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Abstract

In the original Parrondo game, a single player combines two losing strategies to a winning strategy.
In this paper we investigate the question what happens, if two or more players play Parrondo games
in a coordinated way. We introduce a strong coupling between the players such that the gain or loss
of all players in one round is the same. We investigate two possible realizations of such a coupling.
For both we show that the coupling increases the gain per player. The dependency of the gain on
the various parameters of the games is determined. The coupling can not only lead to a larger gain,
but it can also dominate the driving mechanism of the uncoupled games. Which driving mechanism
dominates, depends on the type of coupling. Both couplings are set side by side and the main
similarities and differences are emphasised.

Keywords: Noise induced transport; Parrondo’s paradox; Markov chains; multiplayer Parrondo
games; collective coupling effect

1 Introduction

A Parrondo game [1, 2] consists of two simple games, typically realized by flipping biased coins, which
are played in some regular or randomly alternating sequence. The interesting effect occurring here is
that even if the two games lead to a systematic loss if played sufficiently long, the combination yields a
systematic win.

Originally, Parrondo invented these games to illustrate the occurrence of noise induced transport in
so called Brownian motors, for a review see [3]. Brownian motors have been proposed first by Magnasco
[4] as a model for intra-cellular transport created by motor proteins like kinesin, which move along micro-
tubuli. In the simplest form, a Brownian motor is a Brownian particle moving in a time-dependent
periodic potential without inversion symmetry. The Brownian particle is driven by a white noise process
as usual, representing a finite temperature of the system. The time dependence of the potential can be
either periodic, see e.g. [3] or stochastic. In the case of a stochastic additive or multiplicative noise added
to the potential, this additional noise process must have a finite correlation time, but can be otherwise
an arbitrary noise process, see e.g. [5] for the additive noise and [6] for the multiplicative noise process.
The combination of the broken inversion symmetry and the additional additional periodic or stochastic
time dependence yields a non-vanishing stationary current. The Parrondo games can be viewed as a
discretized version of Brownian motors [7]. But the study of Parrondo games is an interesting topic
independently of that initial motivation. Not only are Parrondo games probably the most simple systems
where the coupling of systems with detailed balance yields a new system where detailed balance is broken
and therefore a stationary current occurs, but they also can have direct link to living systems. Lai and
Cheong [8] for example connect the Parrondo games with ”societal ideas of redistribution, cooperation,
voting, performance, and resource growth to bring about ’winning’ outcomes in a social group.” [8]
Furthermore, Cheong et al. [9] investigate the winning strategy in bacteriophages because of Parrondo’s
Paradox.

Motivated by the fact that motor proteins like kinesin have two heads which couple to the micro-
tubuli, Klumpp et al. [10] investigated the noise-induced transport of two strongly coupled particles.
They showed that the transport of a system of two strongly coupled particles is more efficient than the
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capital game A game B game C (random)

p0 x mod 3 = 0
1
2 − ε

1
10 − ε q0 · 12 + q1 · 1

10 − ε
p1 x mod 3 6= 0 3

4 − ε q0 · 12 + q1 · 34 − ε

Table 1: Winning probabilities p0,1 for the original Parrondo games [2]. The variable q0,1 defines the
probability to choose game A,B, respectively, ε is the so called bias parameter. Parrondo originally chose
ε = 0.005 and M = 3.

transport by a single particle. This motivates us to study coupled multi-player Parrondo games. The idea
is to introduce two or more coupled players, each playing the same Parrondo game. To our knowledge,
such multi-player Parrondo games with correlated, interacting players have not been studied so far. As
in [10], we concentrate on strong coupling where in each step all players win or lose. The aim is to
investigate, how such a coupling can be realized, whether in such a coupled system the gain or loss is
higher than in the uncoupled system, and if due to the coupling new mechanisms for the creation of a
stationary current occur, which are not present for a single player.

Our paper is organized as follows. We first introduce and review ordinary Parrondo games, mainly to
fix the notation. In Sect. 3 we introduce two different couplings for two or more players. These coupled
systems can be easily investigated by simulations or by methods using discrete-time Markov chains
(DTMC) to calculate the stationary current. We discuss the results and investigate the mechanisms that
yield to the higher stationary current in the case of coupled players. Finally, in Sect. 5 we summarize
our results, give an outlook and propose some future research in this area.

2 Parrondo games

Let us first introduce some basics about usual Parrondo games, mainly to fix the notation and to introduce
the methods of DTMC used to investigate the capital current. First, we state the original definition of
the Parrondo games given by Abbott and Harmer [1, 2]. Let x0 ∈ N0 be the initial capital of a player.
The player can win or lose one capital unit ∆x = ±1 in every round (negative capital should be possible)
and hence obtains the capital x(n) ∈ Z after n rounds. The winning probability p depends on the choice
of game and is periodic as a function of capital with period M . Game A is a homogeneous process (the
same coin is used in every round), game B is capital dependent (one of two coins is chosen depending on
the capital). Parrondo originally chose the probabilities given in table 1. In general, game C is the result
of periodically or randomly switching between games A and B.

We consider only random switching. We implement that via the dichotomous random process z ∈
{0, 1} indicating the choice of game A and B, respectively, at the beginning of every round with the
probabilities

P (play A) = P (z = 0) =: q0 , (1)

P (play B) = P (z = 1) =: q1 = 1− q0 . (2)

The variable pA,B,C
0,1 denotes the winning probability for the games A, B and C for (0) a capital multiple

of M and (1) otherwise.
Since the transition probabilities are periodic functions of the capital, we can restrict the discussion

to the reduced state space Z/MZ and choose periodic boundary conditions. Indeed, since the winning
probabilities only depend on the current capital and hence on the current state, Parrondo games are
DTMC. The transition matrix in the reduced state space Q = (Qij)i,j∈Z/MZ with

Qij(n) := P (xn+1 = i|xn = j) (3)

is finite and time-homogeneous and has the explicit form [11],

Q(n) = Q =



0 1− p1 p1

p0 0
. . .

p1
. . . 1− p1
. . . 0 1− p1

1− p0 p1 0


. (4)
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Let x̄ = x mod M be the reduced capital and P be the probability distribution on the reduced state
space, i.e. Pi be the probability for x̄ = i. We then obtain for the time evolution

Pi(n+ 1) =

M−1∑
j=0

QijPj(n)⇐⇒ P (n+ 1) = QP (n) . (5)

Especially, the stationary distribution π of a time-homogeneous DTMC is given by π = Qπ.
Under certain conditions, DTMC converge towards such a stationary distribution [12], p. 150. In

fact, one can show that the DTMC of the original Parrondo games converges against a unique stationary
distribution in the sense of lim

n→∞

∣∣Pi(n) − πi
∣∣ = 0 for odd M . This is true if the games are irreducible,

aperiodic, and positive recurrent, see [12], p. 118ff, 150.
Since every state communicates with every other one by simply winning or losing D times if the

capital difference is D, the DTMC of the games is irreducible and consists of only one communicating
class (the mutual communication induces an equivalence relation) [12], p. 80.

Furthermore, the period of state i [12], p. 84.

di = gcd {n ≥ 1 : P (xn = i|x0 = i) > 0} , (6)

which is the same for communicating states and hence can be defined for the whole class, becomes 1 for
an odd M . This is obvious since the capital can return to its initial value after two rounds and after
winning M times in a row. Therefore, the games with an odd M are aperiodic.

The last property is positive recurrence, which is defined by [12], p. 111

P (τi <∞) = 1 ∧ E(τi) <∞ , (7)

where we used the first recurrence time τi := min{n ≥ 1 : xn = i|x0 = i}. Brémaud [12], p. 122 proves
that an irreducible, time-homogeneous DTMC with a finite state space is positive recurrent, hence positive
recurrence is shown for the reduced Parrondo games with an odd M . For time-homogeneous, ergodic
(irreducible, aperiodic and positive recurrent) DTMC with a finite state space, there is not only an unique
stationary distribution [12], p. 118ff, but also a convergence theorem stating the given convergence [12],
p. 150. Since all properties apply to the reduced Parrondo games with odd M , the convergence is proven.

We now know that there is a unique probability distribution against which every initial distribution
converges in the long-run limit. From this we can compute a stationary capital current giving us the
long-run capital difference per round. Indeed, since the stationary current is independent of the initial
distribution, we can use it to evaluate and compare different games. This strategy is important: As can
be seen for game B, a game does not have to be a martingale but nevertheless might be fair in the long-run
limit corresponding to a vanishing capital current [2, 13]. The reason for this is that a martingale must
be balanced at every single step. This is obviously not the case for game B. However, the game can be
balanced on average anyway. This unusual effect is described in more detail in [14].

Let

pwin
j =

{
Qj+1,j | j 6= M − 1
Q0,M−1 | j = M − 1

(8)

be the winning probabilities. The stationary current can be obtained from the stationary distribution
π. Toral et al. [15] derive, using the corresponding master equation, a discrete form for the probability
current, which reduces for the Parrondo games to [15]

Ji(n) = −(1− pwin
i )Pi(n) + pwin

i−1Pi−1(n) . (9)

Summing over all states and considering periodic boundary conditions (pwin
−1 = pwin

M−1, P−1 = PM−1), this
gives

J =

M−1∑
i=0

Ji =

M−1∑
i=0

[
−(1− pwin

i )πi + pwin
i πi

]
=

M−1∑
i=0

2pwin
i πi − 1 = 2E(pwin)− 1 (10)

in the stationary case.
In particular we observe that J = 0 is equivalent to E(pwin) = 1

2 which is the definition of fairness
given by Abbott and Harmer [11]. Indeed, for the original Parrondo games with M = 3 it is possible
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capital x M = 3 M = 5 M = 7

p0 x mod M = 0 0.04200574 0.03467694 0.02181704
p1 x mod M 6= 0 0.82685756 0.69669249 0.65335836

M = 11 M = 19 M = 29 M = 49

p0 0.00849192 0.00135921 1.45686849·10−4 1.88929755·10−6

p1 0.61680554 0.59064647 0.57822635 0.56821420

Table 2: Adapted winning probabilities p0,1 for game B for different M with ε = 0. For ε 6= 0, ε has to
be subtracted. Game A does not change, p0 = p1 = 0.5− ε.

capital x d = 1 d = 2 d = 3 d = 4

p0 x mod M < d 0.02213766 0.04204007 0.03145708 0.00312982
p1 x mod M ≥ d 0.55241902 0.59092394 0.65533964 0.85097252

Table 3: Adapted winning probabilities p0,1 for game B for different d with ε = 0 and M = 19. For ε 6= 0,
ε has to be subtracted. Game A does not change, p0 = p1 = 0.5− ε.

to compute the stationary distribution analytically and therefore obtain an analytic expression for the
stationary capital current which leads to

J =
3
(
2p0p

2
1 − 2p0p1 + p0 − p21 + 2p1 − 1

)
2p0p1 − p0 + p21 − 2p1 + 3

. (11)

Inserting the probabilities from table 1 with q0 = 0.5, one can easily see that there is a range of ε for
which JA, JB < 0 but JC > 0 leading to Parrondo’s Paradox. Hence, the formalism for investigating
the Parrondo games with one player is simple: Given the transition matrix for a DTMC, we obtain the
stationary distribution by computing the eigenvector for the eigenvalue 1 and with equations 8 and 10
calculate the capital current for the games. It has to be noted that this does not only apply to the original
Parrondo games but to every transition matrix corresponding to a one-dimensional DTMC with states
sorted by their capital.

For the coupled Parrondo games we want to compare the capital current for different parameters,
especially the period M and the width of the barrier d which is given by the number of capitals within
one period corresponding to a small winning probability in game B. For the original Parrondo games, one
can see in table 1 that d = 1. In order to only investigate the coupling effect, the uncoupled games should
lead to the same current when varying the parameters. Therefore, we modify the winning probabilities
accordingly. Since game A is independent of the capital, it does not change. However, the probabilities
for game B have to be adapted so that it is always fair and game C with the random combination for
q0 = 0.5 induces a current J = Jconst for all parameters. This is achieved numerically by introducing the
probabilities as variables and computing the roots of the function [JB , JC − Jconst]. We implemented the
numerics in Python using the package scipy.optimize.fsolve. We choose those roots satisfying p0 ∈ (0, 0.5)
and p1 ∈ (0.5, 1). For the variation of M and d we choose Jconst = 0.05 and Jconst = 0.02, respectively.
The results are listed in tables 2 and 3.

With these probabilities and ε = 0.5 · 10−6, game A and B are losing games for all periods and widths
of the barrier, respectively. However, game C with q0 = 0.5 is a winning game, we obtain Parrondo’s
Paradox. For ε 6= 0 there is a slight deviation of the current Jconst for the uncoupled games. However,
considering the change caused by the coupling, this is irrelevant for small bias parameters.

3 The coupled Parrondo games

We are now in the position to introduce coupled Parrondo games. The idea is to have more than one
player and to couple the players so that they do not play independently. In this paper we only investigate
the rigid coupling where in each round all players win or lose the same amount. We first consider two
players I and II. We denote their capital as xI,II ∈ Z. They win or lose one capital unit in every round.
The individual winning probabilities are defined by the Parrondo games for a single player. However,
the players are not independent. The probability P (xI(n+ 1) = i, xII(n+ 1) = k | xI(n) = j, xII(n) = l)
is obtained by combining the individual probabilities according to the couplings, which will be explained
in the following.
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As above, we consider the state space Z/MZ. Since we will show that the Parrondo games with rigid
coupling can be reduced to the ordinary Parrondo games with modified transition probabilities, they will
also have a stationary distribution in this state space. In order to find a transition matrix, we define a
projection between both capitals and a single variable

(i, k) ∈ {Z/MZ}2 ←→ a ∈ {Z/M2Z}
x̄I = i , x̄II = k ←→ x̄I = ba/Mc , x̄II = a mod M

(12)

with x̄I,II := xI,II mod M and the floor function bxc. Especially, the variable a is obtained by a = M ·i+k.
We will always use this transformation for a↔ i, k and b↔ j, l. The transition matrix then becomes:

Qab = P (x̄I(n+ 1) = i, x̄II(n+ 1) = k | x̄I(n) = j, x̄II(n) = l) . (13)

For calculating this matrix, we need to introduce the coupling between both players. In the following we
define two couplings that combine both players’ winning or losing probabilities for a collective gain or
loss.

The first approach is the double-play coupling. Both players play the individual Parrondo games and
have to win or lose at the same time for a collective gain or loss. Additionally, all the other cases are
excluded by setting their transition probabilities to zero and renormalizing the others. This coupling is
motivated by Brownian motion of two coupled particles: In an infinitesimal time interval, both particles
simultaneously have to move to the right or to the left.

The second approach is the single-play coupling. One of the players is chosen at the beginning of
every round with a certain probability and plays the individual Parrondo games. The result will then
also be applied to the other player. This coupling is motivated by certain motor proteins: The heads of
a motor protein are coupled, but can attach and detach independently during the ATP hydrolysis. This
corresponds to the random choice of one player.

We adapt the notation of the original Parrondo games by adding the super- or subscripts I, II, e.g.
pXI is the winning probability of player I when playing game X ∈ {A,B}, which is of course capital
dependent itself. The individual winning and losing probabilities are obtained from the single Parrondo
games in table 2. However, when varying the width of the barrier, we use the probabilities in table 3.
Since the external force is the same for both particles in the continuous case, we always set εI = εII.

With this we obtain the combined winning probabilities for the double-play games as

pXY =
pXI p

Y
II

pXI p
Y
II + (1− pXI )(1− pYII)

(14)

when player I, II plays game X,Y ∈ {A,B}, respectively. Let QXY be the corresponding transition
matrix. The entries for possible transitions result from the collective winning and losing probabilities
similar to equation 8 (note that they depend on the current capitals of the players!), the remaining entries
are set to zero. By combining the different possibilities for the games we obtain

Q = qI0q
II
0 ·QAA + qI0q

II
1 ·QAB + qI1q

II
0 ·QBA + qI1q

II
1 ·QBB . (15)

For the single-play coupling we define the probability pI of choosing player I and pII = 1− pI. Since the
second player always wins or loses simultaneously, the collective winning probability is

pwin,win = pIp
win
I + pIIp

win
II = pIq

I
0p

A
I + pIq

I
1p

B
I + pIIq

II
0 p

A
II + pIIq

II
1 p

B
II . (16)

Here pwin
I is the single winning probability for the random alternation between game A and B for player

I. The same applies to the transition matrices.
We now demonstrate that the Parrondo games with rigid coupling can be reduced to the original

Parrondo games with modified transition probabilities. For the case of two players, one state is defined
either by both capitals or by one capital and the capital difference. Since rigid coupling induces constant
capital differences, the state is only determined by the capital of one player when a certain initial condition
is given. Hence, we can separate the Markov chain of the coupled Parrondo games for different capital
differences. This is due to the reducibility of the Markov chain. The different states with the same capital
difference form an irreducible equivalence class which is equivalent to the single Parrondo games but with
modified transition probabilities because of the coupling. In fact, considering the capital differences
D = (x̄II − x̄I) mod M ∈ {0, ...,M − 1} (convention: x̄II > x̄I), the transition matrix of the coupled
games has the form (QD ∈ RM×M , D ∈ {0, ..., M − 1}, all other entries vanish)

Q′ =

 Q0

. . .

QM−1

 . (17)
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It is obvious that QD is the transition matrix of the class D and with the corresponding probability
distribution PD(n) at step n we can write

PD(n+ 1) = QDPD(n) . (18)

For the different equivalence classes and hence the different capital differences we can then use the
existence of a stationary probability distribution in order to determine the stationary capital current. For
an initial probability distribution that contains different capital differences with nonzero probability, the
different solutions for the stationary capital current have to be added with the corresponding stochastic
weights.

Hence we have already found a formalism for investigating the coupled games: The transition matrices
are calculated according to the different couplings and dependent on certain parameters such as the period,
noise parameters or width of the barrier. They can then be reduced to the transition matrices of the
equivalence classes for which we can compute the stationary distribution and probability current.

It may be mentioned that we can always treat the probability current and capital current as equivalent
since the probability current reflects the change of states and the discrete capital difference is set to 1.
Especially, since the winning of both players only corresponds to a single state change, the capital current
in the coupled case can be directly compared to the capital current in the single case.

We also want to investigate the Parrondo games with multiple (N > 2) players coupled. Therefore we
have to slightly modify the formalism. The state is now given by all capitals, x = (xI, xII, ...) ∈ {Z/MZ}N .
It may be interesting to mention that one state is again determined by the capital of one player and the
capital differences between two consecutive players in a certain order. Since the equivalence classes are
determined by the capital differences due to rigid coupling, we have again reduced the multiple-coupled
Parrondo games to the single Parrondo games with modified transition probabilities. For the double-
play coupling, all winning (losing) probabilities are multiplied and renormalized as well as stochastically
weighted with the probabilities for choosing the different games A and B for each player. For the single-
play coupling, the individual transition probabilities are stochastically weighted with the probabilities
pI,II,... of choosing the players I, II, ... at the beginning of every round.

One can once more define a projection onto one variable. The resulting transition matrix can then be
reduced to the various submatrices of the equivalence classes corresponding to different capital differences
for which we can compute the stationary capital current. However, since the projection does not effect
the stationary capital current, we will not go into detail here.

The multiple-player state space is illustrated in figure 1 for M = 5, N = 3, and D = 3 between two
consecutive players. In the reduced state space, the capitals of the first and third player are only one
capital unit apart. This effect will be important when interpreting the results for multiple players below.

... 0

I

1 2 3

II

4 5 6

III

...

(a) full state space

0

I

1

III

2 3

II

4

(b) reduced state space

Figure 1: Illustration of the multiplayer state space. Here the state for M = 5 and N = 3 as well as
D = 3 between two consecutive players and xI = 0 is shown. The circles are states, the numbers above
the circles reflect the capital and the roman numbers underneath the circles reflect the players in a certain
order.

4 The stationary current of multi-player games

4.1 Double-play games

We first analyse the double-play games. As a first step, we simulate the games. We consider the capital
flow of the different classes and therefore always choose initial conditions that only contain states of the
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same class. The simulation is done for M = 5, the results are shown in figure 2.

0 20 40 60 80 100
number of games

0

2

4

6

ca
pi

ta
l

single
D=1;4

D=2;3

D=0;5

Figure 2: Simulation of the double-play games averaged over 50000 repetitions for εI = εII = 0.5 · 10−6,
M = 5 and qI0 = qII0 = 0.5 compared to the uncoupled (single) case with q0 = 0.5. The capital of player I
is shown.

It can be seen that during the first rounds, some capital is gained and lost alternately. This is due to
the initial capital x̄I = 0. After several rounds, the distribution converges against the stationary one and
the capital gradient approaches a positive constant.

Additionally, the slopes of D and M −D are similar, respectively, even though one can observe slight
offsets which are the result of the initial condition.

The next step is to analyse the games with methods of DTMC and to compare the results with the
uncoupled Parrondo games. In particular, the dependence on the capital difference D and the noise
parameters qI,II0 is examined, the width of the barrier and the number of players are varied.

First, we change the capital difference for different periods. We choose the same parameters as for the
simulation 2. The results are portrayed in figure 3. It is obvious that the capital current in the uncoupled
case is the same for all periods, this is due to the modification of the probabilities accordingly.

0 10 20 30 40 50
capital difference D

0.05

0.06

0.07

0.08

0.09

0.10

J M=49
M=29

M=19M=11
M=7M=5

M=3
single (all M)

Figure 3: Capital current of the double-play games for different periods. We choose εI = εII = 0.5 · 10−6,
qI0 = qII0 = 0.5 and q0 = 0.5 for the uncoupled (single) case. We fit a parabola for M ∈ {5, 7, 11} and a
polynomial of degree M − 2 for M ∈ {19, 29, 49}, D = 0 is not taken into account.

The long-run current in the simulation can be estimated by a linear fit after several rounds. The
results obtained that way coincide with the stationary current calculated using DTMC.

It can be observed that the capital current of the uncoupled games takes the value J = 0.05 up to
a small deviation due to ε 6= 0. Moreover, the assumption is verified that the capital currents of D and
M − D are equal. Therefore, we could show the accordance of the simulation and computation of the
stationary capital current. In figure 3 we can observe the following:

1a) The current for M > 3 is always larger than in the uncoupled case. In the uncoupled
case the capital accumulates in front of x̄ = 0 when playing game B because the winning probability at
x̄ = 0 is smaller (a small or big winning probability is in the following always referred to game B) than
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0.5, but the winning probability before is larger than 0.5. This is a kind of barrier. The switch between
games A and B allows the capital to cross the barrier more likely. When two players are coupled with
a positive capital difference, at least one player has a big winning probability and hence helps the other
player to cross the barrier since both winning probabilities are multiplied. This is the driving mechanism
of the double-play games.

However, the period M = 3 does not match with this observation. Here the capital current for a
positive capital difference is smaller than in the uncoupled case. A possible explanation could be that
for M = 3 and D > 0 there are more states with at least one player having a small winning probability
than states with no player having a small winning probability at all. The same argument leads to the
result that the capital current of D = 0 is always larger than for D = 1. Interestingly, the coupling
with D = 0 has a vanishing extent but nonetheless leads to an increase in the capital current compared
to the uncoupled case. This is the result of nonlinear effects within the multiplication of the winning
probabilities. We will later see that this occurs because the width of the barrier is chosen to be 1. When
this width is enlarged, small capital differences can not have any positive effect on the capital current.

1b) The current has a maximum around M/2 for positive capital differences. ForD < bM/2c
and D > dM/2e the current decreases symmetrically. For large periods some kind of saturation current
is reached and the maximum of the former dependence flattens. For small periods parabolas are fitted
and amazingly agree with the data, for larger periods polynomials of degree M − 2 are fitted in order to
clarify the curve. The symmetry of the curve is a result of the choice of parameters: Since the parameters
are the same for both players, the players are indistinguishable and the long-run behaviour of the games
is the same for D and M −D (the convention of the direction of the coupling was only important for the
definition of the classes but does not effect the winning probabilities).

Particularly interesting is the maximum at D ∈ {bM/2c, dM/2e}. In these cases, the capitals are
distributed as widely as possible over the state space considering the periodic boundary conditions.
When the first player is located at a barrier (x̄ = 0), the second player can help him cross the barrier as
efficiently as possible. This observation has also been found in the continuous case analysed by Klumpp
et al. [10]. They chose the asymmetry of the potential the other way around and therefore the probability
current is negative in their case.

1c) The maximum increases with M . This is a result of the coupling. In the last observation
we deduced that the capital current is maximal for a wide distribution of capitals over the state space.
A larger period increases this effect and hence the driving mechanism. However, there is some kind of
saturation effect for large periods.

We now analyse the dependence on the noise parameters. First, we compute the capital current as
a function of the noise parameters qI0 and qII0 . As an example, we choose M = 7, εI = εII = 0.02 and
D = 3. The results are shown in figure 4.

0.0 0.2 0.4 0.6 0.8 1.0
qI

0

0.0

0.2

0.4

0.6

0.8

1.0

qII 0

0.06

0.04

0.02

0.00

Figure 4: Capital current of the double-play games as a function of qI,II0 for M = 7, εI,II = 0.02 and
D = 3. The black line shows the contour line for J = 0.

We observe the following characteristics, which hold for other values of M and D as well:
1d) For sufficiently large values of ε, the area in which the current is positive is finite.

This is one of the essential results and tells us that the switch between games A and B is important for
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the double-play games: This switch is the only noise process in the system and is therefore essential for
the games and for crossing the barrier.

1e) For ε→ 0 the area of positive current enlarges and reaches the boundaries qI,II0 ∈ {0, 1}.
This was observed when varying the bias parameter for the current as a function of the noise parameters
but is not displayed here. The expansion of the area is a result of the increasing winning probabilities
for ε → 0. It is quite interesting that a positive current can be achieved even though one player always
plays the same game.

1f) The four double-deterministic points in the corners are the last ones to reach a
positive current for a shrinking bias parameter. This confirms the result in observation 1d):
When there are no noise processes and both players always play the same game, respectively, the capital
current is minimal. However, it can be shown that all points but qI0 = qII0 = 1 can attain a positive
current. This is due to the homogeneous probabilities of game A which, for a positive bias parameter,
can never lead to a winning game.

Another interesting observation can be made when varying the width of the barrier. Therefore we
choose the probabilities in table 3 as well as qI0 = qII0 = 0.5 and εI = εII = 0.5 · 10−6. The results are
portrayed in figure 5.
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d=3
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Figure 5: Capital current of the double-play games for different widths of the barrier d for M = 19,
qI0 = qII0 = 0.5, εI = εII = 0.5 · 10−6 and q0 = 0.5 for the uncoupled (single) case. The curve is clarified
with a spline interpolation of second degree.

It is obvious that observation 1b) applies. Nevertheless, there is a change in the characteristics at
the edges of the plot:

1g) For d > 1 the capital current at the edge of the curve is smaller than in the uncoupled
case and the slope of the curve flattens. A minimum distance between the capitals is required so
that the coupling can have a constructive effect. This is the same observation as in [10]. Klumpp et al.
[10] argue that the coupling is a positive driving mechanism only if the equilibrium distance between the
particles is larger than the potential barrier. Then one particle can help the other crossing the barrier
as can be seen in [10], Fig. 4. This quantitative conclusion can not be deduced in our discrete case. For
example, the capital current for d = 3 does not exceed the current of the uncoupled case until D = 5.

Up to now we analysed the behaviour of the capital current as a function of different parameters for
two players. We now want to consider more than two players. We restrict the investigation to equidistant
capitals, hence the capital difference Di,i+1 between two consecutive players i and i+ 1 in a certain order
is a constant, Di,i+1 = D ∈ {0, ...,M − 1} ∀i ∈ {1, ..., N − 1}. Since we will always choose the same
parameters for all players, the exact order is irrelevant. The results for M = 49 are illustrated in figure
6.

Of course many of the observations for two players can also be found here. Particularly important is
the behaviour dependent on the number of players:

1h) For M > 7 the number of extreme points increases with N or stays constant. Especially,
one can observe that the current is maximal when the capitals are distributed as widely as possible over
the state space and minimal for multiple capitals being close together and hence contributes to the
conclusion of observation 1b). We illustrate this taking N = 4 as example: The capital current increases
until D = 12. If the first player has a capital multiple of M, the fourth player has a capital difference
of D1,4 = 3D = 36 to the first one and reaches a multiple of M after 13 other capital units. For an
increasing D and taking into account the periodic boundary conditions, the fourth capital approaches
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Figure 6: Capital current of the double-play games for a varying number of players N for M = 49,
ε = 0.5 · 10−6 and q0 = 0.5 for all players and in the uncoupled (single) case. The curve is clarified with
a spline interpolation of second degree.

the first one and is as near as possible for D = 16, the current is minimal. This repeats several times
dependent on M and D. The effect is also illustrated in figure 1.

1i) For D = M/2 there is a minimum for N > 2 and a maximum for N = 2. This is a direct
result of observation 1h): The capitals are as widely distributed as possible for N = 2 and concentrated
at two points for N > 2, the current is maximal and minimal, respectively.

It may be mentioned that these effects are only that clear because M is chosen quite large. For smaller
periods, the effects of the discretization are visible. However, we do not want to go into detail here.

4.2 Single-play games

We now investigate the single-play games in a similar manner. As before we simulate the games and
subsequently analyse them with methods of DTMC so that we can compare the results with the uncoupled
case.

0 20 40 60 80 100
number of games

0
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3

4

5
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pi
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single, D=0;5D=1;4
D=2;3

Figure 7: Simulation of the single-play games averaged over 50000 repetitions for εI = εII = 0.5 · 10−6,
M = 5, qI0 = qII0 = 0.5 and pI = 0.5 compared to the uncoupled game with q0 = 0.5. The capital of player
I is shown.

For the simulation we choose initial distributions only containing elements of one class, the result is
portrayed in figure 7.

The simulation shows the same behaviour as in the double-play games. The fluctuation during the
first rounds is a result of the initial condition and we observe the convergence against a stationary capital
current. Moreover, the capital differences M and M−D produce the same capital current in the long-time
limit, small offsets can be explained by the initial conditions.

As before, we vary different parameters. First, we can again compute the capital current for different
periods and capital differences. We choose the same parameters as in the simulation. The results are
shown in figure 8.

10



0 10 20 30 40 50
capital difference D

0.0500
0.0525
0.0550
0.0575
0.0600
0.0625
0.0650

J

M=49
M=29

M=19
M=11

M=7

M=5

M=3

single (all M)

Figure 8: Capital current of the double-play games for different periods. We choose εI = εII = 0.5 · 10−6,
qI0 = qII0 = 0.5, pI = 0.5 and q0 = 0.5 for the uncoupled case. We fit a parabola for M ∈ {5, 7, 11} and a
polynomial of degree M − 2 for M ∈ {19, 29, 49}, D = 0 is not taken into account (here all data points
overlap).

The simulation agrees with the computation via DTMC. We can again verify that the differences D
and M −D show the same current. Figure 8 gives us the following insights:

2a) The current is larger than in the uncoupled case. Hence the coupling has a positive effect
on the capital current. However, the explanation differs from the double-play coupling: In the double-play
games both winning probabilities are multiplied and therefore the extra driving mechanism is that both
players always determine the winning probability together. The single-play coupling introduces a new
noise process, the choice of the active player in each round. For this reason, even if one of the players is
at a barrier, there is a chance that the other player is chosen and helps him crossing the barrier. This is
the new driving mechanism of the single-play games.

Again, D = 0 is a special case: Since all parameters are chosen to be the same for both players, this
is then equivalent to the individual Parrondo games as can be observed in figure 8 (all points overlap at
that point).

2b) The current has a maximum around M/2 for positive capital differences. This obser-
vation is the same as observation 1b) and can be explained equally since the effect does not depend on
the coupling but on the capital distribution over the state space.

2c) The maximum decreases with M . Apparently, the driving mechanism of the single-play
games has a different impact for varying periods and is, in contrast to the double-play games, more
efficient the closer the barriers are.

We analyse the dependence on the noise parameters. Figure 9 shows an example of the capital current
as a function of qI0 and qII0 for M = 7, εI = εII = 0.02, D = 3 and pI = 0.5. Furthermore, we compute the
capital current as a function of qI0 and qII0 for different values of pI with M = 5, D = 2 and εI,II = 0.02,
the results are portrayed in figure 10.

We observe the following:
2d) For pI = 0.5 the maximum current is reached for qI0 = qII0 = 0. The area containing a

positive current is not finite, the current decreases with qI0 and qII0 . This is one of the most important
observations: The maximum current is reached when both players always play game B and there is no
diffusion-like behaviour anymore. Even in game B, there is always a chance that the other player is
chosen at the beginning of a round and the barrier is crossed more likely. However, the symmetry within
the choice of the players is important. For pI 6= pII the diffusion-like game A becomes important again
since one player is chosen more often than the other one. This is explained in observation 2f. For a
symmetric single-play game, the driving mechanism of the single-play coupling is more efficient than the
diffusion-like driving mechanism of the individual games. Hence we found a coupling that dominates the
original driving mechanism!

2e) For ε→ 0 the area of positive current enlarges. This is again due to the definition of the
bias parameter. It may be interesting to mention that the capital current is always positive for ε = 0 and
qI,II0 < 1 and only vanishes for qI0 = qII0 = 1 since the symmetric game A can not produce any directed
transport.

2f) The capital current for pI= 0(1) is independent of qI0(qII0 ). Since then only one player is
chosen at once, this is equivalent to the individual Parrondo games. However, the transition pI ∈ (0, 1)
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Figure 9: Capital current of the single-play games as a function of qI,II0 for M = 7, εI,II = 0.02, D = 3
and pI = 0.5. The black line shows the contour line for J = 0.

is of importance which is displayed in figure 10. For pI 6= 0.5 there is an asymmetry in the games and
the single-play driving mechanism is weakened since one player is chosen more often and therefore the
diffusion-like game A becomes more important again for this player. Hence there is some kind of balance
between the driving mechanism of the uncoupled and single-play games which is dependent on the noise
parameters.

We vary the width of the barrier and compute the capital current for M = 19, qI0 = qII0 = 0.5,
εI = εII = 0.5 · 10−6 and pI = 0.5. The winning probabilities are chosen according to table 3. The results
are displayed in figure 11.

Again, the observation 2b can be made, but there is also a change at the edges of the plot:
2g) The capital current for D > 0 is larger than in the uncoupled case. Nevertheless, the

slope flattens at the edges of the curve. The single-play games differ from the double-play games in
this point: For D = 0 the single-play games are equivalent to the uncoupled games since the parameters
are chosen to be the same for all players and the current becomes larger for D > 0, hence the driving
mechanism is constructive then. The reason for this might be that the the small winning probabilities in
the barrier have a larger effect for the current when being multiplied instead of being convex combined
in the single-play coupling.

We now look at multiple players for the single-play games and restrict the discussion to equidistant
capitals between consecutive players in a certain order again. The results for M = 49 are shown in figure
12. Many of the observations for two players can be made. Indeed, the observations 1h and 1i are also
the same here. The reason is that this effect is not dependent on the coupling but only on the distribution
of capitals over the state space.

5 Discussion and Outlook

In this paper we investigate coupled Parrondo games. We restrict the discussion to rigid coupling and
define two different couplings: The double-play coupling assumes that both players play the individual
Parrondo games separately and have to win or lose at the same time, respectively. This is motivated
from the rigid coupling in the continuous case. The single-play coupling, on the other hand, is motivated
by biology: At the beginning of every round one player, whose result effects the capital of both players
at the same time, is selected randomly. In the first case the individual probabilities are multiplied, in the
second case convex combined.

The key to analyze the multi-player games is to show that for fixed capital differences, i.e. rigid
coupling, they can be reduced to usual Parrondo games with modified parameters and can therefore
be treated in the same way. The games converge to a stationary distribution and this can be used to
calculate the stationary current. This allows to study the effect of the coupling and to vary the different
parameters which determine the games.

For both couplings we show that for M > 3 a cooperative effect occurs. The stationary capital current
for M > 3 is larger than in the uncoupled case, hence the driving mechanism of the uncoupled games is
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Figure 10: Capital current of the single-play games as a function of qI,II0 for M = 5, D = 2 and εI,II = 0.02.
The black lines reflect the contour lines for J = 0.
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Figure 11: Capital current of the single-play games for different widths of the barrier d for M = 19,
qI0 = qII0 = 0.5, εI = εII = 0.5 · 10−6, pI = 0.5 and q0 = 0.5 for the uncoupled case. The curve is clarified
with a spline interpolation of second degree.
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Figure 12: Capital current of the single-play games for a varying number of players N for M = 49,
ε = 0.5 · 10−6, pI = pII = ... = 1/N and q0 = 0.5 for all players and in the uncoupled case. The curve is
clarified with a spline interpolation of second degree.

supported. For the double-play coupling the reason is the multiplication of the winning probabilities, for
the single-play coupling the choice of players at the beginning of every round.

On the other hand, there are many differences between the two couplings. The double-play games
show a deviation of the behaviour for M = 3 which is not the case in the single-play games. The change
of maxima of the capital current for different periods is positive for the double-play games but negative
for the single-play games. These and other effects can easily be explained by the different coupling
mechanism.

Apparently, the effectiveness of both couplings is dependent on the period in different ways. The
double-play coupling is more efficient for larger, the single-play coupling for smaller periods. This always
has to be investigated in comparison to the uncoupled case which produced almost the same current for
all periods due to the modified winning probabilities. The maximum of the capital current for M > 3
occurs at D ∈ {bM/2c, dM/2e} for both couplings. Therefore the couplings are most efficient for the
capitals being as widely distributed over the state space as possible (considering the symmetry).

This can be compared to the continuous case of two coupled Brownian particles. Klumpp et al. [10]
determine the probability current for a dichotomous, multiplicative noise process as a function of the
particle distance in the limit of rigid coupling, see Fig. 3 in their paper. At first it can be seen that the
absolute value of the current shows a maximum when the particle difference is half the period. This is,
neglecting the saturation effects, the same behaviour as in our case. One can also observe the symmetry
between the distances l and L − l. However, in [10] an other effect becomes important: For particle
distances smaller than the width of the potential barrier, the current hardly changes. The reason is that
the coupling then can not act over the potential barrier.

Particularly interesting is the dependence on the noise parameters. For the double-play games the
coupled driving mechanism does not dominate but only supports the uncoupled one: The maximum of
the capital current is always found for qI,II0 /∈ {0, 1}. The single-play games show a different result: The
maximum capital current is found when both players only play game B. The coupling dominates the
noise effect of switching the games in this case. The reason is the new noise process, the random change
between both players. The new noise process in the single-play coupling can dominate the original one,
depending on the choice of the respective parameters. The double-play games do not have any additional
noise process. The original noise process is the only one in this case and there is no current without noise
for a vanishing bias parameter (ε = 0).

In the end we investigate the rigid couplings for more than two players with a constant capital differ-
ence between two consecutive players in a certain order. The results are easy to understand: Depending
on the period and the number of players, the capital current shows different extreme points as a function
of the capital difference. We deduce that the capital current is maximal for the capitals being as widely
distributed over the state space as possible, taking the symmetry between the players into account.

There are many interesting questions that have not been investigated in this work. The most inter-
esting question is eventually what happens if we soften the rigid coupling. A discrete analogy of the
harmonic coupling in [10] is difficult to be analysed with our methods since neither the periodic state
space nor the reduction can be used. It is possible to introduce a periodic harmonic coupling, but such
a coupling has no direct physical interpretation. The first question one therefore needs to answer is how
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a physically meaningful non-rigid coupling could look like which pertains the periodicity.
Parrondo et al. [16] study games which are not capital but history dependent. Those games can also

be played by multiple coupled players. The first question is how to introduce the coupling in that case.
The second then is whether there occur similar cooperative effects.

Another interesting aspect is the optimal choice of games and players in every round. Dinis [17]
examines the original Parrondo games with Markov Decision processes, Dinis an Parrondo [18] prove
that a short-range optimization of the games can lead to a long-term loss for a positive bias parameter.
The investigation of the coupled games with these methods could lead to interesting results, too.

Harmer et al. [19, 20, 13] considered the recurrence and transience of the original Parrondo games
and derived conditions for the parameters leading to Parrondos Paradox. Perhaps it may be possible to
find similar conditions for the coupled Parrondo games.

Other directions of further research are the relationship between Parrondo games and lattice gas
automata [21] or quantum versions of Parrondo games [22] where the effect of two or more players and
the new mechanisms we found can be present as well. Multiple player Parrondo games thus offer a broad
variety of open questions which may be investigated in the future.

This work is based on the bachelor’s thesis by Sandro Breuer. This research did not receive any
specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
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