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Departamento de Poĺımeros y Materiales Avanzados: F́ısica,
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Avenida de Tolosa 72, E-20018 San Sebastián, Spain

2IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, E-48009 Bilbao, Spain
3Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain

(Dated: May 11, 2023)

The multi-terminal generalization of the steady-state density functional theory for the descrip-
tion of electronic and thermal transport (iq-DFT) is presented. The linear response regime of the
framework is developed leading to exact expressions for the many-body transport coefficients and
thermoelectric efficiency purely in terms of quantities accessible to the framework. The theory is ap-
plied to a multi-terminal interacting quantum dot in the Coulomb blockade regime for which accurate
parametrizations of the exchange-correlation kernel matrix are given. The thermoelectric efficiency
and output power of the multi-terminal system are studied. Surprisingly, the strong-interaction
limit of these quantities can be understood in terms of the non-interacting one.

I. INTRODUCTION

In recent decades, electronic transport through
nanoscale devices, even down to the size of single
molecules, has attracted increasing scientific and techno-
logical interest.1,2 The main motivation for this interest
is the reduction of the dimensions of active electronic de-
vices, e.g., control of electronic currents at ever smaller
scales. However, at these small scales, heat management
becomes crucial for reliable device operation. Also, one
may aim to harness thermal energy by conversion to elec-
trical currents in thermoelectric devices.3–9 Therefore it
is important to deal with both electrical and thermal
transport on equal footing. Although two-terminal se-
tups have been the focus of most investigations, the ex-
ploration of thermoelectric transport in multi-terminal
devices10–18 has started more recently due to the poten-
tial added benefits of these more intricate designs, to,
e.g., separate heat and electrical transport.

For non-interacting electrons, an adequate frame-
work to describe both electronic and heat transport
in the steady state is the Landauer-Büttiker (LB)
formalism19,20 which treats transport essentially as a
scattering problem. On the other hand, to describe the
currents through an interacting region attached to non-
interacting leads, we have the Meir-Wingreen formula21,
which expresses the currents in terms of the many-body
spectral function.

For an ab-initio modeling of materials, density func-
tional theory (DFT)22 has become an indispensable tool,
mainly due to its reasonable balance between accuracy
and numerical efficiency. While DFT was originally for-
mulated for (thermal) equilibrium, a combination of DFT
with the LB formalism has widely been used to model
both electronic and heat transport through, e.g., sin-
gle molecules23–28. However, one has to keep in mind
that standard DFT is not designed to describe out-of-

equilibrium physics such as electronic or thermal trans-
port. While in special circumstances this may be enough
to capture, e.g., linear transport coefficients29–32, in gen-
eral extensions of the theory are required. One such pos-
sible extension for the description of transport is steady-
state DFT (or i-DFT)33 which adds to the basic quan-
tity of standard DFT and LB-DFT, the density, an-
other fundamental variable, the steady-state electronic
current. This framework has been used to describe trans-
port through model systems, including strongly corre-
lated ones34–38 and has also been formulated to deal with
multi-terminal systems.39

In more recent work40, an extension of steady-state
DFT, dubbed iq-DFT, has been suggested which besides
the electronic (particle) current also allows for the de-
scription of (electronic) heat or energy currents. In the
present work, we extend iq-DFT to systems connected
to an arbitrary number of leads (Sec. II) with explicit
development of the linear-response regime. In Sec. III
A, the formalism is applied to the single-impurity An-
derson model (SIAM) in the Coulomb blockade regime
for which we present the exchange-correlation (xc) ker-
nel of linear response. This allows to study all the lin-
ear transport coefficients (electrical and thermal conduc-
tances, Seebeck coefficients, etc.) solely in terms of iq-
DFT quantities. For the numerical results (Sec. III B) we
focus on the multi-terminal efficiency of the SIAM viewed
as a thermal machine and we show explicitly that in the
strong-interaction limit this quantity strictly reduces to
its non-interacting counterpart. Finally, we present our
conclusions in Sec. IV.

II. MULTI-TERMINAL IQ-DFT

We consider a general electronic transport setup as de-
picted in Fig. 1, where N (semi-infinite) electrodes are
coupled to a central (molecular) region (C) subject to an

http://arxiv.org/abs/2303.01355v2
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FIG. 1. Schematic drawing of a multi-terminal nanoscale
junction. A molecular region C at gate potential vC(r) is
coupled to N leads at chemical potentials µα = µ + Vα and
temperatures Tα = T (1 + Ψα).

electrostatic potential vC(r) which vanishes deep inside
the electrodes (leads). While the electrodes are assumed
to be at local equilibrium characterized by temperatures
Tα and chemical potentials µα (α = 1, . . . ,N ), the total
system is considered to be in a non-equilibrium steady
state. For convenience we also define both an equilibrium

temperature and chemical potential as T = 1
N

∑

α Tα
and µ = 1

N

∑

α µα, respectively, such that the the lead
temperatures Tα = T (1+Ψα) can be expressed in terms
of thermal gradients Ψα while the chemical potentials
µα = µ+Vα are written in terms of DC biases Vα. From
these definitions of µ and T it follows that

∑

α Vα = 0
and

∑

α Ψα = 0, respectively.
The non-equilibrium steady state of the system is char-

acterized by the electronic density n(r) in region C, as
well as two sets of steady currents: (a) the electronic and
energy currents (Iα and Wα, respectively) flowing from
lead α to region C, or (b) the corresponding electronic
and heat currents (Iα and Qα, respectively). These cur-
rents are related through

Wα = Qα + µαIα, (1)

and the muti-terminal iq-DFT approach described below
can equivalently be formulated in terms of both funda-
mental current variables (a) or (b).
In the following, we adopt the sign convention that cur-

rents flowing into the central region C are positive. Due
to charge and energy conservation, we have

∑

α Iα = 0,
∑

αWα = 0, while from Eq. (1) we obtain for the heat
currents

∑

αQα = −
∑

α IαVα. Furthermore, atomic
units are used throughout. Energies are given in units
of temperature unless otherwise noted.
The extension of the iq-DFT formalism40 to multi-

terminal setups can be formally established through the
following theorem. Here, without loss of generality, we
assume that the gradients and currents associated with

the N th lead are expressed in terms of the gradients and
currents of the other N − 1 leads.
Theorem: There exists a one-to-one cor-

respondence between the set of “densities”
(n(r), I1, Q1, . . . , IN−1, QN−1) and the set of “po-
tentials” (v(r), V1/T,Ψ1/T, . . . , VN−1/T,ΨN−1/T ), for
any finite temperature T and fixed electrostatic potential
in the leads, in a finite region around Vα = 0 and Ψα = 0
for all α = 1, . . . ,N − 1. The proof of the theorem is
analogous to the one presented in Ref. 41.
According to the theorem and under the usual

assumption of non-interacting representability, there
exists a unique set of Kohn-Sham (KS) potentials
(vs(r), Vs,1/T,Ψs,1/T, . . . , Vs,N−1/T,Ψs,N−1/T ) which
in a noninteracting system reproduces the density n(r)
and currents (I1, Q1, . . . , IN−1, QN−1) of the interacting
system. Following the standard KS procedure, the xc
potentials are defined as

vHxc[n, I,Q](r) = vs[n, I,Q](r)− v[n, I,Q](r), (2a)

Vxc,α[n, I,Q] = Vs,α[n, I,Q]− Vα[n, I,Q], (2b)

Ψxc,α[n, I,Q] = Ψs,α[n, I,Q]−Ψα[n, I,Q], (2c)

for α = 1, . . . ,N − 1, where I = (I1, . . . , IN−1) and
Q = (Q1, . . . , QN−1). The self-consistent coupled KS
equations for the densities read (

∫

≡
∫∞

−∞
dω
2π in the fol-

lowing)

n(r) = 2

N
∑

α=1

∫

f(ωs,α)As,α(r, ω), (3a)

Iα = 2

N
∑

α′=1

∫

[f(ωs,α)− f(ωs,α′)] Ts,αα′ (ω), (3b)

Qα = 2

N
∑

α′=1

∫

[f(ωs,α)− f(ωs,α′)] (ω − µs,α)Ts,αα′ (ω) ,

(3c)

where ωs,α =
w−µs,α

1+Ψs,α

with f(z) = [1+exp(z/T )]−1 being

the Fermi function and µs,α = µ+Vs,α with the KS bias
for lead α

Vs,α = Vα + Vxc,α[n, I,Q] . (4)

In Eq. (3), the (partial) KS spectral function is defined
as As,α(r, ω) = 〈r| G(ω)Γα(ω)G

†(ω) |r〉, with G(ω) and
Γα(ω) the KS Green’s function and broadening matri-
ces, respectively. Finally, the KS transmission function
is Ts,αα′(ω) = Tr

{

Gs(ω)Γα(ω)G†(ω)Γα′(ω)
}

.

A. Linear Response

Suppose we have a (multi-terminal) system in ther-
mal eqilibrium characterized by chemical potential µ and
(common) temperature T and we are interested in the
steady-state currents to linear order as external biases
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and/or temperature gradients are applied to the system.
In this linear regime, the relationship between the cur-
rents I and the external potentials Φ reads

I = LΦ (5)

with the 2(N − 1) × 2(N − 1) conductance ma-
trix L and the current and potential vectors de-
fined as I

⊺ = (I1, Q1, . . . , IN−1, QN−1) and Φ
⊺ =

(V1/T,Ψ1/T, . . . , VN−1/T,ΨN−1/T ), respectively. By
construction, the matrix elements of L are defined as

Ljk =
∂Ij
∂Φk

∣

∣

∣

∣

Φ=0

(6)

and from Onsager’s relation it follows that L is symmet-
ric, i.e., Ljk = Lkj with k, j ∈ {1, . . . , 2(N − 1)}.
Since by construction, the KS currents equal the inter-

acting ones to any order, we may also linearize Eqs. (3b)
and (3c) to obtain

I = Ls (Φ+Φxc) (7)

where Ls is the non-interacting (KS) linear response ma-
trix. To linear order, the changes in the xc potentials can
be written as

Φxc = FxcI = FxcLΦ (8)

where we have defined the matrix of xc derivatives (which
we alternatively denote the xc kernel) Fxc as

Fxc =



















δVxc,1

δI1

δVxc,1

δQ1
. . .

δVxc,1

δIN−1

δVxc,1

δQN−1

δΨxc,1

δI1

δΨxc,1

δQ1
. . .

δΨxc,1

δIN−1

δΨxc,1

δQN−1

...
...

. . .
...

...
δVxc,N−1

δI1

δVxc,N−1

δQ1
. . .

δVxc,N−1

δIN−1

δVxc,N−1

δQN−1

δΨxc,N−1

δI1

δΨxc,N−1

δQ1
. . .

δΨxc,N−1

δIN−1

δΨxc,N−1

δQN−1



















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I=0

(9)

Combining Eqs. (5), (7), and (9), and using the fact that
the Vα and Ψα are arbitrary, we arrive at the Dyson equa-
tion for the many-body conductance matrix L expressed
in terms of the KS one Ls

L = Ls + LsFxcL, (10)

Note that Eq. (10) expresses the many-body conduc-
tance matrix completely in terms of iq-DFT quantities
and may be rewritten as

Fxc = L
−1
s − L

−1 . (11)

As a consequence of L and Ls being symmetric, also Fxc

must be symmetric, (Fxc)kj = (Fxc)jk

III. SINGLE IMPURITY ANDERSON MODEL

In this section, we apply our multi-terminal formalism
to the simplest quantum thermal machine, namely, the

Single Impurity Anderson Model (SIAM). This system
consists of a quantum dot that can hold up to two inter-
acting electrons attached to N non-interacting electron
reservoirs. The Hamiltonian of the system reads

Ĥ =
∑

σ

vn̂σ + Un̂↑n̂↓ +
∑

αkσ

εαkσ ĉ
†
αkσ ĉαkσ

+
∑

kασ

(

tαk ĉ
†
αkσ d̂σ +H.c.

)

. (12)

The first two terms in Eq. (12) describe the isolated
impurity, with v representing the on-site energy of the
dot and U symbolizing the Coulomb interaction. The
creation operators for electrons with spin σ (σ =↑, ↓)

in lead α and on the dot are denoted by ĉ†αkσ and

d̂†σ, respectively. The operators for the spin-resolved
and the total density of electrons on the dot are given

by n̂σ = d̂†σd̂σ and n̂ = n̂↑ + n̂↓, respectively. The
last term of the Hamiltonian (12) describes the tun-
neling between the dot and the leads, with couplings
Γα(ω) = 2π

∑

k |tαk|
2δ(ω − εkα). We work in the wide

band limit (WBL), i.e., the leads are assumed to be
featureless and described by frequency-independent cou-
plings Γα(ω) = γα (with α ∈ {1, . . . ,N}). Without loss
of generality, from here onwards we set the chemical po-
tential µ = 0.

A. Many body model for the construction of the

exchange correlation kernel

In order to apply our multi-terminal iq-DFT frame-
work, approximations for the xc potentials need to be
constructed. Here we restrict ourselves to the linear-
response regime and therefore we only need to construct
the xc kernel matrix Fxc.
As in previous works33,40, a useful starting point for

this construction is to write the interacting density on
the dot as well as the (particle and heat) currents in the
leads in terms of the many-body spectral function A(ω)
as

n = 2

N
∑

α=1

∫

γα
γ
f(ωα)A(ω) (13a)

Iα = 2

N
∑

α′=1

γαγα′

γ

∫

[f(ωα)− f(ωα′)]A(ω) (13b)

Qα = 2

N
∑

α′=1

γαγα′

γ

∫

[f(ωα)− f(ωα′)] (ω − Vα)A(ω)

(13c)

with γ =
∑N

i=1 γα and ωα = ω−Vα

1+Ψα

.
In order to proceed, we consider the following model

for the many-body spectral function (MBM) which can
be derived from the equations of motion technique42 and
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provides a reasonably accurate approximation for T/γ >
1, i.e., for the Coulomb blockade regime35

A(ω) =
γ
(

1− n
2

)

(ω − v)2 + γ2

4

+
γ n

2

(ω − v − U)2 + γ2

4

. (14)

For the non-interacting case with gate potential vs, this
spectral function becomes

As(ω) =
γ

(ω − vs)2 +
γ2

4

. (15)

Then all the integrals for density and currents can be
evaluated analytically40 with the results

ns = 1−
2

πγ

N
∑

α=1

γαIm [ψ(zz,α)] (16a)

Isα =
2γα
πγ

[

N
∑

α′=1

γα′ (Im [ψ(zs,α′)]− Im [ψ(zs,α)])

]

(16b)

Qs
α =

γα
π

[

N
∑

α′=1

γα′ (Re [ψ(zs,α)]− Re [ψ(zs,α′)])

]

+
γα
π

N
∑

α′=1

[

γα′ log

(

1 + Ψs,α

1 + Ψs,α′

)]

+ (vs − Vs,α)Iα

(16c)

where zs,α = 1
2 +

γ

2
+i(vs−Vs,α)

2πT (1+Ψs,α) and ψ(z) is the digamma

function with general complex argument z.43 Eqs. (16b)
and (16c) can be expanded to linear order in the biases
Vs,α and temperature gradients Ψs,α and the resulting
integrals for the expansion coefficients can also be eval-
uated analytically. Writing j = 2α − 1 (j = 2α) for j
odd (even) and similarly k = 2α′ − 1 (k = 2α′) for k odd
(even) we can express the non-interacting conductance
matrix Ls(vs) as function of vs in the compact form

Ls,jk(vs) = γ̃jkMjk(vs) (17)

where the prefactor γ̃jk only depends on the couplings to
the leads and can be written as

γ̃jk = 2γα

(

δα,α′ +
γN − γα′

γ

)

(18)

On the other hand, the coefficient Mjk(vs) depends on
vs and is defined as

Mjk(vs) =







J0(vs) for both j, k odd
J2(vs) for both j, k even
J1(vs) otherwise

(19)

where

Jl(vs) = −

∫

ωlf ′(ω)
γ

(ω − vs)2 +
γ2

4

(20)

where f ′(ω) = d
dω f(ω). The integrals of Eq. (20) can also

be computed analytically40 with the results

J0(vs) =
1

2π2T
Im(iψ(1)(zs1)) (21a)

J1(vs) =
1

2π2T
Im(zs0ψ

(1)(zs1)) (21b)

J2(vs) = −
γ

4π2T
Re(zs0ψ

(1)(zs1)) + vsJ1(vs) +
γ

2π
(21c)

where zs0 = γ
2 + ivs, z

s
1 = 1

2 +
zs

0

2πT and ψ(1)(z) is the

trigamma function.43

Due to the simple structure of the model many-body
spectral function of Eq. (14), we can now express the
corresponding interacting conductance matrix in terms
of quantities obtained for the non-interacting case as

Ljk(v) = γ̃jk

[(

1−
n

2

)

Mjk(v) +
n

2
Mjk(v + U)

]

. (22)

Eqs. (22) and (17) provide the analytical forms of the con-
ductance matrices in terms of the gate potential vs and v,
respectively. In order to express the xc kernel matrix Fxc

as functional of the density, we still need to express these
gate potentials in terms of the density. The interact-
ing (non-interacting) gate-density relation v(n) (vs(n))
is obtained by numerically inverting the density-potential
relationship obtained by inserting the spectral function
Eq. (14) (Eq. (15)) into Eq. (13a). From Eq. (11), the
xc kernel matrix can then be expressed solely in terms of
the density as

Fxc(n) = Ls(vs(n))
−1 − L(v(n))−1 . (23)

In order to complete our DFT scheme we need to
provide an approximation for the Hxc (gate) potential
vHxc(n) to be used in Eq. (11). In the present work we
use the Hxc potential of the single site model29 (SSM)
with an effective temperature T ∗ as proposed in Ref. 44
in order to correctly account for the dependence on the
coupling. We will refer to this scheme as T ∗ DFT. In
particular, we replace the effective temperature of Ref. 44
with

T ∗(T, γ, U) =
T 2 + η(γ, U, T )γT + η2(γ, U, T )γ2

T + η(γ, U, T )γ
,

(24a)

η(γ, U, T ) = η1(γ/T )η2(U/T ), (24b)

η1(x) = 0.478x−
1
2 + 0.1331, (24c)

η2(x) = 0.676 arctan(0.064x) + 0.661. (24d)

To assess the accuracy of the proposed analytical Hxc
functional, we compare it against the numerically ex-
act inversion or reverse-engineered (RE) Hxc functional.
This is computed as the difference between the numer-
ically inverted interacting and non-interacting gate po-
tentials from Eqs. (13) and (16) at equilibrium. We have



5

FIG. 2. a) Comparison of the reverse engineered (RE) Hxc po-
tential from the many-body model with the one of the single-
site model (SSM) and the SSM corrected with the effective
temperature Eq. (24) for different Coulomb interactions and
γ/T = 0.1. b) Effective temperature T ∗ for T = 0.5, 1, 1, 5 as
function of the coupling γ. c) and d) Comparison between the
rate equation fitting functions η1 and η2 and the parametriza-
tions of Eqs. (24c) and (24d).

found that the above expressions, with a fit for the nu-
merical values in Eqs. (24c) and (24d), correct the stan-
dard DFT results and bring them closer to the MBM for
the SIAM.
In Fig. 2 a) we compare the Hxc potential vHxc from

reverse-engineerings of our many-body model with the
SSM Hxc potential (no coupling) and the SSM Hxc po-
tential with effective temperature to take into account
the coupling for different values of the Coulomb interac-
tion. The correction induced by the effective temperature
for different couplings (Fig. 2 b)) produces a small vari-
ation in the Hxc potential which is essential to capture
the correct strong-interaction limit of the thermoelectric
efficiencies which will be presented in the next section.
This dependence on subtle details of the Hxc functional
is reminiscent of the ones observed in Ref. 45 for the de-
scription of the level occupation switching effect.

B. Results

In this section we present our numerical results. Here
our interest lies in the description of the thermoelectric
efficiency η as well as various linear-response transport
coefficients of the quantum thermal machine for finite
Coulomb interactions and multiple reservoirs, see Fig. 1
for N = 3.
In order to access these quantities, we first solve the

DFT problem in the standard way to obatain the den-
sity. Then, following the scheme presented in the previ-
ous section we compute the kernel matrix Fxc, the linear
response matrix L and finally, through Eq. (5), the cur-
rents to linear order. The multi-terminal efficiency can
then be obtained from the currents through6,18

η =
P

∑

α+
Qα

=

∑N
α=1Qα

∑

α+
Qα

(25)

where the symbol
∑

α+
indicates that the sum is re-

stricted to positive contributions of the heat currents.

FIG. 3. Comparison of the density and currents I1 and Q1

from the reference MBM and iq-DFT as function of the gate
voltage vg = v + U

2
for different Coulomb interactions and

N = 3. The parameters used are γi = γ/3 = 0.1T , V1 =
−V2 = −5 · 10−4T , Ψ1 = −Ψ2 = 10−3 and V3 = Ψ3 = 0.

Eq. (25) is restricted to positive values of the output
power P . In the following, we assume the condition P >
0 is always satisfied. Usually, this efficiency is presented
normalized with its upper bound, the Carnot efficiency.
The Carnot efficiency in turn is obtained by imposing

zero entropy production Ṡ = 1
T

∑N−1
α=1 (IαVα +QαΨα) =

0 which leads to

ηC =

∑N−1
α=1 Qα(1−

TN

Tα

)
∑

α+
Qα

. (26)

For the two terminal case one recovers the well known
expression ηC = 1− T2/T1.

46

In the following, unless explicitly noted, all energies
are given in units of the temperature T . In Fig. 3 we
present a comparison of the density and currents from
the many-body model and iq-DFT. The small values used
for the potentials V1 = −V2 = −5 · 10−4T , Ψ1 = 10−3

and V3 = Ψ2 = Ψ3 = 0 ensure the applicability of the
linear response equations for the currents Eq. (5). The
agreement between MBM and iq-DFT is excellent both
for the non-interacting as well as for the (strongly) cor-
related case, although the agreement may decrease away
from the CB regime.
In Fig. 4 the thermoelectric efficiency is shown as func-

tion of the Coulomb interaction for γi = γ/3 = 0.1T ,
v = 2T . We observe that in the limit of very strong
interaction the efficiency exactly corresponds to the non-
interacting one. This can be understood from our many-
body model, i.e., inserting the model spectral function of
Eq. (14) into Eqs. (13). In the strong-interaction limit
the contribution of the pole of the spectral function at
v + U is negligible for all “densities” due to the integral
cutoff of the Fermi functions. Therefore, the density and
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FIG. 4. Thermoelectric efficiency normalized by the Carnot
efficiency as function of the Coulomb interaction for different
number of leads N = 2, 3, 4, 5. Comparison of the results of
the many-body model (MBM) with iq-DFT results obtained
with the original SSM Hxc potential of Ref. 29 (DFT) and
those with the modified SSM using the effective temperature
T ∗ of Eq. (24) (T ∗ DFT). The parameters are γi = γ/3 =
0.1T , v = 2, V1 = −5 · 10−4T , Vi = −V1/(N − 2) for i =
2, . . . ,N−1, Ψ1 = 10−3, Ψi = −Ψ1/(N−2) for i = 2, . . . ,N−

1 and ΨN = VN = 0.

currents in this limit can be rewritten as

nU→∞ =
ns(v,Φ)

1 + 1
2n

s(v,Φ)
(27a)

IU→∞ = Is(v,Φ)(1 −
1

2
ns(v,Φ)) (27b)

QU→∞ = Qs(v,Φ)(1−
1

2
ns(v,Φ)), (27c)

where ns(v,Φ), Is(v,Φ) and Is(v,Φ) are the non-
interacting expressions of Eq. (16) evaluated at gate v
and potentials Φ. Eq. (27) explicitly shows that in the
strong-interacting limit, the interacting density and cur-
rents are fully determined by their non-interacting ver-
sions evaluated at the interacting potentials. Insert-
ing Eq. (27) into Eq. (25) one finds that the prefactor
(1− 1

2n
s(v,Φ)) cancels out and we recover the efficiency

of the non-interacting limit. For the parameters studied,
in Fig. 4 the efficiency decreases as the Coulomb inter-
action is increased, finding the minimum around U ∼ 2.
Then it increases again up to the non-interacting value.
The correction of the effective temperature of Eq. (24)
is relevant in the strong-interacting limit: while with the
original SSM parametrization of the Hxc potential, in the
strongly correlated limit the efficiency does not approach
the MBM limit, with the new parametrization it does.
Our T ∗-DFT results agree well with the MBM results in
the region of parameters we investigated. We point out
that the small deviation between T ∗-DFT and MBM, in
Fig. 4 stems from similar discrepancies in the heat and
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FIG. 5. Thermoelectric efficiency normalized by Carnot effi-
ciency as function of the gate level and the bias potential V for
the configuration V1 = −V2 = V , V3 = 0 Ψ1 = −Ψ2 = 10−3,
Ψ3 = 0 and parameters γ1 = γ2 = γ3 = 0.1T . From a) to d)
the Coulomb interaction is U = 0, 5, 10, 15. The red line cor-
responds to the open circuit voltage Voc and the blue vertical
lines correspond to the gate values v = −U/2,−U at which
Voc = 0 .

electrical currents, which are difficult to detect in Fig. 3.

In Fig. 5, the efficiency is calculated for N = 3 as
function of the gate v and bias V for the configura-
tion V1 = −V2 = V , V3 = 0, Ψ1 = −Ψ2 = 10−3,
Ψ3 = 0 and different values of the Coulomb interaction
U/T = 0, 5, 10, 15 from a) to d), respectively. The red
line represents the open-circuit voltage Voc, and corre-
sponds to the bias at which the ouput power is zero,
which in our configuration corresponds to the bias at
which I1 = I2.

In Fig. 5a) the (iq-DFT) efficiency is presented for the
three terminal setup in the non-interacting case. As in
the two terminal case47, the efficiency acts as a power
generator for voltages Voc < V < 0 (region 1) if the
gate is negative and for voltages 0 < V < Voc (region
2) if the applied gate is positive, and the open circuit
voltage only vanishes at v = 0. The application of a
finite Coulomb interaction in the QD (Fig. 5b),c) and
d)) produces two new regions (where the QD acts as a
power generator) that emerge in between regions 1 and
2. While the shape of regions 1 and 2 remain unchanged,
region 1 is shifted to v − U . The new regions at finite U
appear at Voc < V < 0, −U < v < −U/2 (region 3) and
0 < V < Voc, −U/2 < v < 0 (region 4). The gate values
at which there is a new transition between the regions
is represented by the blue lines in the plots and corre-
spond to the new gates at which the open circuit voltage
vanishes v = −U/2,−U . As the Coulomb interaction is
increased, the area of regions 3 and 4 increases and so the
value of the efficiency inside these regions. In the high
interaction limit the regions 1 and 3 and the regions 2
and 4 become equivalent, recovering the non-interacting
limit around the Fermi energy. The same behavior has
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FIG. 6. Output power, in atomic units, as function of the
efficiency for different total coupling strength γ and a) differ-
ent number of reservoirs for the non-interacting QD, U = 0
and b) different Coulomb interactions U for the three termi-
nal case N = 3. Each solid region is obtained by scanning all
the possible gate and bias combinations where the QD acts
as a thermoelectric generator. The bias configuration selected
corresponds to V1 = −(N − 1)Vi with i = 1, . . . ,N − 1 and
VN = 0.

been observed when the number of leads is N > 3 (not
shown).

We now focus our attention on the influence of the to-
tal coupling γ on the output power P and the efficiency
η. The application of a bias inside the regions previously
defined for different gates, results in a loop of the output
power as function of the bias.48 Scanning of all possible
gates fills up the regions shown in Fig. 6. We observe that
for the different numbers of leads studied here (Fig. 6 a)),
the efficiency always approaches the Carnot efficiency as
the coupling strength is reduced since the transmission
function in this case approaches a delta function.48,49

On the other hand, when the coupling strength is in-
creased, the number of electrons which contribute to
the power generation increase, and, therefore, the out-
put power reaches its maximum around γmax ∼ 0.5T .
For couplings larger than γmax, the transmission function
Tαα′(ω) = γαγα′/γA(ω) in Eq. (16) allows more energy
states to contribute, in particular some negative contri-
butions of the difference f̃α(ω) − f̃α′(ω) which decrease
the output power. It is worth noting that the larger the
coupling to the leads, the larger the ratio between the N
and N + 1 regions areas becomes. In Fig. 6 b) the ther-
moelectric efficiency is presented for different values of
the Coulomb interaction and several coupling strengths.
For small values of the coupling to the leads, the effi-
ciency decreases as the interaction is applied and then
it increases again tending to the non-interacting value,
while the output power remains essentially unchanged.
For larger values of the coupling, the efficiency remains

FIG. 7. Transport coefficients G11, S11, and κ11 as function
of the Coulomb interaction and the gate level for N = 3.
The coupling strengths considered are γ = 3γi = 0.1T . All
quantities expressed in atomic units.

mostly unchanged while the output power starts to de-
crease with the interaction.
To conclude our multi-terminal study of the quantum

machine, we apply our formalism to calculate the trans-
port coefficients and the figure of merit for the caseN = 3
and equal couplings γi. In Fig. 7 we show the transport
coefficients G11, S11, κ11 as function of the Coulomb in-
teraction and the gate level following the definitions of
these coefficients derived in Ref. 18. Note that from these
definitions, in the symmetric coupling setup γ1 = γ2 = γ3
one can analytically show that G11 = G22, S11 = S22,
κ11 = κ22 while all the other off-diagonal transport coef-
ficients vanish.
The electrical conductance (Fig. 7 a)) G11 = G22 is

maximum in the non-interacting case for the gate v =
0. At finite U, as expected, this feature splits in two
Coulomb blockade peaks at v = 0 and at v = −U , a direct
consequence of the form of the MBM spectral function of
Eq. (14).
The Seebeck coefficient S11 (Fig. 7 b)) presents two

main features which evolve with the Coulomb interaction:
at negative gates −10− U < v < −U the Seebeck coeffi-
cient has its minimum and at positive gates 0 < v < 10
the Seebeck coefficient evolves to its maximum value. For
strong correlations U/T & 5, a new feature appears be-
tween the other two structures alternating positive and
negative contributions. Finally, the thermal conductance
κ11 shows a localized structure distributed along gates
v ≈ −U/2 and reaching its maximum around U ∼ 5, see
Fig. 7 c).
The figure of merit in the multi-terminal setup can be

evaluated from

ZTij =
TG2

ijSij

κij
. (28)

In Fig. 8 the diagonal element of the figure of merit is
presented as function of Coulomb interaction and gate
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FIG. 8. Diagonal element of the figure of merit as function of
the Coulomb interaction and the gate level for N = 3. The
coupling strengths considered are γ = 3γi = 0.1T

level. ZT11 = ZT22 is mostly dominated by S11 = S22.
It shows two stripe regions centered at v = −2.5−U, 2.5
where the figure of merit is maximized.

IV. CONCLUSIONS

In this work we generalize the iq-DFT theory for the
description of electronic and thermal transport through
nanoscale junctions connected to an arbitrary number
of electrodes. The theory is established under a one-
to-one correspondence between the set of “densities”
(n, I1, Q1, . . . , IN−1, QN−1) and the set of “potentials”
(v, V1/T,Ψ1/T, . . . , VN−1/T,ΨN−1/T ) in a finite domain

around the equilibrium state. The KS system requires
2(N − 1) xc potentials which need to be parametrized.
We derived the linear response of the (multi-terminal)

formalism finding formally exact expressions for the lin-
ear response electrical and heat currents, the figure of
merit, the thermoelectric efficiency and the many-body
transport coefficients, i.e., the electrical conductances,
the Seebeck coefficients, as well as the thermal conduc-
tances. These quantities are fully and exactly expressed
purely in terms of quantities accessible to the iq-DFT
framework, i.e., the xc kernel matrix Fxc and the Hxc
potential vHxc(n).
We applied the framework to an interacting quantum

thermal machine with three, four and five reservoirs in
the linear response and the Coulomb Blockade regime.
We constructed the xc kernel matrix from reverse engi-
neering of a many-body model, finding excellent agree-
ment with the the reference many-body results for the
currents and the transport coefficients as well as ther-
moelectric efficiency. We have found and identify the
regions where the system acts as a thermal generator
for different Coulomb interactions and analyzed these re-
gions against the output power for several couplings to
the leads and different number of reservoirs. Moreover,
we understood analytically that in the strong-interaction
limit the thermoelectric efficiency exactly corresponds to
the non-interacting one.
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19 M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys.
Rev. B 31, 6207 (1985).
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