered molecular dynamics (MD) simulations

have emerged as the primary method in studying the force-extension behavior of molecules.38–41

Classical MD methods are amenable of treating system sizes of several hundreds of nanometers

and time scales on the order of nanoseconds. However, atomic interactions are typically modeled

via empirical interatomic potentials, which require a predefined atomic connectivity remaining un-

changed throughout simulations, such that fracture of interatomic bonds cannot be described. As

an alternative, bond-order based force fields were developed to bridge the gap between ab-initio

and empirical force fields. Here, we derive the quasi-static force-extension and rupture properties

of single molecules up to O(100 nm) and O(ns) by enriching all-atom steered molecular dynam-

ics simulations with a bond-order based force field (ReaxFF),42–46 with the help of the LAMMPS

software package.47 Unlike classical atomistic bond potentials, ReaxFF allows for different atomic

bonding states, such that fracture events can be captured. Simulations thus reduce the gap be-

tween length- and time scales accessible using ab initio computational methods and experimental

approaches. We focus on PDMS as a model system as used in previous studies,13 for which both

linear PDMS and crosslinked PDMS are investigated.
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2 Molecular Dynamics Studies

2.1 Nonlinear elastic response

Prior to failure, the static molecular response is governed by entropic elasticity at extensions well

below the unstretched contour length, and enthalpic elasticity at higher extensions. The exact

shape of this nonlinear elastic force-extension relation depends on the specific molecular struc-

ture under investigation. To derive the nonlinear elastic response of siloxane molecules, PDMS-n

molecules of varying polymerization degree n are created. Figure 1a illustrates the chemical struc-

ture of PDMS-n as an example. Each PDMS-n molecule is embedded in a simulation box, which

is set up both with and without solvent molecules. When solvent molecules are present, periodic

boundary conditions are applied. We use hexamethyldisiloxane (HMDSO) molecules as a solvent,

as interactions between HMDSO and PDMS do not alter the rupture behavior of PDMS (com-

pared to interactions with itself).37 In comparison, trace amounts of water were found to lower the

maximally attained rupture stretch.37

All simulations are performed with the parameter set specifically trained and optimized for

PDMS.43 Without solvent molecules, the number of degrees of freedom is 3na, with na being the

number of atoms in PDMS-n. na scales linearly with polymerization degree n. For simulations in

which solvent molecules are present, the overall system size increases by 3ns degrees of freedom

based on ns solvent molecules. There is no upper constraint on ns. Its lower bound is set by

the requirement of generating sufficiently large RVE’s for subsequent steered molecular dynamics

runs, preventing self-interactions. For simulations of PDMS-27 up to fracture, ns/na ∼ 60.

amounts to 60 × 3na degrees of freedom. Here, the multiplicative factor of 60 stems from

the presence of solvent molecules. In all simulations, a timestep of 0.1 fs is applied. Systems are

relaxed in an NPT ensemble at ambient conditions (T = 300 K, p = 1 atm). Following relaxation,

a constant repulsive force F between the 2 terminal Si atoms is applied in an NVT ensemble. In this

ensemble, volume V is held constant, such that the equilibrated end-to-end distance is purely based

on the applied force (rescalings of the simulation box are prohibited). Results are compared to a
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displacement controlled setting, in which both terminal Si atoms are held constant at fixed end-to-

end distance R and the exerted force is recorded. Figure 1c shows the nonlinear elastic reponse of

PDMS-27 up to fracture. The choice of boundary condition does not influence the force-extension

relation in both entropic (R � L) and enthalpic (R > L) regimes, where the unstretched contour

length L marks the crossover point. For comparison with classical polymer models, the inset of

Figure 1c highlights the divergence of the freely jointed chain model (FJC)21 for an end-to-end

chain distance R approaching the unstretched contour length L = 6.4 nm. In contrast, the elastic

freely jointed chain model (EFJC)48 captures the nonlinear elastic force-extension relation also

within the enthalpic regime R > L. The change of slope at large forces is encoded in the F -

dependent bond potential of mean force U(b;F ), as investigated in more detail in Section 2.2.

The force-extension curve at large deformation is linear. As expected from the EFJC model,

the force-extension relation of a single polymer chain is given as

R(F ) = L

(
1 +

F

F0

)
L(ξ), where ξ =

FLk
kBT

, F0 = KL. (1)

Equation (1) represents a classical FJC model with an added elastic extension (1 + F/F0). Within

the entropic regime, elasticity is modeled via the Langevin function L(ξ) = coth(ξ) − ξ−1. With

the added elastic extension, the EFJC model introduces the effective Hookean spring constant K

as an additional elastic parameter within the enthalpic regime.

For computational efficiency, solvent molecules are removed for the determination of F0, and

T = 1 K is chosen to reduce thermal noise. All other simulations are performed at T = 300 K. Note

that in this study, we focus on the enthalpic regime, in which temperature effects on the mechanical

response become negligible. Insensitivity of F0 towards both temperature and solvent molecules in

the enthalpic regime is tested for short oligomers (see Figures S3 and S4 in the Appendix). We find

that both temperature and solvent molecules do not influence F0 in the ethalpic regime. For small

forces F � F0 in the entropic limit, we have R(F ) ' F/K̃, with K̃ = 3kBT/(LLk) the elastic

Hookean spring constant within the entropic regime. For large forces F � F0 in the enthalpic
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Figure 1: (a) Chemical structure of PDMS-n illustrating (n− 1) repeating units. (b) Non-uniform
chain of springs model consisting of two types of Kuhn springs. (c) Force-extension relation F (R)
of a single PDMS-27 molecule measured at T = 300 K and P = 1 atm in the presence of HMDSO
solvent molecules. Red/black data points are obtained in a displacement/force controlled setting,
respectively. Inset showing the small extension regime (R < L). The FJC model (pink solid upper
line) and elastic FJC model (blue solid lower line) both capture the entropic regime R� L, while
the latter shows better agreement in the enthalpic region R > L. (d) Evolution of F0 = L∂F/∂R,
obtained at T = 1 K within the elastic regime as shown in the inset for n = 2 up to n = 376. MD
data is captured well by a model of non-uniform chain of springs, consisting of two types of Kuhn
springs as sketched in (b).

limit, R(F ) ' F/K, as the Langevin function L(ξ) approaches unity for ξ � 1. Lk is obtained

from fitting the EFJC model to the measured force-extension curve at T = 300 K, see Figure 1c. A

comparison to other hypothetical Kuhn segments (which consistently overpredict the unstretched

contour length L) is shown in Figure S2 in the Appendix). Further support giving an independent

estimate of Lk from analyzing the Si-Si vector correlation function is given in supplementary

Section S2. Here, Lk = 5.5 ± 0.7 Å is the Kuhn length of the polymer chain corresponding to

the mean end-to-end distance of a Si-O-Si-O-Si triplet, which in the following is abbreviated as

Si-Si-Si.
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For a low polymerization degree of n = 2, the resultant slope F0 when plotting force F versus

stretch R/L attains its maximum value F0 = 31.35 nN (see inset in Figure 1d). F0 decreases with

increasing n in a nonlinear fashion as illustrated in Figure 1d. Characteristic forces are calculated

for a large range of polymerization degrees n ∈ [2, 3, 4, 5, 7, 10, 15, 20, 50, 100, 376]. This differs

from a classical model of n identical springs in series, for which K ∝ 1/n and L ∝ n. To de-

termine the source of this deviation, we track bond length distributions at fixed repulsive force

between terminal Si atoms. We find that within the enthalpic regime, internal triplet distances are

shorter than terminal ones. This difference in triplet distance distributions can be related to restric-

tions in bond angles and dihedrals at terminal atoms. Endowing internal Si-Si-Si Kuhn segments

with spring stiffness ki and equilibrium length li, whereas terminal Kuhn segments possess spring

stiffness kt and equilibrium length lt, gives the overall Hookean spring constant K and contour

length L as

K =

(
2

kt
+
n/2− 2

ki

)−1
, L = 2lt +

(n
2
− 2
)
li. (2)

Here, n/2 denotes the total number of Kuhn segments, where n is the polymerization degree. kt =

47.3 ±0.1 nN/nm and lt = 0.52±0.01 nm are directly computed from the bond length distribution

of PDMS-4, which only consists of two terminal Kuhn segments (kt = 2K and lt = L/2). Using

a fit to simulation results for PDMS-5 to calculate the remaining free parameters, we find that

ki = 40.82 ± 0.01 nN/nm and li = 0.48 ± 0.01 nm of the internal Kuhn segment. As shown by

the solid black line in Figure 1d, this model of a non-uniform chain of springs agrees well with

MD data and captures the effect of terminal springs at small n, as well as convergence of F0 to a

plateau at large n.

To summarize, the elastic response of PDMS oligomers (both within entropic and enthalpic

regimes) is characterized by the Si triplet length Lk based on two reasons: First, the entropic

part of the force-extension curve suggests Lk to be identical to the extension of a Si-Si-Si triplet.

Second, n-dependencies of K and L are consistently captured only if the number (n/2) of Si-Si-Si

triplets is used in Equation (2). In sharp contrast, the fracture behavior to be discussed next will be

dominated by the F -dependent characteristics of single covalent atomic bonds.
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2.2 Fracture characteristics

At the molecular scale, fracture is stochastic. An intuitive question to ask is ’Where and when does

a network tend to break?’. Here, we try to quantitatively answer this question for PDMS in terms

of mean rupture times and preferred fracture modes.

To distinguish between rupture of the PDMS-n backbone (chain scission) and rupture at crosslink-

ing sites (crosslink failure), we take into account two different structures: PDMS-n as used in the

previous Section, as well as two PDMS-4 molecules linked via a crosslinking site -CH2-CH2-.

Chain scission thus stems from the rupture of Si-O bonds, while crosslink failure results from rup-

turing Si-C bonds. The accessible window of mean rupture times in MD studies lies in the range

of 10−2− 100 ns. The upper limit is set by computational feasibility, while the lower limit depends

on the molecular vibration frequency of the polymer chain below which inertial effects dominate

the response.

To extend beyond this rupture time window and determine mean bond rupture times τ(F ) on

longer timescales, we use a statistical extrapolation scheme. Our approach renders a close analogy

to the calculation of mean first passage times for chemical processes with a single reaction coordi-

nate,49 for the thermal or enforced breakage of discrete one-dimensional chains,50 Morse-chains51

and biomolecules.52 Its derivation is provided in the Supplementary Information. We proceed in

the following way: Stationary equilibrium Si-O and Si-C bond length probability densities p(b) of

PDMS-4, PDMS-376 and linked PDMS-4 are measured at different levels of constant force (cf.

Figure 2). Using p(b), we calculate mean chain rupture times, for which we need to pass from

rupture times of single bonds to those of chains with 2n bonds.

At fixed force, directly measured single bond probability densities p(b) serve to define an ef-

fective potential, with

p(b) =
exp(−U/kBT )∫ br

0
exp(−U/kBT )db

. (3)

Here, br is the rupture bond length. For later calculations of mean chain rupture times, we need a

functional form of the effective bond potential U . In the following, using the notation U(b;F ), we

8



(c)

1.4 1.6 1.8 2
0

2

4

6

8

1.8 2 2.2 2.4
0

2

4

6

8

(d)

(b)

1.8 2 2.2 2.4
0

5

10

15

Si-C

1.4 1.6 1.8 2
0

5

10

15 Si-O

(a)

Si-O Si-C

Figure 2: (a and b) Stationary nonequilibrium MD probability densities of Si-O and Si-C bond
lengths on linked PDMS-4 at various force levels (simulations performed in the presence of solvent
molecules). Grey curves denote intermediate force levels. (c and d) Radial bond potential of
mean force calculated from bond length distributions highlighted in (a,b). Black curves represent
polynomial fits of order 4 (Si-O) and 2 (Si-C). All simulations are performed at T = 300 K.
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emphasize that the potential is a function of bond length b, while its parameters (in this case b1)

depend on F . Numerically solving for U from Equation (3) at different levels of applied force, we

see that U needs to satisfy the following properties: It should have the generic form of a double-

well potential (fourth order polynomial) with minima corresponding to two different equilibrium

bond lengths (cf. Figure S7). Here, we denote b1 as the equilibrium bond length corresponding to

the first minimum, and choose U(b1) = 0 for convenience. Most importantly, we observe a nearly

F -independent parabolic shape of U ′′(b) about its second minimum at b ' b2, i.e., U ′′(b) = c2 +

k2(b−b2)2 (cf. Figure S7). Since U ′′(b) exhibits a parabolic and F -independent shape and location,

the corresponding parameters b2, c2, k2 can be treated as F -independent constants. This finding

forms the basis of rendering our statistical extrapolation scheme feasible, since b1(F ) remains as

the only force-dependent fitting parameter. In addition, we only observe a weak dependence of b1

on F , which forms the basis for an extrapolation to higher force regimes. These observations lead

to a functional form of U(b;F ) as

U(b;F ) =

∫ b

b1

∫ x

b1

[
c2 + k2(y − b2)2

]
dy dx

=
(b− b1)2{6c2 + k2[3b

2
1 + 6b22 − 8b1b2 + 2(b1 − 2b2)b+ b2]}

12
. (4)

Bond length distributions (Figures 2a and 2b) are fitted to Equations (3), (4) with fitting pa-

rameters given in Table SI. The resulting radial bond potentials of mean force are illustrated in

Figure 2c and 2d, with corresponding polynomials of order 4 (Si-O bond) and order 2 (Si-C bond,

for which b2 = k2 = 0). Note that fitting deviations in Si-C potentials are based on restricting

b1(F ) to be the only force-dependent parameter. The largest possible instantaneous Si-O an Si-C

bond length value in stable chain configurations is given in Table SI. As shown in Figure 2c, an

increasing non-linearity develops with increasing tension for Si-O bonds. This is rooted in bond

angle potentials losing their dominance within the energy landscape due to the externally enforced

alignment. At this point, the remaining interactions (dihedral, Si-C, Si-H, O-H) come into play.

With an expression for U(b;F ) at hand, we proceed with the calculation of mean chain rupture
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times, passing from rupture times of single bonds to those of chains with 2n bonds. Furthermore,

it needs to be verified that a theory neglecting inertia effects captures the attendant fracture char-

acteristics.

Neglecting inertia effects, the mean rupture time of a single bond is calculated from the Fokker-

Planck equation as53–55

τ(F ) =
ζ

kBT

∫ br

b1(F )

∫ z

0

Ψ(y)

Ψ(z)
dy dz, with Ψ(b) = exp

[
−U(b;F )

kBT

]
. (5)

This is a purely theoretical limit, as atomistic simulations (PDMS chains consist of multiple Si-O

and Si-C bonds) measure τn. ζ is an a priori unknown friction coefficient, which will be determined

later by matching theoretical rupture times τn(F ) with those obtained from MD simulations. Utiliz-

ing the Fokker-Planck approach, Equation (S-2) (or equivalently Brownian Dynamics simulations

via Equation (S-1)) can be used to explore the rupture time distribution p(tr;F ) of a single bond,

which is nearly mono-exponential (apart from a small dip at tr → 0).

In order to pass to the rupture time distribution pn(tr;F ) of a chain with polymerization degree

n (which thus contains 2n bonds), we assume independent bonds. The probability of a chain (i.e.

at least one of its assumed identical bonds) rupturing during time interval t after onset of F at time

t = 0 is

Pn(t;F ) = 1−
[
1−

∫ t

0

p(tr;F )dtr

]2n
= 1− e−2nt/τ(F ). (6)

The term in parentheses in Equation (6) denotes the probability of an individual bond staying

intact until time t. The probability distribution for rupture times tr of n-chains (PDMS-n) is thus

pn(tr;F ) = (d/dtr)Pn(tr;F ) = 2ne−2ntr/τ(F )/τ(F ), from which the mean chain rupture time

τn(F ) follows as τn(F ) = τ(F )/2n. We compare these theoretical expressions to those measured

in MD simulations. Figure 3a shows measurements on PDMS-4. MD measurements show a

mono-exponential shape of p4(tr;F ), which is in agreement with the Fokker-Planck prediction for

a single bond and the assumption of independent bonds in chains of higher polymerization degree.

Figure 3b illustrates τn(F ) at three different constant stretching forces F , for which each data
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point is the average of 10000 independent samples. For large n, τn(F ) approaches the expected

∝ 1/n limit. Deviations from this scaling for short chains are reminiscent of the non-uniform chain

of springs effect highlighted in Figure 1b. Equivalent to the functional form given in Equation (2),

we have
τn(F )

ns
=

1

a0 + (n− 1)/a
,

τ(F )

ns
= lim

n→∞

2nτn(F )

ns
= 2a (7)

Fitting parameters at F = 6.25 nN are obtained as a0 = −24 ± 1 and a = 0.108 ± 0.004,

while at F = 6.11 nN, a0 = −9.1 ± 0.4 and a = 0.28 ± 0.01. Single bond mean rupture times

depicted in Figure 3c are calculated as τSi−O(F ) = limn→∞ 2nτn(F ) = 2a ns. For Si-C bonds

(which are present twice in linked PDMS-4), force levels of F = 5.21 nN, F = 5.28 nN and

F = 5.35 nN are investigated. This force range in MD already spans two decades in single-bond

mean rupture time τ(F ). The resulting single bond mean rupture time is computed as τSi−C(F ) =

2τ linked−PDMS−4(F ).

By matching the measured τn with the theoretically predicted one, we can furthermore deter-

mine ζ (which is the shape-preserving, force-independent vertical shift required to match mea-

surement and theory). Solid lines in Figure 3c illustrate the τ(F ) resulting from the Fokker-Planck

equation (5). This solution allows to extend beyond the rupture time window accessible in MD

studies (shaded region in Figure 3c). We find that the lifetime of a single representative Si-O

bond is much longer than that of a Si-C bond, with an increasing gap for larger F (based on the

significant difference in potentials at high forces).

To determine preferred fracture mechanisms, we note that with increasing polymerization de-

gree n, τSi−On (F ) decreases, while τSi−Cn (F ) is constant (based on the constant number of Si-C

bonds when focusing on the single chain level, see Figure 4b). Rupture of Si-O bonds (chain scis-

sion) and Si-C bonds (crosslink failure) thus becomes comparable at a crossover polymerization

degree nc. Figure 4b displays a comparison of mean chain rupture times τn(F ) at different levels

of applied force. Tracking the crossover polymerization degree nc allows to identify two different

failure regimes: For n < nc, crosslink failure is anticipated, while chain scission is the preferred

failure mode for n > nc. Figure 4c highlights the effective rupture time (taking into account
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Figure 3: (a) Measured rupture time probability density p4(tr;F ) of PDMS-4 at constant stretching
force F = 6.46 nN. Green solid line: Mono-exponential used in the calculation of mean rupture
time τn(F ). (b) Evolution of mean chain rupture time τn(F ) with increasing polymerization degree
n at three different forces. Each data point is the average of 10000 simulations. Solid lines are
obtained from fitting the functional form given in Equation (7). For large n, τn(F ) ∝ 1/n as
expected. Deviations for short chains are related to the effect of non-uniform chain of springs
highlighted in Figure 1d. (c) Single-bond mean rupture time τ(F ) for Si-O (obtained from (7))
and Si-C (average of individual MD simulations). Solid lines: Solution to the mean first passage
time problem (5) based on U (cf. Figure 2b-c). The shaded region highlights the rupture time
window accessible in MD studies. All simulations are performed at T = 300 K.

both Si-O and Si-C bonds) as contour lines as a function of n and F . Again, the crossover poly-

merization degree nc differentiates a region dominated by crosslink failure (green) from a regime

dominated by chain scission (blue).

We observe a strengthening effect in Si-O bonds with increasing force, which is reminiscent

of phenomena observed in systems involving catch bonds, e.g., membrane-to-surface adhesion,56

myosin and actin,57 or signaling receptors and their ligands.58,59 This strengthening emerges as a

’re-entrant’ effect of crosslink failure for polymerization degrees n > 103, which can be related to

the higher order structure of Si-O bond potentials (see the nonlinearity developing at higher forces,

Figures 2, S5 and S9). Si-O bonds are stable at low forces, at which the failure of crosslinking

junctions is the dominating fracture mechanism. At intermediate forces, chain scission dominates.

At high forces, at which the increasing stiffness of the second minimum in Si-O potentials comes

into play, fracture characteristics are dominated by crosslink failure again. With increasing n, the

force regime dominated by chain scission grows, which is in keeping with Equation (6).

Typical siloxane materials used in the laboratory setting are highlighted in Figure 4c in terms

of polymerization degree n. Single molecules in Sylgard 184 and DMS-V31 are entirely dominated
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by crosslink failure. In contrast, individual molecules in Sylgard 186 feature a much higher poly-

merization degree. As such, their fracture behavior strongly depends on the applied force, with

crosslink failure in the low force regime transitioning to chain scission at F > 2.5 nN.

(a)
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Figure 4: Crosslink failure versus chain scission. (a) We model constituent molecules of monodis-
perse strands, testing for chain scission along the PDMS backbone (blue) versus failure at
crosslinking junctions (green). (b) Evolution of crossover polymerization degree nc (dashed black
line) with increasing force F . Intersections of τn(F ) for Si-O along the backbone and τ2(F ) for
Si-C at two crosslinking junctions are illustrated at three different force levels. (c) Effective rup-
ture time of a network strand (contour lines) as a function of n and F . Green: Region dominated
by failure of crosslinking junctions. Blue: Chain scission dominated region. (A) Sylgard 184
(n = 78), (B) DMS-V31 (n = 376), (C) Sylgard 186 (n = 64848).60 All predictions apply to
T = 300 K.

In the above, we model rupture time distributions using an inertia-free Fokker-Planck approach.

To justify this approach, it remains to investigate the absence of solvent molecules on rupture time

distributions pn(tr, F ). While the dynamics of bond lengths exhibits inertia effects, we find the

rupture time distribution to be unaffected by the presence/absence of explicit solvent molecules, as

shown in Figure S8. Without solvent molecules, inertia effects are maximal and friction is absent.

The presence of solvent molecules provides additional noise and stochastic collisions, such that

inertia effects are diminished. The rupture time distribution is thus also unaffected by the degree

of suppression of inertia effects. Furthermore, we observe a nearly mono-exponential rupture time

probability distribution, in which the majority of bonds does not break during the first oscillation

but at later times. This is in stark contrast to the dominance of inertial effects, for which bonds that
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are still intact after the first oscillation would never fail (the rupture criterion would not be fulfilled

in subsequent oscillations if it was not already fulfilled in the first oscillation).

3 Discussion and Outlook

This work characterizes the nonlinear elastic- and fracture behavior of PDMS. The nonlinear elastic

repsonse of siloxane oligomers is captured well using the EFJC model, both within entropic- and

enthalpic regimes. At low polymerization degrees n, we find a deviation from a classical scaling

of effective stiffness K ∝ 1/n, which can be captured with a simple model of non-uniform chains

of springs, with each spring constituting a Kuhn segment.

Passing to the inelastic behavior of PDMS, we focus on rupture times of both Si-O bonds

(present in the backbone of siloxane oligomers), as well as Si-C bonds (present at crosslinking

sites). When calculating mean chain rupture times of siloxane oligomers, we again observe a

deviation from classical scalings (τn(F ) ∝ 1/n) at low polymerization degrees. Similar to the

nonlinear elastic part, a model including the ’end effect’ on mean chain rupture times agrees well

with simulations.

We find that the lifetime of single Si-O bonds is much longer than that of a Si-C bond. We

define a crossover polymerization degree nc at which the dominating rupture mechanism of the

crosslinked network passes from crosslink failure (rupture of Si-C bonds) to chain scission (rupture

of Si-O bonds on PDMS-n). To pass to long timescales, we use a statistical extrapolation scheme

in order to understand bond fracture within the network. Surprisingly, we find that the dominating

fracture mechanism depends on the applied force scale in a non-monotonous fashion. The non-

monotonic dependence of nc on F is rooted in nonlinearities in the Si-O bond potential and the

corresponding stiffness dependence on force at the two minima.

For single molecules in typical siloxane materials used in the laboratory setting, such as Syl-

gard 184 and DMS-V31, our analysis suggests breakage exclusively at crosslinks. For individual

molecules in Sylgard 186 featuring higher polymerization degrees however, the attendant failure
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mode depends on the magnitude of applied force. While crosslink failure dominates at low forces,

chain scission is expected for F > 2.5 nN. It furthermore bears mentioning that our analysis fo-

cuses on the single chain level. Possible inhomogeneities in force distribution based on network

topology (and the resultant changes in fracture characteristics) furnish an important point for fu-

ture studies. These could aid in elucidating network properties passing from the single chain to the

continuum level, focusing on the influence of polymerization degree and crosslink density.

Our results provide building blocks, which can be readily used in coarse-grained higher scale

models. As an example, network models of nonlinear springs could be easily tailored to silox-

ane systems by implementing a material model corresponding to the nonlinear elastic response

derived in this work. In this setting, crosslinking molecules could be lumped into nodes repre-

senting crosslinking sites. Tracking attendant forces upon deformation would then allow for the

implementation of fracture criteria corresponding to those derived in this work.

Finally, our work provides a generic procedure to pass beyond the window of accessible rupture

times in MD studies, which can be applied for arbitrary molecular systems.
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S1 Characteristic force at finite temperature
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Figure S1: Characteristic force (equivalent to Fig. 1(d) in the main manuscript) at T = 300 K. The
end effect (decreasing F0 with increasing n) is also observed at finite temperature. Added noise
due to entropic contributions impede the characterization of F0(n) within the enthalpic region, for
which we still recover F0 ∝ (n + 1)/n. In combination with a study of bond length distributions
along the chain (for all forces in the enthalpic part, the two terminal Kuhn springs (Si-Si-Si) are
longer than all internal springs), this leads us to the non-uniform chain of springs model.

S2 Kuhn length

We obtained an independent estimate of the Kuhn length of the PDMS chains by analyzing the

Si-Si vector correlation function C(i) = 〈uj · uj+i〉, where uj denotes the unit vector parallel to

the vector connecting the jth and (j + 1)th Si atom along the PDMS backbone, and the average

is taken over all j ∈ {1, .., n} within an ensemble of equilibrium PDMS-n chains. For the FRC

model, lnC(i) = −`/Lp, whereLp is the persistence length, and ` ≈ 2.932±0.003 Å the measured

average distance between adjacent Si atoms. We obtain Lp = 2.67 ± 0.07 Å (n = 10), Lp =

2.86± 0.09 Å (n = 20), Lp = 2.69± 0.06 Å (n = 50), Lp = 2.77± 0.05 Å (n = 100). The Kuhn

length Lk is twice as large as the persistence length, confirming Lk ≈ 5.5 Å. This is in agreement

with prior literature estimates.61
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Figure S2: Measured equilibrium contour length (blue circles) in comparison to different models
of Kuhn segments (Si-O, Si-Si, and Si-Si-Si). Using force-extension simulations at T = 1 K,
the measured equilibrium contour length (specified in units of nm) follows from the intercept of
the enthalpic part on the horizontal axis at F = 0. Following the EFJC model, the equilibrium
contour length is the sum of all Kuhn segment lengths. We find that taking Si-O or Si-Si as a
Kuhn segment overestimates the measured equilibrium contour length, while taking Si-Si-Si as the
elementary Kuhn unit is in good agreement with measured values.

S3 Parameters of the double well potential

Table SI: Parameters of the effective bond potential U(b;F ) given by Eq. (4). All results have
been produced using the stated values, whose error is less than 3% for k2 and c2, and less than
1% for b1 and b2. For PDMS 4 (4 Si-O bonds) we obtained τ4(F = 90 kcal.mol−1.Å−1 = 6.2531
nN) = 0.221 ± 0.002 ns from atomistic simulation at T = 300 K. This value is reproduced via
Brownian dynamics using ζ = 105 ng/m2. For linked PDMS 4 (2 Si-C bonds) br = 0.255 nm and
we obtained τ2(F = 90 kcal.mol−1.Å−1) = 0.70 ± 0.04 ps and τ1(F = 80 kcal.mol−1.Å−1) =
0.94 ± 0.05 ps and τ1(F = 75 kcal.mol−1.Å−1) = 51.3 ± 0.8 ps from atomistic simulation at
T = 300 K. This value is reproduced via Brownian dynamics using ζ = 0.002 ng/m2. (∗) literature
estimate.

br k2 c2 b2 b1
System [nm] [kg.nm−2.s−2] [kg.s−2] [nm] [nm] F̃ ≡ F/ nN
PDMS 4 (8 Si-O bonds) 0.22 579866 −55.9156 0.186 0.15471 + 0.00085126 F̃ + 0.0002648 F̃ 2

PDMS 376 (752 Si-O bonds) 0.22 621285 −41.419 0.185 0.15471 + 0.00085126 F̃ + 0.0002648 F̃ 2

linked PDMS 4 (2 Si-C bonds) 0.255 0 186 0 0.20042 + 0.0029917 F̃ + 0.00031558 F̃ 2

linked PDMS 4 (1 C-C bond) (∗)0.181 0 800 0 0.151− 0.0005 F̃
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S4 Mean bond rupture time

Consider a Brownian bond whose time-dependent length b(t) resides within the interval [b0, br].

The bond is assumed to change its length resulting from three types of forces: Deterministic forces

due to a one-dimensional potential U(b;F ) of mean force, which we determine from atomistic sim-

ulation at constant force F , a frictional force (friction coefficient ζ) resulting from the surrounding

medium, and a stochastic force whose strength is governed by the fluctuation-dissipation theorem.

The Langevin equation for the bond length b thus reads53

d

dt
b = −1

ζ

dU(b;F )

db
+

√
2kBT

ζ
η(t), (S-1)

where η(t) represents uncorrelated white noise, 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′). We further

consider an adsorbing boundary at b = br (the rupture bond length) and a reflecting boundary at

b = b0. Let the conditional probability p2(b′, t|b, 0) distribution capture the probability that a bond,

whose length is b at time 0, assumes length b′ at a later time t′ ≥ 0, with b, b′ ∈ [b0, br]. Inline with

our assumptions, p2(b′, t|b, 0) solves an adjungated Fokker-Planck equation corresponding to the

Langevin Eq. (S-1)54,55

− ∂

∂t
p2(b

′, t|b, 0) = −
[
−1

ζ

∂U(b;F )

∂b

∂

∂b
+
kBT

ζ

∂2

∂b2

]
p2(b

′, t|b, 0) (S-2)

subject to initial condition p2(b′, 0|b, 0) = δ(b′ − b) and the abovementioned constraints. Then

G(br, t|b) =

∫ br

b0

p2(b
′, t|b, 0) db′ (S-3)

is the probability that b(t) resides within the interval [b0, br] at time t. The G is thus not nor-

malized except in the limit br → ∞, i.e., one has G(∞, t|b) = 1. Further G(br, 0|b) = 1 since

p2(b
′, 0|b, 0) = δ(b′ − b), and G(br,∞|b) = 0, since the bond length exceeds br with a nonzero

probability. One can write down an equation for G based on the equation (S-2) for p2.53 Due to the

boundary conditions for p2, the boundary conditions for G read G(br, 0|b) = 1 for b ∈ [b0, br] and
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G(br, 0|b) = 0 otherwise, and

G(br, t|b)|b=br = 0,
∂

∂b
G(br, t|b)

∣∣∣∣
b=b0

= 0. (S-4)

Because we are interested in the mean rupture time, we introduce the fraction f(br, t|b) of bonds

that reach br (and thus leave the interval [b0, br]) within the time interval [t, t+ dt]. One has

− dG(br, t|b) = −∂tG(br, t|b)dt ≡ f(br, t|b)dt, f(br, t|b) = −∂tG(br, t|b). (S-5)

The quantity

T1(br, b) =

∫ ∞
0

tf(br, t|b)dt = −
∫ ∞
0

t∂tG(br, t|b)dt =

∫ ∞
0

G(br, t|b)dt (S-6)

is the mean bond rupture time. Higher moments can also be calculated with the cumulative dis-

tribution function G(br, t|b) at hand. The equation for G can now be used to write down coupled

equations for the moments

Tj(br, b) =

∫ ∞
0

tnf(br, t|b) = j

∫ ∞
0

tj−1G(br, t|b) (j ≥ 1, T0 = 1). (S-7)

The equation for the jth moment reads

[
kBT

ζ

∂2

∂b2
− 1

ζ

∂U(b;F )

∂b

∂

∂b

]
Tj(br, b) = −jTj−1(br, b) j = 1, 2, .. (S-8)

and the boundary conditions for Tj(br, b) are

Tj(br, br) = 0,
∂

∂b
Tj(br, b)

∣∣∣∣
b=b0

= 0. (S-9)
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For j = 1 the above Eq. (S-8) reduces to

[
kBT

ζ

∂2

∂b2
− 1

ζ

∂U(b;F )

∂b

∂

∂b

]
T1(br, b) = −1. (S-10)

This ordinary differential boundary problem is solved by

T1(br, b) =

∫ br

b

dz
1

Ψ(z)

∫ z

b0

Ψ(y)

D
dy, (S-11)

with

Ψ(z) = exp

[∫ z −1
ζ
∂U(b;F )
∂b

kBT/ζ
db

]
= exp

[
−U(z;F )

kBT

]
. (S-12)

If we average the mean rupture time over all possible initial lengths of the bond,

T1(br) =

∫ br
b0
T1(br, b)p0(b) db∫ br
b0
p0(b) db

, (S-13)

where p0(b) is the density distribution of the initial value. Within the manuscript we denote the

mean rupture time by τ(F ) with

τ(F ) = T1(br, b = b1), (S-14)

to highlight its dependency on F , because br is a bond type-specific constant, because we are not

considering higher moments than the first moment, and because we choose the bond to reside at

t = 0 in its energetic minimum, located at b = b1(F ). Recall that our potential has the features

U(b1) = U ′(b1) = 0 and U ′′(b1) > 0. Moreover, we use b0 = 0 as the reflecting boundary,

noting that the precise choice does not matter as U tends to diverge at b → 0 due to excluded

volume interactions. We checked that the τ(F ) calculated semi-analytically via Eq. (S-11) with

Eq. (S-12) (numerical integration of the double-integral) is exactly identical with the mean rupture

time obtained via Brownian dynamics of the Langevin equation (S-1) with reflecting boundary at

b0 = 0, adsorbing boundary at br, and initial condition b(0) = b1(F ), if results are extrapolated to

infinitely small time step.
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S5 Influence of boundary conditions

Explanation of fix-move, fix-force, fix-smd and fix-spring. fix-smd is the primary method for

chain stretching used within the manuscript. Only Figure 1(c) is obtained using fix-move and fix-

force, while all other figures are obtained with fix-smd.

fix-move: move the positions of 2 terminal Si atoms of a PDMS chain with constant velocity V

(i.e. stretch a chain with constant velocity V ). When V is set to 0, we can fix the extension R of a

PDMS chain and measure the force F to obtain force-extension relation.

fix-force: apply a constant force F on a terminal Si atom while fixing the position of the other

terminal Si atom (i.e. stretch a polymer chain with constant force F ). After equilibrium is reached,

we register R to measure force extension.

fix-smd: apply a constant repulsive force F between 2 terminal Si atoms. After equilibrium is

reached, we register R to measure force extension.

fix-spring: use 2 springs to stretch the 2 terminal Si atoms of a PDMS chain. We can measure the

R and F (forces in 2 springs) to obtain force-extension. However due to the oscillation of springs,

the measurement error is extremely large so no results presented in this manuscript are measured

with this method.
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Figure S3: Investigation of the influence of boundary conditions, temperature, and the pres-
ence/absence of solvent molecules on the force-extension relation of PDMS-27. We find that the
choice of boundary condition does not influence the obtained force-extension relation (fix-spring
is omitted, as it is not suitable in force-extension measurements due to large measurement errors
linked to spring oscillations). fix-move measurements at T = 1K (red triangles) show a slightly
smoothed-out transition between entropic- and enthalpic regimes, which stems from reduced en-
tropic contributions.
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Figure S4: Investigation of the influence of boundary conditions on the observed ’end effect’. We
focus on three different molecules: PDMS-2, PDMS-20, as well as a PDMS-2 segment (Si-Si-
Si) located at the center of PDMS-20. Different boundary conditions do not influence the force-
extension relation within the enthalpic part. Furthermore, stretching an isolated PDMS-2 molecule
is equivalent of stretching PDMS-2 at the center of PDMS-20. The difference between data plottes
as × and � is the chain length between the 2 stretching points.
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S6 Bond length distributions and potentials
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Figure S5: Bond length distribution on (a) PDMS-4, (b) PDMS-376 and (c-e) linked PDMS-4
obtained from atomistic MD. Simulations are performed at T = 300 K.
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Figure S6: Effective bond potentials calculated from the bond length distributions on (a) PDMS-
4, (b) PDMS-376 and (c-e) linked PDMS-4, shown in Fig. S1, along with the Si-O and Si-C fit
functions (solid black lines) stated in the manuscript.
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Figure S7: Potential of mean force and its derivatives, U(b), U ′(b) and U ′′(b) for Si-O at different
levels of relatively strong applied force F > 3 nN (MD simulations performed in the presence of
solvent molecules). Since U ′′ exhibits parabolic and F -independent shape and location, the corre-
sponding parameters b2, c2, k2 in the 4th order polynomial are treated as F -independent constants.
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S7 Rupture times

Here, we provide evidence that the measured rupture times are basically unaffected by the presence

of HMDSO solvent molecules. In the absence of solvent, the friction coefficient ζ is implicitly

captured by the employed thermostat. This finding allows us to simulate the exponential tail of the

rupture time distribution in the absence of solvent (Fig. 3a). This renders computatiosn feasible

(as it is two orders of magnitude cheaper than the full atomistic simulation of the solvated PDMS

chain). Shown in Fig. S8 is the cumulative fraction of ruptured PDMS-6 chains versus time both

in the presence and absence of solvent molecules.
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Figure S8: Cumulative rupture time distribution for PDMS-6 at F = 6.39 nN. Red: Simulation
in the presence of HMDSO solvent molecules. Black: Simulations without solvent. Results ob-
tained by averaging over 100 (with) and 10000 (without solvent) independent start configurations.
Simulations are performed at T = 300 K.
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S8 Mean chain rupture times for different polymerization degrees
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Figure S9: Equivalent of Figure 3c for different polymerization degrees n. At low n (blue dashed
line), crosslinking junctions are weaker than Si-O bonds along the backbone (corresponding to
the dashed line at position (A) in Figure 4c. A double crossover between Si-C and Si-O bonds is
observed at high n (dashed red line). This corresponds the re-entrant effect observed in Figure 4c.
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