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Abstract: Dense packing of particles has provided important models to study the 

structure of matter in various systems such as liquid, glassy and crystalline phase, etc. 

The simplest sphere packing models are able to represent and capture salient properties 

of the building blocks for covalent, metallic and ionic crystals; it however becomes 

insufficient to reflect the broken symmetry of the commonly anisotropic molecules in 

complex molecular crystals. Here we develop spheroid models with the minimal degree 

of anisotropy, which serve as a simple geometrical representation for a rich spectrum 

of molecules——including both isotropic and anisotropic, convex and concave ones—

—in crystalline phases. Our models are determined via an “inverse packing” approach: 

given a molecular crystal, an optimal spheroid model is constructed using a “contact 

diagram”, which depicts packing relationship between neighboring molecules within 

the crystal. The spheroid models are capable of accurately capturing the broken 

symmetry and characterizing the equivalent volume of molecules in the crystalline 

phases. Our model also allows to retrieve such molecular information from poor-quality 

crystal X-ray diffraction data that otherwise would be simply discarded. 
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 In the crystalline phase the packing arrangement of individual building blocks (BD), 

including atoms, ions, molecules1,2, nano-particles3, and colloidal particles4, to name 

but a few, plays a pivotal role in determining the properties of the matters that they form, 

which is therefore of great interest in the modern era of physical, chemical and materials 

sciences5,6. Taking covalent, metallic and ionic crystals for instance, their structures 

have been successfully described by sphere packing modeling, in which their 

corresponding BDs are represented by the simplest and fully isotropic geometrical 

shape5, capturing salient fundamental properties of the BDs (such as symmetry). On the 

other hand, the sphere models are generally insufficient to describe complex molecular 

crystals, as the isotropic shape cannot reflect the broken symmetry of the molecules 

(illustrated in Fig. S1). Geometric representations with additional degrees of freedom 

are thus required for complex molecules vis-à-vis the molecular packing in the 

crystalline phases. 

Recently, dense crystalline packings of a variety of anisotropic particles including 

ellipsoids7, tetrahedra8, superballs9,10 and polyhedra11,12 have been investigated, as such 

nonspherical particles provide improved and more realistic representations of complex 

anisotropic BDs for a variety of condensed matters13,14. Among these shapes, spheroids 

are a family of symmetry-breaking shapes with minimal degree of anisotropy, yet they 

have demonstrated a rich spectrum of packing behaviors, and were employed in the 

study of Frenkel-Mulder contact diagram15,16, nematic phase transition17,18 and quasi-

crystals19. These intriguing studies imply that spheroids would also provide an effective 

representation for the “equivalent volume” of anisotropic complex BDs in the 

crystalline phase, i.e., the volume of the occupied space of each BD that is inaccessible 

by others. 

We herein report on a simple geometrical representation for complex molecules in 

crystalline phases, which is based on spheroid particles. Our models are determined via 

an “inverse packing” approach: Unlike traditional packing problems that focus on 

finding the optimal packing arrangement for a given particle shape, our “inverse 

packing” approach identifies the optimal spheroid shape (defined by the two semi-axis 

R1 and R2 in Fig. S1) that represents the molecules, when given their crystalline packing 
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structure. To achieve this goal, we devise a contact diagram which depicts the packing 

relationship (overlapping, contact, non-touching) of all representative spheroid pairs 

derived by the symmetry operations within a molecular crystal.  

By investigating distinct types of molecular crystals, we demonstrate the spheroid 

model can successfully capture the broken symmetry and key features of the molecules 

in their crystalline phases. Our work also provides a new paradigm that complex BDs 

can be represented by simple shapes allowing overlapping, instead of sticking to hard-

particles with increasing shape complexity. Although omitting many complex 

molecular details, the spheroid models are capable of accurately characterizing the 

equivalent volume of molecules in the crystalline phases. This is to contrast the widely 

used Van der Waals (VdW) volume20,21, which typically contains redundant structural 

information and requires nontrivial computation even for relatively simple molecules 

(such as CH4). Moreover, our models are also effective even with crystals with poor 

quality (i.e., those reconstructed from noisy data), from which valuable packing 

information can be extracted as useful input for further optimization of molecular 

design.  

Results 

Procedure for inverse packing problem. We first describe the inverse packing 

procedure: the centroid of a molecule is represented with the center of a spheroid, which 

is placed on a site of the molecular crystal lattice. The principal direction of the spheroid 

(i.e., direction of the axis of resolution of the spheroid) corresponds to that of the 

molecule, which is typically associated with the direction of molecular dipole moment. 

For nonpolar molecules, their principal symmetry axis is used to align with the principal 

direction of the spheroid. Once the position and direction of spheroids are determined, 

the osculation of two adjacent spheroids can be described using the relationship 

between their respective semi-axis Ri and Rj (see Fig. S2 for illustration). This Ri/Rj 

correlation is derived according to the Perram and Wertheim contact function22, which 

corresponds to a curve in the contact diagram, as illustrated with Fig. 1(c) for example. 
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A contact diagram is constructed with a series of contact curves, which depict whether 

a pair of spheroids with a specific semi-axis ratio Ri/Rj overlap, contact or mutually 

separated (illustrated in detail in Fig. S3). This in turn allows us to determine the 

dimension of spheroids that represents the equivalent volume of the molecules within 

the crystalline phase, as described in detail below. 

 
Fig. 1 Spheroid packing model for a crystal of cage-like molecules with space group P21/n. (a) 

Synthesis of molecule cage. (b) Side and top views of crystal. (c) Side and top view of simulated 

spheroid packing with magenta and cyan colors used for easy inspection. (d) Computed contact 

diagram of hard spheroid packing. Curves with different colors correspond to contacts between 

different pairs of molecules. Simulated hard spheroid shows similar dimension with that of the 

actual molecule.  

Hard spheroid model applied to molecular crystal. As a class of novel molecules, 

cages-like compounds have attracted considerable attention for the recent decades23–31. 

By virtue of their rich geometric diversity, molecular cages can be used as promising 

BDs for the search of novel supramolecular materials which are hardly accessible by 
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conventional molecules32. As a proof of concept, cage molecules with rigid and well-

defined 3D structure are first selected to demonstrate our spheroid model for molecular 

crystals. The spheroid packing is constructed by considering symmetry constraints 

imposed by the crystal lattice, which is first illustrated with a crystal formed by 

molecular cage that we synthesized according our previous protocol (Fig. 1)33. The 

molecular cage is synthesized by the reaction between 2,4,6-trihydroxybenzene-1,3,5-

tricarbaldehyde (TP) and a triamino-functionalized TABPB, as illustrated in Fig. 1(a). 

Their detailed synthetic procedures, NMR and MALDI-TOF analyses are given in the 

Supplemental Information. 

In this crystal with space group of P21/n, a molecule is related to its neighbors 

through symmetry operations of inversion (i), screw (with 21 axis) and glide, with latter 

a product of the first two operations. Therefore, we only need to consider inversion and 

screw symmetry constraints to construct a local cluster of spheroids, from which the 

“contact diagram” will be derived. To explain the contact imposed by two-fold screw 

operations, two adjacent spheroids labeled as 1 and 2 on screw axis are first selected. 

Each of the two spheroids further osculate two neighboring spheroids with inversion 

constraint, which are labelled from 3 to 6, respectively. As a result, only a local cluster 

of six spheroids are required to elucidate all contact relationships in such case, as 

illustrated in Fig. 1(c).  

Fig. 1(b) reveals the crystal structure viewed along crystallographic a and b axes, 

and the packing of the corresponding spheroidal model is shown in Fig. 1(c). Taking 

the contact of spheroids 1 and 2 for instance, with their orientations and center positions 

fixed, R1 and R2 cannot vary independently while maintain the contact——they need 

vary coherently, leading to a correlation between R1 and R2 depicted by the red line in 

the contact diagram in Fig. 1(d). The two spheroids are disjoint when the coordinate 

(R1, R2) is below of the line, while they are intercalated when the coordinate is above. 

By iterating the R1/R2 relationship with other spheroid pairs, all five lines reflecting 

their osculation are derived. As a result, the contact diagram is divided into various 

regions that correspond to different packing patterns. For example, the grey region in 

the bottom left area shows that all spheroids are disjoint, and the orange part on the top 
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right corner indicates that all spheroids overlap with each other.  

For hard spheroids overlap is prohibited, and two arbitrary spheroids can only be 

tangent or disjoint to each other. As the leftmost intersection (red circle in Fig. 1(d)) 

reaches the largest contact number while guarantees no overlap of spheroids, this 

coordinate is therefore deemed as the dimension of the hard spheroid. Accordingly, the 

polar and equatorial radii of the spheroid are calculated to be 4.0 and 6.8 Å, respectively. 

This calculated dimension is almost identical to that of the actual molecule with a height 

of 7.6 Å and a radius of 6.8 Å. 

 

Fig. 2 Spheroid packing in fullerene crystal with space group Pa3. (a) Crystal structure viewed 

along a axis. Adjacent molecules are related through different symmetry operations. (b) 

Computed contact diagram of spheroid packing. The simulated shape and dimension are close 

to those of a fullerene molecule. 

This spheroid model can also be applied to the molecular crystals formed by 

(quasi)isotropic molecules, which is exemplified with landmark molecule fullerene C60 

with large void34. The VdW volume only counts the sum of the occupied space of all 

atoms but excludes the cavity, and thus, cannot accurately characterizes the equivalent 

volume of such type of molecules in dense crystalline packing. As illustrated in Fig. 2, 

the molecular crystal (space group Pa3) is constrained by screw operation (with 21 axis) 

and rotation (3-fold axis). Therefore, only four spheroids are required to describe all the 

contact relationships in Fig. 2(a), which correspond to three contact lines of 1-2, 1-3, 

and 1-4 spheroid pairs. Similarly, the coordinate of the leftmost intersection (in red 

circle) refers to the two semi-axes of the hard spheroid, i.e., 4.9 and 4.8 Å, respectively. 

These values are in good accordance with the radius of a fullerene in the crystalline 
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phase. We also verified the applicability and generality of the spheroid model to a 

variety of randomly selected molecules with regular shape, which will be discussed 

afterwards. 

Soft spheroid model for dovetailed molecules. We further examined a ubiquitous 

type of molecules that dovetail with each other during crystallization. This is showcased 

with our recently reported twin-cavity cage35. Fig. 3(a) manifests the molecular packing 

viewed along c axis in the crystal (space group P3221). As their packing is imposed by 

symmetry operations of screw (with 32 and 21 axes) and rotation (2-fold axis), five 

different spheroids labeled from 1 to 5 are selected accordingly.  

 
Fig. 3 Spheroid packing in a crystal (space group P3221) formed by dovetailing twin-cavity 

cages. (a) Crystal structure viewed along c axis. Adjacent molecules are constrained by 

symmetry operations. (b) Simulated soft spheroid packing; (c) Computed contact diagram of 

spheroid packing. The innermost node represents hard spheroid, while outermost node 

represents soft spheroid. (d) Calculated hard spheroid is smaller than actual molecule, and soft 

spheroid reflects the dovetail between molecules based on the overlap percentage. 

Similar to the aforementioned analysis, the hard spheroid corresponds to the 

intersection of dark blue and yellow lines in the contact diagram in Fig. 3(c), 
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corresponding to a spheroid with polar and equatorial radii of 6.3 and 6.2 Å, 

respectively. However, compared with the actual dimension of the molecule, the hard 

spheroid obviously contracts as pictured in Fig. 3(d). This is because the compounds 

are indeed interpenetrated in the crystalline phase, and the use of hard spheroid model 

unavoidably excludes the dovetailed part, which therefore underestimates the 

equivalent volume of such molecules.  

To better delineate the interpenetration of this class of molecules, we introduced a 

supplementary soft (i.e., overlapping) spheroid model36. Unlike hard spheroids, soft 

spheroids are elastic that allow deformation, so that all spheroids of interest are either 

contacting or overlapping. It means their disconnection is avoided, and the soft spheroid 

packing in this crystal is displayed in Fig. 3(b). Accordingly, the outermost node is the 

critical point for reaching the largest contact number, which is chosen as the coordinate 

for presenting the dimension for the soft spheroid (Fig. 3(c)). Notably, if there are more 

than one innermost or outermost nodes, the one with the largest value of R1
2R2 is chosen. 

This is because this value corresponds to the largest spheroid volume, complying with 

the highest packing fraction in the crystalline phase. Additionally, overlap of spheroids 

is forbidden by translation operation, as it is not consistent with the dovetailing of the 

particles. The largest polar and equatorial radii of the soft spheroid are therefore 

calculated to be 17.1 and 8.8 Å respectively; the interpenetration percentage is about 

26%, while the dovetail of actual molecules is around 25% as shown in Fig. 3(d). Indeed, 

the hard and soft spheroids respectively determine the lower and upper limits of the 

equivalent dimension for a specific molecule in the crystalline phase, and the most 

suitable shape model should depend on the convexity/concavity of the molecule.  

Comparison between hard spheroid model and space-filling model. We 

subsequently compared our hard spheroid model with the conventional space-filling 

VdW model, both of which were used to probe the equivalent volume of molecules in 

the crystalline phase. To this end, seventeen extra molecules including peptides, 

cholesterols, triptycene, macrocycles and other small molecules were analyzed, with 

their contact diagrams shown in Fig. S4–S7, and their VdW volumes were calculated 

with multifunctional program Multiwfn37. The comparison of the calculated VdW 
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volume and hard spheroid volume is shown in Fig. 4. The data points close to the yellow 

line indicate similar values of volume in the two models. Different colors of the data 

points indicate different types of molecules: general molecules with regular shape are 

shown in blue, red dots represent compounds with cavity, and purple symbols stand for 

some seriously dovetailing molecules.  

 

Fig. 4 Comparison of simulated hard spheroid volume and Van der Waals (VdW) volume of a 

wide spectrum of complex molecules. Red dots represent molecules with cavity, purple 

asterisks represent situations for severely dovetailed molecules, and blue dots represent other 

molecules. Enlarged is the simulated hard spheroid volume of small molecules showing good 

linear relationship with their VdW volume.  

Focusing on the enlarged area in Fig. 4, we can find that the hard spheroid volume 

is fairly close to the VdW volume for relatively small and regular molecules. This is 

because these molecules are compact and don’t interpenetrate in their crystalline 

packings, and both space-filling model and spheroid model are applicable. However, 

for porous molecules, their intrinsic cavity is taken into account by the hard spheroid 

model, whose dimension is thus larger than the corresponding VdW volume that does 

not consider the cavity. Our spheroid model therefore can better describe the equivalent 

volume of such molecules. Moreover, for the molecules with concave structure and/or 

flexible fragments, they are often prone to dovetail with each other during molecular 

packing. This information, particularly the penetration percentage (vide supra), can 

hardly be unraveled by the VdW model. In hard spheroid model, overlap between 

spheroids are forbidden, and the calculation of spheroid volume will exclude the 

dovetailed part, causing an underestimation of the equivalent volume. To address this 
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problem, the soft spheroid model is proposed, which can depict the dovetail through 

interpenetration percentage between the spheroids. 

Table 1 The calculated hard spheroid volume and VdW volume of seventeen different 

molecules collected from Cambridge Crystallographic Data Centre (CCDC). 

 

Spheroid model applied to poor-quality crystal. The proposed spheroid model 

can also be applied to probe the molecular packing of crystals with incomplete 

structural refinement, which often result from poor quality of crystal X-ray diffraction 

data. These data are conventionally considered invalid and are therefore simply 

discarded. Illustrated in Fig. 5 is the contact diagram derived from the poorly resolved 
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crystalline phase of the molecules used in Fig. 1. This rough structure was obtained 

from original crystal data without further refinements, with a R-factor of ca. 39%38. The 

semi-axes of the simulated spheroid were determined to be 6.8 Å and 3.7 Å, respectively, 

which are close to the spheroid dimension calculated from the precise structure. Our 

spheroid model therefore can provide a tool for extracting valuable information of 

molecular packing in crystals of poor quality, which would be useful input for the 

optimization of molecular design.  

 
Fig. 5 Spheroid model applied in poor-quality crystals. The contact diagram is derived from the 

rough structure (R-factor around 39%) and its simulated spheroid is close to the spheroid 

calculated from precise structure. 

Discussion 

Just like the coarse-grained model that omits the detailed complexity yet maintains 

the main peculiarities of a molecule, our proposed spheroid model employs simple 

geometrical shapes and focuses on the salient anisotropic features of complex 

molecules. We have demonstrated that the relationship between molecule anisotropy 

and its crystal packing can be better captured by our model. In contrast to space-filling 

models, our model better reflects the equivalent volumes of certain molecules with 

exotic shapes. It also provides information of dovetail between adjacent molecules 

within the crystalline phase. We expect our model can be readily generalized to more 

complex molecular crystals by increasing the degrees of freedom of the fundamental 
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geometric representation, e.g., from spheroid to generic ellipsoid or other shapes, which 

we will explore in our future work.  

Methods 

Computational methods. We take Perram-Wertheim contact function to probe the 

spatial relationship between spheroids. This function reveals the correlation between 

spheroid position, orientation, dimension and osculation. First of all, the position and 

direction information of a spheroid can be determined by specific crystal lattice, which 

is provided by the Cambridge Structural Database (CSD). Next, we assume two 

spheroids osculate with each other, which is realized by adjusting R1 and R2 to ensure 

that the value of contact function is close to one. Every osculation of a spheroid pair 

will therefore correspond to a curve in the contact diagram, showing the variation of R1 

and R2. As only limited symmetry operations are present in a crystal, the sort of packing 

relationship (overlapping, contact, non-touching) between adjacent spheroids is also 

finite. Therefore, we only need to analyze those representative spheroids pairs that 

contain all contact relationships in a crystal. As a result, the contact diagram consists of 

several curves that reflect the osculation of different spheroid pairs, and these curves 

divide the diagram into various sections representing different packing relationships of 

spheroids.  

 

Hard and soft spheroid model. The selected hard and soft spheroid, prohibiting or 

allowing overlap, respectively correspond to the leftmost and rightmost intersection. 

Therefore, the volume of hard spheroid can be easily determined by MATLAB, which 

is then compared with its VdW volume calculated by Multiwfn. Additionally, the 

interpenetration percentage of soft spheroids, defined as the quotient of overlapped 

volume and soft spheroid volume, is derived by Monte Carlo algorithm and is used to 

describe the dovetail between molecules with concave structure or flexible fragments. 
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