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Liquid crystals can self-organize into a layered smectic phase. While the smectic layers are typ-
ically straight forming a lamellar pattern in bulk, external confinement may drastically distort the
layers due to the boundary conditions imposed on the orientational director field. Resolving this
distortion leads to complex structures with topological defects. Here, we explore the configurations
adopted by two-dimensional colloidal smectics made from nearly hard rod-like particles in complex
confinements, characterized by a button-like structure with two internal boundaries (inclusions): a
two-holed disk and a double annulus. The topology of the confinement generates new structures
which we classify in reference to previous work as generalized laminar and generalized Shubnikov
states. To explore these configurations, we combine particle-resolved experiments on colloidal rods
with three complementary theoretical approaches: Monte-Carlo simulation, first-principles density
functional theory and phenomenological Q-tensor modeling. This yields a consistent and compre-
hensive description of the structural details. In particular, we characterize a nontrivial tilt angle
between the direction of the layers and symmetry axes of the confinement.

I. INTRODUCTION

Liquid crystals [1, 2] have proven to be an important
tool in the investigation of various topological phenom-
ena. In nematic liquid crystals, topological defects reflect
the frustrated orientational order due to, e.g., confining
geometries [3–11], active dynamics [12–16] or a combina-
tion of both [17–19]. This diversity of defects and for-
mation pathways has led to extensive research attention
devoted to understanding and accurately modeling the
emerging topological defect structures [20–26].

In recent years, there has been an increasing interest
in layered liquid crystals [27] and, in particular, smec-
tic phases [28–31], which possess both orientational or-
der and a periodic modulation of the center-of-mass den-
sity in the form of layers. This development owes to
progress in (i) advances in experiments [32–45], (ii) con-
tinuum modeling [46–49] and (iii) first-principles theory
[50–52], complemented by (iv) topological insight [53–
56] reinforced by (v) simulating particle-resolved defect
structures [57–60]. Despite these advances, further inter-
disciplinary efforts are needed to achieve a comprehensive
understanding of smectics and to bridge the gap between
different (model) systems showing smectic layering and
theoretical approaches of all kinds. For example, different
classes of experimental smectics range from thermotropic
molecular liquid crystals with highly elastic layers to col-
loidal smectics, whose internal structure, being governed
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by packing effects, is more rigid. A particular challenge
is thus to identify and develop universal structural and
topological classification concepts that are applicable to
all kinds of smectic layering.

In this paper, we bring four complementary approaches
together to understand the structure of colloidal smec-
tics, confined to two-dimensional domains with a complex
topology involving two holes. We use particle-resolved
colloidal experiments on silica rods [43], Monte-Carlo
simulations of a hard-rod model [58], microscopic den-
sity functional theory (DFT) for hard rods [52] and a
recent continuumQ-tensor model extending the Landau–
de Gennes theory for nematics [48].

The goal of our work is twofold. First, we provide
a more profound topological understanding of colloidal
smectics by exploring more complex confinements that
allow for a larger structural variety. Second, we bring
together four different approaches to both demonstrate
the general applicability of our topological concepts and
exploit their synergies when it comes to a detailed struc-
tural analysis. We will thus demonstrate that our meth-
ods not only yield consistent predictions of the properties
of different topological states but also allow us to tackle
the problems from different viewpoints. In particular, we
investigate responses of the system to both changes of the
confining geometry and variation of interaction parame-
ters. This allows us to systematically explore the ranges
of stability of different topological states as well as differ-
ent alignment phenomena and structures in the absence
of a continuous rotational symmetry.

This manuscript is arranged as follows. We provide
details on the confining geometries, methods and topo-
logical classification scheme in Sec. II, before discussing
our results in Sec. III. After summarizing our observa-
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FIG. 1. Schematic depiction of the button-like confining ge-
ometries investigated in this work generalizing an annulus
(middle) with inclusion size ratio b = Rin/Rout, where Rout

is the radius of the outer confining wall and Rin is the ra-
dius of the circular wall in the interior, called inclusion [61].
Here, we consider two inclusions at distance C, introducing
the inclusion distance ratio c = C/Rout. In detail, we define
the two-holed-disk geometry (top), where the outer wall is
always circular, and the double-annulus geometry (bottom),
where the outer wall is defined via two intersecting circles at
the same distance C. The outer radius Rout is kept at a fixed
value throughout the manuscript, which corresponds to about
five smectic layers. Further details are provided in Sec. IIA.

tions, we conclude in Sec. IV.

II. CONFINED SMECTIC STATES

Our goal is to identify the structure and topology of
the smectic states emerging in various two-dimensional
confinements. The complexity of a confining domain can
be both of explicit geometrical origin, related to the cur-
vature of the walls, or of topological origin. The latter
can be quantified by the Euler characteristic χ, which
counts the number of connected components minus the
number of holes in two dimensions, irrespective of the
particular geometric shape of the domain. In the follow-
ing, we elaborate on the relevant geometrical parameters
(Sec. IIA), describe how we resolve smectic structures in
experiments and three theoretical approaches (Sec. II B)

and provide details on the topological analysis (Sec. II C).

A. Button-like confinements

As confining domains, we consider two generalizations
of an annular geometry (central drawing in Fig. 1). This
allows us to compare against solutions characterized for
an annulus in previous work [61]. An annulus is com-
posed of a large circle of radius Rout > 0 with a single
circular hole (inclusion) of radius Rin < Rout in the cen-
ter. This topology has an Euler characteristic χ = 0,
which allows for a structure free of orientational topolog-
ical defects at the cost of forming an array of edge dis-
locations to relax the deformation of the layers imposed
by the curved confinement (Shubnikov state, named fol-
lowing the structural analogy to type-II superconduc-
tors [33, 62]). Depending on the particular geometry, this
structure competes, among others, with an undeformed
structure (laminar state), which comes at the cost of the
formation of grain boundaries, i.e., defects in both orien-
tational and positional order [61].
The central geometrical parameter which determines

the stability of a structure emerging in annular geometry
is the inclusion size ratio b = Rin/Rout. For each of
our two related geometries, further specified below, we
add a second inclusion of the same inclusion size ratio
b and introduce the geometrical parameter C = cRout,
which denotes the distance between the centers of the two
inclusions. In general, for small enough relative distance
c ≤ 2b the inclusions intersect, resulting in a distorted
annulus with an effectively stretched inclusion (χ = 0),
while for larger distances c, there are two separated holes
such that the Euler characteristic equals χ = −1.
First, we consider the two-holed-disk geometry (top

drawing in Fig. 1), made of a single outer circle of radius
Rout, and two inclusions whose centers are shifted away
from each other in opposite directions with the mutual
distance C, such that the distance to the center of the
outer disk is C/2 in each case. Regarding the region
accessible to the particles, the shortest distance between
outer and inner walls varies upon circling along the outer
wall. Note that, for extreme distances c ≥ 2 − 2b, the
inclusions are in contact with the outer wall, such that
the geometry becomes simply connected again (χ = 1).
Second, we consider the double-annulus geometry (bot-

tom drawing in Fig. 1), composed of two outer circles,
which are shifted alongside the two inner circles, such
that each pair of inner and outer circles has the same
center with a mutual distance of C. Consequently, each
point of the outer confining wall has the same shortest
distance (1− b)Rout to one of the inclusions.

To summarize, each geometry in Fig. 1 is fully deter-
mined by three parameters: the inclusion size ratio b, the
inclusion distance ratio c and the total size of the con-
fining domain specified by the radius Rout of the outer
wall. Throughout the manuscript, we keep Rout ≈ 5λ
fixed, where λ is the layer spacing of the smectic.
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FIG. 2. Example structures in the two confining geome-
tries shown in Fig. 1 with two inclusions. The left and right
columns depict the two-holed-disk geometry for b ≈ 0.25 and
c ≈ 1.0 and the double-annulus geometry for b ≈ 0.3 and
c ≈ 1.2, respectively. In both geometries we show (from top
to bottom) typical particle configurations in colloidal experi-
ments, Monte-Carlo simulations of rod-like particles, density
profiles and director fields from hard-rod density functional
theory (DFT) and Q-tensor theory with suitably adapted pa-
rameters (see text).

B. Complementary methods

Next we briefly introduce our methods to generate two-
dimensional smectic states in extreme confinement and
describe how to interpret the final smectic structures de-
picted in Fig. 2. In general, smectic order is character-
ized by positional order of the particle centers in equidis-
tant layers and orientational order along a director at
a constant angle to these layers. Confinement induces
frustration of this preferred alignment in the form of de-
formations or discontinuities of the layers and/or the di-
rector field. The complementary use of our different ap-
proaches, allows us to optimally exploit their advantages
when it comes to understanding the driving forces behind
the formation, the stability range and the topology of the
emerging structures. Further details on each method are
provided in Appendix A.

Our experiments exploit the sedimentation equilibrium
of silica rods in an aqueous solution, as described in Ap-
pendix A 1. The particle-resolved optical micrographs,
displayed in the first row of Fig. 2, are then taken from
the bottom, where the rods settle within tailor-made
cavities. These quasi-two-dimensional smectic structures
can then be analyzed by direct optical inspection or read-
ing out individual particle coordinates and orientations
from processed images.

We also perform Monte-Carlo simulations on confined
systems of rods modeled as hard discorectangles in the
canonical ensemble, as described in Appendix A 2. The
simulation snapshots, as displayed in the second row of
Fig. 2, can be analyzed in the same manner as those from
the experiments, while this particle-resolved numerical
method leaves us in full control of the particle shape,
number density and geometrical parameters. This al-
lows us to gather a large amount of statistics for any
prescribed geometry. From that we can further locate
the grain boundaries by sampling a local version (cf.
Fig. 9) of the two-dimensional orientational order pa-
rameter S(r) = | ⟨exp (i2ϕ(r))⟩ |, where ϕ denotes the
orientation angle of the individual rods within a local
environment around the position r.

On the theory side, we employ classical density func-
tional theory (DFT) [63] for hard discorectangles, as de-
scribed in Appendix A3. In DFT, all structural informa-
tion is comprised within the number density ρ(r, ϕ) found
by minimizing an appropriate functional Ω[ρ]. This cen-
tral quantity reflects the probability of finding a particle
with the center-of-mass position r and its long axis ori-
ented in a direction given by the angle ϕ. The typical
density profiles, as displayed in the third row of Fig. 2,
indicate both the smectic layers by a color plot of the
local density (averaged over all orientations) and the di-
rector by green bars. In the employed version of DFT
[52, 61] based on fundamental measure theory [64, 65] the
interactions are treated on a microscopic level through
the geometry of individual particles, such that the den-
sity profiles reflect the particle dimensions. As DFT is
founded in statistical mechanics, no additional averaging
is required and the most stable state can be identified
among multiple solutions from the minimal value of the
corresponding free energy.

Furthermore, we study a recent phenomenological
model for smectic layering, based on an extension of
Landau–de Gennes theory to smectics, as described in
Appendix A 4. It minimizes a total free energy J (u,Q)
of the local density perturbation u(r) for smectic phases
and a tensorial order parameter Q(r) encoding the orien-
tational order. As displayed in the fourth row of Fig. 2,
typical profiles of the smectic density variation u exhibit
maxima (light yellow) and minima (light blue) which
both can be interpreted as the smectic layers, while the
orientational director field (gray rods) corresponds to the
eigenvector of tensor Q with the largest eigenvalue. In
this smectic Q-tensor theory, the interactions are implic-
itly described through a range of phenomenological pa-
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FIG. 3. Illustrative overview of topological structures. The
rows show different realizations of generalized laminar (L, two
+1/2 and four −1/2 charges), composite (C, one +1/2 and
three −1/2 charges) and generalized Shubnikov (S, two −1/2
charges) states. The first three rows display the structures
with a continuous central domain which is tilted by the angle
α relative to the axis that connects the two inclusion cen-
ters, as annotated (the definition of α is included in the first
illustration of the second row). The fourth row displays the
structures for α = π/2 with the central domain interrupted by
a few layers spanning between the two inclusions, which we re-
fer to as inclusion tunnel. The illustrations depict the typical
appearance of these generalized states in the two-holed-disk
geometry (where we also speak of dual laminar and stretched
Shubnikov states), but the same general classification also
holds for the double-annulus geometry. Further details are
provided in Sec. II C.

rameters. To connect to our other approaches, we con-
sider two of these parameters as free variables: the elas-
ticity parameter K of the director field and the anchoring
parameter w, which indicates the strength of tangential
alignment of directors at the outer wall. As the latter
depends on curvature, the alignment at the inner wall
is accordingly weaker (see Appendix A 4 for further de-
tails). When choosing K = 0.5 and w = 5 (two-holed
disk) or K = 1 and w = 10 (double annulus) we find
convincing agreement with our other methods in Fig. 2.

C. Topological classification

The hard rods described in our particle-based ap-
proaches favorably align parallel to the system walls.
This externally imposed boundary condition competes
with the intrinsic smectic structure favoring defect-free,
undeformed, parallel and equidistant layers. The result-
ing (stable or metastable) equilibrium structures are thus
governed by a balance between elastic deformations and
topological defects. The type, location and shape of the
emerging topological defects provide a convenient way
to classify and distinguish between the observed smec-
tic states, as illustrated in Fig. 3. [58, 61]. In smectics,
we typically observe spatially extended grain boundaries
or virtual boundary defects (misalignment of rods at the
wall), whose orientational frustration can be quantified
by a topological charge Q in analogy to nematic discli-
nations [58, 59]. The Poincaré–Hopf theorem gives rise
to a fundamental law of charge conservation for two-
dimensional smectic structures: the total sum of topo-
logical charges

∑
Q = χ in a confined system must equal

the confining domain’s Euler characteristic χ. The two
main types of grain boundaries relevant in our study pos-
sess a Q = +1/2 or a Q = −1/2 topological charge, asso-
ciated with a clockwise and counterclockwise rotation of
the director field around the defect, respectively. In both
cases, the main rotation occurs at the end points of the
grain boundaries, which can then be identified as point-
like tetratic defects of quarter-integer magnitude [58].

As a first step of our topological analysis, we focus on
the structural properties on the largest scale and ignore
the details in the region between the two inclusions. By
doing so, we can classify the overall smectic states in the
same spirit as in an annular geometry [61], i.e., by con-
sidering an effective geometry with Euler characteristic
χeff = 0, obtained by formally replacing the two inclu-
sions with a single inclusion given by their convex hull
(indicated by the magenta shaded areas in Fig. 1). Fol-
lowing the nomenclature of Ref. [61], we classify solutions
into (i) generalized laminar states, with two Q = +1/2
defects close to the outer wall and two Q = −1/2 de-
fects at the effective inclusion, (ii) generalized composite
states, combining features of both (one Q = +1/2, one
Q = −1/2 defect and edge dislocations), or (iii) gener-
alized Shubnikov states, with no topological charges but
edge dislocations of the layers, as sketched in the differ-
ent columns of Fig. 3. Due to the particular appearance
of these states in the two-holed-disk geometry, we also
speak of dual laminar and stretched Shubnikov states in
this case.

As a second step, we account for the broken continu-
ous rotational symmetry for a nonzero inclusion distance
c > 0. We introduce the tilt angle α ∈ [0, π/2] of the cen-
tral domain with respect to the axis that connects the two
inclusion centers (cf. the second row in Fig. 3) as an ad-
ditional structural quantifier. The rows of Fig. 3 depict
the different states for α = 0 (layers parallel to the con-
necting axis), an intermediate value of α, and α = π/2
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(layers perpendicular to the connecting axis).
The third step of our topological analysis concerns the

fine structure between the inclusions, i.e., the location
and shape of the two additional Q = −1/2 defects re-
quired by the charge conservation to match the overall
Euler characteristic χ = −1 in the presence of two holes.
In general, there are two possibilities. First, the layers
between the inclusions can align with the adjacent lay-
ers outside to become part of a larger domain, compar-
ing the first three rows in Fig. 3. In this case, the two
Q = −1/2 defects are directly located at the inclusions.
Second, if α ≳ π/4, it is also possible that the two in-
clusions are connected by one or more isolated smectic
layers, such that the rods in the central region fulfill the
parallel wall anchoring condition. However, this inclu-
sion tunnel then interrupts the central domain, compare
the last row in Fig. 3, which results in two grain bound-
aries with Q = −1/2, parallel to the line connecting the
inclusions. Note that for α ≲ π/4, the anchoring condi-
tion can be fulfilled without forming an inclusion tunnel,
i.e., when the layers connecting the inclusions are part of
the defect-free central domain.

We comment that the stretched Shubnikov state in the
two-holed-disk geometry cannot be realized for small tilt
angles. When decreasing the tilt angle α of a structure
below α ≲ π/4, the central domain eventually fulfills the
first criterion for an inclusion tunnel (layers connecting
the inclusions), comparing with the generalized laminar
state in the top-right illustration of Fig. 3 for α = 0. In
turn, a generalized Shubnikov state is only possible if the
second criterion for an inclusion tunnel is also fulfilled,
i.e., that there exists a larger domain outside the con-
vex hull of the inclusions which has a tilt angle α ≳ π/4
and is separated from the inclusion tunnel by two grain
boundaries, comparing with the bottom-right illustration
of Fig. 3 for α = π/2. Combining these two structures,
the composite state depicted in Fig. 3 for α = 0 consti-
tutes a particular example with two domains of compa-
rable size.

III. RESULTS

A. Two-holed disk

We focus first on the two-holed-disk geometry. As in
the annulus, the circular shape of the outer confining
wall remains invariant for all choices of the geometrical
parameters b and c, where an annular geometry is recov-
ered for c = 0. To quantify the emerging structures in
full detail, we proceed stepwise. First, in Sec. III A 1, we
study the transition between the generalized laminar and
Shubnikov states, focusing only on the smectic structures
outside the convex hull of the two inclusions. Then, we
use these insights to explain our general observations in
experiments and Monte-Carlo simulations in Sec. III A 2
before quantifying the two structural aspects indicated
in Fig. 3. In particular, we study the tilt angle α of the

FIG. 4. DFT state diagram in the two-holed-disk geometry
indicating the stable laminar (square symbols) or Shubnikov
(round symbols) states for different inclusion distance ratios
c and inclusion size ratios b. The data for c = 0, indicat-
ing the special case of annular confinement, are taken from
Ref. [61]. The color denotes the relative free energy differ-

ence ∆Frel := (F (L)
0 −F (S)

0 )/F0 between the optimal laminar

(L) and Shubnikov (S) states, where F0 := min{F (L)
0 ,F (S)

0 }
is the free energy of the overall optimal state. For b = 0.3
and c = 1.4 the inclusions are in contact with the outer wall,
such that no Shubnikov state can exist. The snapshots in
the bottom panel depict four representative examples of op-
timal structures: laminar structures with tilt angles α = 0
or α = π/2 (intermediate values of α are examined below in
Fig. 7) and Shubnikov structures without and with an inclu-
sion tunnel.

central smectic domain in Sec. III A 3 and investigate the
locations of the topological defects in the region between
the inclusions in Sec. III A 4.

1. Theoretical laminar-Shubnikov transition

We start by systematically mapping out a simple state
diagram using DFT, which gives us full control over the
structures we wish to compare. In particular, to under-
stand the general structural response upon varying both
b and c, we focus on (dual) laminar and (stretched) Shub-
nikov states, as specified in Sec. II C. Moreover, we re-
strict ourselves to (fairly) axially symmetric structures,
i.e., we impose the two extreme tilt angles α = 0 or
α = π/2 in the laminar case and just α = π/2 in the
Shubnikov case.
Our results are compiled in Fig. 4. We find that the

laminar state is destabilized in favor of the Shubnikov
state upon increasing the inclusion size ratio b, as in
the special case c = 0 of an annulus [61]. The lami-
nar state is also destabilized upon increasing the spac-
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FIG. 5. State diagram from Q-tensor theory in the two-holed-
disk geometry for different values of the elastic parameter
K and the wall anchoring parameter w. The inclusion size
ratio b = 0.2 and the inclusion distance ratio c = 0.6 are
kept fixed. We distinguish between four different structures:
laminar (L), composite (C) and Shubnikov without (S) and
with an inclusion tunnel (S∗). The bottom panel depicts one
representative snapshot for each case (parameters according
to the connected stars).

ing c between the inclusions for a fixed value of b. This
behavior matches expectations, since the size of the ef-
fective inclusion increases when the two inclusions have
a larger distance, such that Shubnikov structures, char-
acterized by layers spanning from the inclusions to the
outer wall, become generally more favorable. Since only
the structure outside the convex hull of the inclusions is
relevant for this first part of our discussion, it is not im-
portant whether or not the two inclusions are connected
(topological details arising from disconnected inclusions
at c > 2b are discussed in Sec. III A 4). However, we
stress that, as soon as c ≥ 2− 2b, the inclusions overlap
with the outer confining wall, such that it is no longer
possible to fulfill the criterion to identify a Shubnikov
state (cf. the missing top-right state point in Fig. 4).
In these extreme cases, the confining geometry is, once
again, simply connected and only deformed variants of
a bridge state (laminar state without negatively charged
defects) [61] exist, which are not our main interest here.
In the trivial bounding cases c > 2 + 2b or b = 0 (not
shown), the confinement simply reduces to a disk.

In general, the laminar-Shubnikov transition is driven
by the tendency of the system to achieve an optimal bal-
ance between satisfying the external constraints of the
confining geometry (since the rods preferably align par-
allel to the wall) and maintaining the intrinsic smectic
structure. This results in a trade-off between deforma-

tions, as dominant in the Shubnikov structures, and topo-
logical defects, governing the laminar structures.

To better characterize this competition, we employ the
smectic Q-tensor theory to examine how the structural
transitions can be induced by tuning the elastic behavior
and the strength of the tangential wall alignment, deter-
mined by the parameters K and w, respectively. To this
end, we fix the inclusion size ratio b = 0.2 and the in-
clusion distance ratio c = 0.6, so as to take values close
to the laminar-Shubnikov transition predicted by DFT
in Fig. 4. The state diagram from Q-tensor theory in
Fig. 5 confirms the expectation that Shubnikov states
are stabilized upon imposing stronger anchoring condi-
tions (i.e., larger w) to minimize the number of defects.
In particular, the observed laminar states are typically
characterized by a single domain with the defects ap-
pearing through a misalignment at the walls (as also fre-
quently observed in DFT). Moreover, we see that the
laminar state is generally stabilized upon increasing K
and thus the bending rigidity of the layers. For smaller
values of K < 0.3, composite structures are also found
and the laminar state becomes compatible with strongly
deformed layers. Such highly elastic behavior is, however,
rather atypical in the context of hard rods. These results
demonstrate a reassuring consistency between the DFT
and smecticQ-tensor results, even without extensive tun-
ing of the other parameters of the Q-tensor model.

Returning to microscopic DFT structures, we can
make more precise statements regarding the stability of
the generalized laminar and Shubnikov states, by com-
paring the examples shown at the bottom of Fig. 4. First
of all, both the number of layers in the central domain
and their orientation in the optimal laminar state (un-
der the symmetry constraints imposed so far) strongly
depend on the geometrical parameters. This suggests
that by allowing for different values of the tilt angle α
we should find states with an even smaller free energy,
which will be studied in Sec. III A 3. Second, and most
importantly, we notice for α = π/2 that the structural
differences between states classified as laminar or Shub-
nikov become less pronounced upon increasing the in-
clusion distance c, due to the larger size of the central
domain. This intuitively explains the destabilization of
the laminar state for increasing c: the number of laminar
layers between the inclusions and outer wall decreases,
which brings the two defects closer to annihilation, while
the extreme case of zero laminar layers eventually corre-
sponds to a Shubnikov structure. Third, for b = 0.1, we
even observe in Fig. 4 a particular example of a re-entrant
stable laminar state at c = 1.4, in which the spacing be-
tween the inclusions and outer wall allows for all layers
being parallel. Finally, we expect that, within a small
range of parameters, there exists a stable intermediate
composite state [61], as in the illustrations in the middle
panel of Fig. 3.
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FIG. 6. Global orientational distribution in the two-holed-
disk geometry for the inclusion size ratio b = 0.25. As illus-
trated at the top right, the relative frequency of individual
rod orientations (blue) reflects the preferred tilt angle α of
the layers (gray line) relative to the axis that connects the
two inclusions (dotted line), see also Fig. 3. We compare ex-
perimental data for different inclusion distance ratios c ≈ 0.8,
c ≈ 1.0 and c ≈ 1.2, averaged over 21, 24 and 15 available
structures, respectively, and Monte-Carlo data for c = 1.0,
sampled from 1800 independent simulation runs. For symme-
try reasons we map orientations with α > π/2 onto π−α and
only consider 0 ≤ α ≤ π/2. The bottom panel depicts one
particular snapshot for each case, where the rods are colored
according to their orientation.

2. General particle-based observations

In our colloidal experiments, we focus on a few se-
lected sets of geometrical parameters. Qualitatively in-
specting our snapshots for b ≈ 0.25 and 0.6 < c < 1.2,
we arrive at the following general picture. We predom-
inantly observe the Shubnikov state, in agreement with
the DFT prediction. All of these Shubnikov structures
possess large tilt angles α > π/4 of the central domain.
Recalling the discussion in Sec. II C, such an alignment
allows for a larger number of straight layers in the central
domain between the inclusions. Quite remarkably, how-
ever, only one of our 104 inspected structures depicts a
nearly laminar state (see the second snapshot in Fig. 6),
while only three of them can be clearly identified as com-
posite states. In all these cases, the laminar parts of the
structure possess a small tilt angle α < π/4. To quantify
the tilt-angle statistics, we measure in Fig. 6 the global
orientational distribution of all rods, averaged over all
cavities with comparable geometry. In accordance with
the typical orientation α of the central domain, we find

FIG. 7. Energy landscape for different structures depending
on the tilt angle α of the central domain in the two-holed-disk
geometry for the inclusion size ratio b = 0.25 and the inclusion
distance ratio c = 1.0. According to the legend, we compare
different laminar DFT structures Lab, where the indices a
and b denote the number of layers in the central domain and
perpendicular to it, respectively, and several minimizers of
the energy functional from Q-tensor theory with K = 1 and
w = 5. Exemplary snapshots are shown in the bottom panel.
As only the energy difference is relevant for the stability, the
vertical axis depicts the rescaled difference to the global min-
imum (indicated by the dotted line), calculated separately for
DFT and Q-tensor results in arbitrary units. Since the min-
ima for large angles α are generally deeper, it is more likely to
find such structures, consistent with the observation in Fig. 6.

that the most frequent angles are close to π/2, where
the exact location of this peak appears to depend on the
inclusion distance.

Overall, the suppression of the stability of laminar
states, upon increasing the distance between the inclu-
sions, appears to be even more pronounced in the ex-
periments than predicted theoretically in Fig. 4. This
observation can be explained by the typically lower num-
ber of parallel layers in the experiment compared to the
most stable DFT solution [61] in combination with the
preference of the rods to align in a central domain at
large tilt angles. To understand this, consider, for in-
stance, the experimental laminar structure depicted in
Fig. 6 with b = 0.25 and c = 1.0. Now imagine, in-
stead, the inclusions placed over the top and bottom
grain boundary. This would both reduce the defect re-
gion and classify the structure as a Shubnikov state with
a significantly increased tilt angle α, intuitively explain-
ing our predominant observations of large tilt angles and
Shubnikov structures.

Our Monte-Carlo simulations of hard rods carried out
for b = 0.25 and c = 1.0 confirm the basic experimental
observations that nearly all identified structures reflect
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stretched Shubnikov states and that large tilt angles are
favored. We depict the global orientational distribution
and the typical snapshot at the bottom-right of Fig. 6.
Moreover, our particle-resolved simulations allow us to
further explore smaller inclusion sizes than those real-
ized experimentally (not shown). As expected from the
discussion above, there is still a high probability to ob-
serve Shubnikov structures for b = 0.1, while the laminar
state becomes dominant for b = 0.05.

3. Orientation of the central domain

Our experimental and Monte-Carlo results suggest
that the assumption, made in Sec. III A 1 for DFT, of
imposing smectic structures with the same symmetry as
the confining geometry is not justified in general. While
the orientational distribution in Fig. 6 generally suggests
that large tilt angles α > π/4 are most likely, we also
notice that the maximum is not always located at the
extreme value α = π/2. Even more so, we expect that
the geometrical constraints on laminar structures, arising
from the competition of the preferred layer spacing with
both the distance between the two inclusions and the
distance from each inclusion to the outer wall, can be
efficiently relaxed by aligning the central domain along
characteristic tilt angles. A first evidence for this predic-
tion stems from the DFT results in Fig. 4, where the tilt
angle of the optimal laminar structure (given the con-
straint to either α = 0 or α = π/2) strongly depends
on the particular geometry (contrast the two depicted
laminar structures).

To learn more about the preferred tilt angle, we com-
pare in Fig. 7 the energy of different states as a function of
α for a fixed geometry with b = 0.25 and c = 1.0. In the
smecticQ-tensor theory, we only find solutions with large
tilt angles α > 0.4π for the intrinsic parameters K = 1
and w = 5, which demonstrates the instability of struc-
tures with smaller α under these conditions. The corre-
sponding free energy decreases with increasing tilt angle,
such that the global minimum is found for α ≃ 0.5π,
which is in principal agreement with the statistics from
experiment and Monte-Carlo simulation.

To systematically study the tilt-angle dependence in
DFT, we restrict ourselves to laminar states. We choose
three representative template structures with a well-
defined numbers of layers both in the central domain and
perpendicular to it (cf. the example structures shown at
the bottom of Fig. 7). By doing so, all structures gen-
erated by imposing different tilt angles remain compa-
rable among each other. For the parameters b = 0.25
and c = 1.0, we find that structures with two layers in-
terrupted by each inclusion are generally favorable. We
further focus in each case on three typical ranges of the
tilt angle, such that there are (with increasing α) three,
two or one laminar layers between one inclusion and the
outer wall, respectively. These values of α depend on
whether the central point of the geometry is occupied

FIG. 8. Relative frequencies of structures with an inclusion
tunnel (cf. the second row in Fig. 3) in the two-holed-disk
geometry for the inclusion size ratio b = 0.25. We compare
experimental data (green bars) for different inclusion distance
ratios c ≈ 0.6, c ≈ 0.8, c ≈ 1.0 and c ≈ 1.2, averaged over 44,
21, 24 and 15 available structures, respectively, and Monte-
Carlo data (black crosses) averaged over 20 simulations for
each selected c. The dotted line serves as a guide to the eye,
illustrating how the fraction of inclusion tunnels decreases
with increasing inclusion distance. Regarding the occurrence
of structures with inclusion tunnel in DFT and Q-tensor the-
ory, please refer to the bottom-right snapshot in Fig. 4 and
the state diagram in Fig. 5, respectively.

by a layer (central domain with nine layers in total) or
by the void space in between two layers (central domain
with eight layers in total). The corresponding free en-
ergy landscapes shown in Fig. 7 reveal that the most
stable structures correspond to the minima in the range
of tilt angles with the largest values. This reflects the
intuition that the two inclusions are preferably located
close to (or even on) the edge of the central domain and
not in its center, such that the extent of deformations
of the central smectic layers is reduced. The existence
of distinct local free energy minima in Fig. 7 explains
the nonmonotonic and geometry-dependent experimen-
tal distributions in Fig. 6.

4. Fine structure between the inclusions

Having understood the large-scale layering behavior of
the central domain, we now investigate the structure in-
side the convex hull of the inclusions in more detail. For
c > 2b, the two inclusions are disconnected and we antic-
ipate two additional (compared to a single or two over-
lapping inclusions) topological defects with a negative
charge. As generally described in Sec. II C, there are
two possible scenarios, related to how the smectic layers
between the inclusions align. The first possibility, which
has been silently implied so far when discussing our large-
scale results in the previous sections, is that the central
domain and the layers between the inclusions align with
each other, compare the first three rows of Fig. 3. To
be more specific, we can conclude that the layers need
to fill the space between the inclusions in an entropically
convenient way is probably one of the main driving forces
that determines the geometry-dependent tilt angle of the
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FIG. 9. Structures in the double-annulus geometry for different inclusion size ratios b and inclusion distance ratios c. While
we generally observe layering of the Shubnikov type in the annular arcs for the parameters considered, we distinguish three
states by the layer arrangement in the intersection region: inclusion tunnel (red), double-Shubnikov state (yellow) and diagonal
tunnel (blue). Left panel: state diagram indicating the relative frequencies of the three structures between the two inclusions.
The experimental and Monte-Carlo results are represented by pie charts and background pixels with proportional color mixing,
respectively. For c ≲ 2b no rods fit in between the inclusions and there is no distinction (black pixels). Right panel: observed
structures for three pairs of b and c corresponding to the state points indicated by the arrows. We depict experimental snapshots
(top), solution profiles of the Q-tensor model with for K = 1.0 and w = 10 (middle) and the orientational order parameter S(r)
averaged over 103 independent Monte-Carlo simulation runs per parameter pair, revealing the typical location of the topological
defects through the darker shades (bottom).

central domain as a whole.

The second possibility of alignment between the in-
clusions is an inclusion tunnel, compare the last row of
Fig. 3. This structure is defined by one or more smectic
layers spanning between the two inclusions, irrespective
of the orientation of the central domain. The driving
force behind the formation of an inclusion tunnel is the
adherence to the preferred wall alignment which comes
at the cost of a larger grain boundary within the system.
This is nicely reflected by additionally differentiating in
the state diagram from Q-tensor theory, as in Fig. 5, be-
tween Shubnikov states with and without an inclusion
tunnel. It is apparent from the state diagram that struc-
tures with an inclusion tunnel stabilize upon increasing
the anchoring parameter w and decreasing the elastic pa-
rameter K.

In our DFT study, we find that structures with the
central domain interrupted by an inclusion tunnel are
almost always less stable than comparable ones with a
continuous central domain, for both laminar and Shub-
nikov structures alike. The fact that the central domain
tends to tilt, renders such an inclusion tunnel even less
favorable due to the general preference of hard rods to
meet at a grain boundary with nearly perpendicular ori-
entations, instead of an oblique alignment. An inclusion
tunnel only becomes energetically favorable for extremely
small distances between the surfaces of the two inclu-
sions, of about one rod length or less, as e.g. for b = 0.25

and c = 0.6, compare the fourth structure shown at the
bottom of Fig. 4.
In practice, however, it is much more likely to observe

these inclusion tunnels as a result of the equilibration pro-
tocol. More specifically, in our experiments and Monte-
Carlo simulations, the growth of an inclusion tunnel can
be triggered by small domains aligning with the inclusion
at an early stage. Hence, such structures are observed
with a noticeable probability, even for relatively large c,
as verified in Fig. 8.

B. Double annulus

We have seen in Sec. IIIA that the inclusion distance
ratio c and, therefore, the minimal distance from the in-
clusions to the outer wall is an important criterion which
determines the globally observed state in the two-holed-
disk geometry. The smectic structure between the in-
clusions then largely follows the alignment of the central
domain, while inclusion tunnels are only rarely observed.
Now we focus on the double-annulus geometry, illus-

trated at the bottom of Fig. 1, for which a larger range
b < c < 2 of inclusion distance ratios c can be examined
without changing the Euler characteristic χ = −1. Since
the shortest distance from any point on the outer wall to
one of the inclusions remains the same for all c, the smec-
tic structure in the two annular arcs is largely determined
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by the inclusion size ratio b alone and can thus be well
understood by taking cues from the state diagram in an-
nular confinement [61]. This gives us a better control of
how the central smectic layers in the intersection region
of the two annular halves respond to changes of the inclu-
sion distance compared to the single circular outer wall
of the two-holed-disk geometry. We are thus primarily
interested in the question of how the structure between
the two inclusions of the double annulus is determined
by the geometrical parameters b and c, as we focus on
inclusion size ratios b ≥ 0.25 which predominantly give
rise to generalized Shubnikov structures in the annular
arcs.

Our state diagram, compiled from experiments and
particle-resolved Monte-Carlo simulations, is shown in
the left panel of Fig. 9. Both methods consistently pre-
dict three different types of structures, shown in the right
panel. First, for relatively large and nearby inclusions, we
typically observe an inclusion tunnel, similar to the two-
holed-disk geometry (cf. Sec. III A 4). Second, for rela-
tively small and distant inclusions, we typically observe
a structure with a large central domain of vertical layers,
which is similar to the α = π/2 alignment in the two-
holed-disk geometry (cf. Sec. III A 3). As mentioned in
the previous paragraph this extreme tilt angle is favored
here due to the broken rotational symmetry and the non-
convex shape of the outer wall. We refer to such a struc-
ture as the double Shubnikov state, as there are no grain
boundaries (the two Q = −1/2 defects are mostly due
to misalignment at the inclusions). Third, for relatively
large and distant inclusions, we typically observe a struc-
ture which is characterized by both a large tilted central
domain and grain boundaries. The tilt angle is again
roughly set by the geometry, such that the orientation of
the rods follows an infinity symbol. This diagonal-tunnel
state possesses no analog in the two-holed-disk geometry.
To corroborate these observations, we also evaluated our
Q-tensor theory for representative pairs of parameters
and find consistent minimizers, shown in the right panel
of Fig. 9. Moreover, the exemplary double-Shubnikov
structures shown in Fig. 3 using all four methods are in
close agreement.

To further highlight the topological distinction be-
tween the three different structures observed in the
double-annulus geometry, we additionally show in the
right panel of Fig. 9 Monte-Carlo results for the local
order parameter field S(r), sampled as an average from
103 independent simulation runs. Due to the averaging,
we obtain in each case a characteristic pattern, which
possesses the same symmetry as the confinement. The
inclusion tunnel is characterized by its orthogonal align-
ment relative to the nearby layers and therefore a large
degree of orientational frustration between the inclusions.
In the double Shubnikov state, the region between the
inclusion largely aligns with the central domain and the
orientational frustration is manifest only close to the in-
clusions (usually due to small domains of a few rods).
Finally, for the diagonal tunnel, it is clearly visible that

the grain boundaries are located at the edges of the cen-
tral crossing of the annular arcs.

IV. SUMMARY AND CONCLUSIONS

In this work, we investigate smectic states, confined
to complex geometries, illustrated in Fig. 1, with two
circular inclusions (interior boundaries) by means of
colloidal experiments, Monte-Carlo simulations, density
functional theory (DFT) and smectic Q-tensor theory.
Our four approaches consistently predict the main struc-
tural features, as exemplified in Fig. 2. All observed and
expected structures are compiled in Fig. 3.
For large inclusions (or strong wall anchoring), the lay-

ers arrange into a generalized Shubnikov state, character-
ized by an overall perpendicular alignment of layers (or
parallel alignment of rod-like particles) at the outer wall,
which minimizes the number of topological defects. This
is observed in both the two-holed-disk geometry (see the
circular data points in Fig. 4 and the bottom-right and
central regions (both shades of blue) in Fig. 5), where
a stretched Shubnikov state also stabilizes for increasing
inclusion distance, and the double-annulus geometry (see
all data in Fig. 9). On the contrary, for small inclusions
(or weak wall anchoring), the layers arrange into a gen-
eralized laminar state characterized by two Q = −1/2
defects at either of the two inclusions and two Q = +1/2
defects close to the outer wall. This is explicitly observed
in the two-holed-disk geometry (see the quadratic data
points in Fig. 4 and the leftmost region (yellow) in Fig. 5)
but we expect the same upon further decreasing the in-
clusion size the double-annulus geometry.
If the two inclusions are sufficiently close to each other,

we observe an inclusion tunnel in both the two-holed-disk
geometry (see the bottom-right structure in Fig. 4, dark
blue color in Fig. 5 and the statistics in Fig. 8) and the
double-annulus geometry (see the data with red color in
Fig. 9). This structure forms an isolated domain between
the two inclusions and two grain boundaries, irrespec-
tive of the global state. More distant inclusions allow
for the layers to align in a larger central domain at the
cost of misalignment at the inclusions. In fact, in the
two-holed-disk geometry, this relative alignment of the
central layers to the axis connecting the two inclusions
is characterized by large tilt angles α ≃ π/2 (see Figs. 6
and 7). In the double-annulus geometry, we further dis-
tinguish between two cases (identified here for general-
ized Shubnikov states). The double Shubnikov structure
possesses a large central domain which extends over all
four ends of the geometry’s central junction at a fixed tilt
angle α ≈ π/2 (see the data with yellow color in Fig. 9),
while for even larger inclusion distances, we observe a di-
agonal tunnel, characterized by two grain boundaries at
two opposing ends of the central junction and a tilt angle
0 < α < π/2 dictated by the geometry (see the data with
yellow color in Fig. 9).
Our study represents a first step towards the study of
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liquid crystals confined to topologically highly complex
environments such as random porous media [66–69] or
arrays of obstacles [68]. Our complementary approaches
can, in principle, be applied to any kind of confinement
[24, 58, 70, 71]. This applies in particular also to systems
in three dimensions to which our experimental, computa-
tional and theoretical methods, as well as, our topological
concepts can be generalized [48, 51, 59]. Another gen-
eralization is to proceed towards more complex particle
shapes and interactions such as hard polygons [69, 72],
non-convex [73–77], or chiral particles [60, 78–84]. Fi-
nally it bears mentioning that many bacteria have rod-
like shapes [85–88] and are living on two-dimensional sub-
strates, where they can be easily be put in confinement
[89, 90]. Bacterial colonies can approach high densities,
where smectic layering is expected [91–93], such that our
work may have important consequences for the structure
in dense biofilms.

One compelling open question concerns the existence
of similar structures and the applicability of our topo-
logical methods for smectic phases of molecular liquid
crystals, a central aspect of experimental liquid crystal
research [32–41]. While our hard-rod model is specifically
designed to mimic our colloidal experiments, the analo-
gous observations by means of Q-tensor theory leave us
optimistic that this gap can be bridged in future work
on molecular systems. Regarding the topological analy-
sis, it might prove fruitful to focus on the smectic layers
[55, 56] instead of the orientational director when study-
ing molecular liquid crystals, for which it is no longer
possible to achieve a particle resolution.
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Appendix A: Details on the methods

1. Experiment

The experimental methods follow from our previ-
ous work [43, 61]. In short, home-synthesized silica
rods [94] suspended in a 1mM NaCl water solution
form sedimentation-diffusion equilibrium into a cylinder-
shaped reservoir glued to a glass coverslip (see Fig. 1a

in Ref. [61]). Confinement cavities, as shown in the first
row of Fig. 2, are printed on the coverslip using poly-
dimethylsiloxane (PDMS) mold and Norland Optical Ad-
hesive glue. PDMS molds are made using standard soft
lithography technique.
Particles have average effective length of 5.3µm, aspect

ratio of 10.6 and gravitational length of 0.8µm. After in-
sertion they start forming a concentration gradient along
the direction of gravity. At the bottom, inside the cav-
ities, we successively observe the formation of isotropic,
nematic and finally smectic phases. The total amount of
particles is chosen such that there is no crystalline state.
The smectic structures are left to equilibrate for at least
12 hours.
Experimental snapshots capture the rods in direct

vicinity of the bottom wall of the cavity that, paired
with gravity, imposes a quasi-two dimensional confine-
ment. We record images by mean of confocal microscopy
with a Zeiss LSM Exciter 5 microscope and a 63x Zeiss
Plan Apo Chromat objective. We collect scattered light
to form images as this batch of rods is not fluorescent.
A custom python script is used to segment single rods

and detect position and orientation (a Wolfram Math-
ematica script is already available [61]). The specific
python script used to process the snapshots of Fig. 6
is provided along with an experimental snapshot as sup-
plementary material.

2. Monte-Carlo simulations

With the help of canonical Monte-Carlo simulations we
generate equilibrium states for liquid crystals composed
of hard rods at bulk smectic area fraction η2 = 0.725.
The rods are modeled as discorectangles with aspect ratio
p = L/D = 16.5, where L denotes the length and D the
width of the particles. The kth rod is parametrized by a
line segment ak = rk+αkûk, with position rk, normalized
orientation ûk and |αk| < L/2. All points within the
area of the rod are characterized by {x ∈ R2| ∥x− ak∥ ≤
D/2} such that the standard hard-core repulsion between
a pair of rods i, j can be defined by

U(ri, rj , ûi, ûj) =

{
∞ for di,j ≤ D ,

0 for di,j > D ,
(A1)

where

di,j = min
|α,β|<L

2

∥ri + αûi − (rj + βûj)∥ (A2)

corresponds to the smallest distance between the oppos-
ing line segments [95].
The interaction of the rods with the walls is modeled

by considering the rods as three virtual point particles at
rk + γûk, γ ∈ {−L/2, 0, L/2}. The wall potential reads
as

V (x) =

{
Φ(x0) + Φ′(x0)(x− x0) for x ≤ x0 ,

Φ(x) for x0 > x .
(A3)
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Here, |x| denotes the minimal perpendicular distance
from either of the two points to the wall and x > 0 corre-
sponds to the inside of the cavity. The cut-off point,
below which V (x) is linear, is chosen as x0 = 0.5D.
For Φ(x), we choose the standard 12-6-Weeks-Chandler-
Andersen-potential [96]

Φ(x) =

{
4ϵ

[(
D
x

)12 − (
D
x

)6]
+ ϵ for x ≤ 2

1
6D ,

0 for x > 2
1
6D

(A4)

with ϵ = 10kBT , with the Boltzmann constant kB and
temperature T . The potential landscapes to model the
two-holed-disk and double-annulus geometries can be ex-
pressed as combination of circular well and obstacles.
The outer radius of the cavity is chosen as Rout = 6L.

To obtain the equilibrated configurations, we initialize
the system at a dilute area fraction η0 = 0.01. We subse-
quently compress the system, by rescaling the cavity, at a
compression rate of ∆η1 = 3.50× 10−7 per Monte-Carlo
cycle to an intermediate area fraction just below the bulk
isotropic-nematic phase transition. In a second stage, we
compress the system with ∆η1 = 7.33×10−8 per Monte-
Carlo cycle to the final area fraction η2 = 0.725. The
area fraction is given by the fraction of the sum of the
individual volumes of the rods Vrod to the total volume of
the cavity Vcav. Since the final area fraction and the final
volume are fixed variables, by the geometric parameters
b, c (see Fig. 1) and Rout in terms of the particle size,
the particle number N remains a free parameter that is
determined at the start of the simulation via the relation

η =
NVrod

Vcav
=

N

Vcav

(
πD2

4
+DL

)
. (A5)

The typical values for N we investigate are on the scale
of several thousand. Typical snapshots in the two geome-
tries are shown in the second row of Fig. 2.

3. Density functional theory (DFT)

Classical density functional theory (DFT) [63] allows
us to predict the structure of anisotropic fluids in an ex-
ternal potential Vext(r, ϕ) by calculating the equilibrium
density profile ρ(r, ϕ) from a variational principle, where
r denotes the center-of-mass position and ϕ the particle
orientation. This is achieved by minimizing the grand
potential functional

Ω[ρ] = F [ρ] +

∫
dr

∫ 2π

0

dϕ

2π
ρ(r, ϕ)(Vext(r, ϕ)− µ) , (A6)

at given chemical potential µ by iterating the Euler-
Lagrange equation δΩ[ρ]/δρ(r, ϕ) = 0, where F [ρ] is the
intrinsic Helmholtz free energy functional. The solution
density profile ρ(r, ϕ) for a given initial guess is given
by a local minimum of the grand potential Ω. Here, we
minimize under the constraint of a fixed total particle

number
∫
dr

∫ 2π

0
dϕ
2π ρ(r, ϕ), to obtain local minima of the

Helmholtz free energy F .
For an explicit calculation, we need to specify the

Helmholtz free energy functional F [ρ] = Fid[ρ] + Fex[ρ],
which is conveniently split into an exactly known ideal
part

βFid[ρ] =

∫
dr

∫ 2π

0

dϕ

2π
ρ(r, ϕ)

(
ln(ρ(r, ϕ)Λ2)− 1

)
(A7)

and an excess part Fex[ρ]. The irrelevant thermal wave
length Λ is set to unity the inverse temperature β :=
(kBT )

−1 is just a scaling factor. The excess free energy
is based on fundamental measure theory [64, 65, 97] for
anisotropic hard particles in two dimensions [52, 61], ex-
pressing the functional Fex[ρ] as a function of weighted
densities

nν(r) =

∫
dr1

∫ 2π

0

dϕ

2π
ρ(r1, ϕ)ω

(ν)(r− r1, ϕ) . (A8)

These are calculated by convolution of the density and
the scalar, vectorial or tensorial one-body measures
ω(ν)(r, ϕ), which describe the geometry of the hard par-
ticles. The explicit expression for Fex[ρ] makes use of a
truncated and corrected expansion up to rank-two ten-
sors, see Ref. [61] for further details.
In this study we focus on hard discorectangles with

rectangular length L and circular diameter D at fixed
aspect ratio p = L/D = 10. Throughout the manuscript,
we consider structures with fixed area fraction η = 0.65,
as defined in Eq. (A5). Typical density profiles in the two
geometries are shown in the third row of Fig. 2, which
displays the dimensionless total density

ρ̄(r) :=

(
LD +

D2π

4

)∫ 2π

0

dϕ

2π
ρ(r, ϕ) . (A9)

through a color coding and the local orientational direc-
tor field (representing the locally preferred value of ϕ)
through green arrows.
All structures are calculated by free minimization of

the density functional on a spatial grid with resolution
∆x = ∆y = 0.2 and Nϕ = 96 orientational angles. Lami-
nar structures are typically initialized by cutting out the
inclusions from equilibrium structures in circular confine-
ment. Then we can also smoothly change the inclusion
size ratio b and/or the inclusion distance ratio c to dif-
ferent target values, while continuously minimizing the
functional. To examine the stability of an inclusion tun-
nel, appropriate structures are superimposed and subse-
quently minimized for comparison. To generate compara-
ble structures with different tilt angles for Fig. 7, we also
start from two specific structures in circular confinement,
possessing eight or nine parallel layers in the central do-
main. Then we cut out the two inclusions at typical
angles α at which a regular layer structure is maintained
and smoothly rotate the inclusions towards other target
tilt angles, while continuously minimizing the functional.
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Shubnikov structures are initialized either by superim-
posing a perpendicular domain aligning with the inclu-
sions on equilibrium laminar structures with α = π/2 or
from a random structure with circular orientational di-
rector [61]. After minimization of multiple structures for
a given set of parameters, we compare the values of the
free energy F [ρ] to determine the most stable state with
minimal free energy.

4. Smectic Q-tensor theory

It is also possible to adapt continuum models to in-
vestigate the qualitative behavior of smectics. Recently,
Ref. [48] proposed a new continuum model, solving for a
real-valued smectic order parameter u, indicating the lo-
cal density variation, and a tensor-valued nematic order
parameter Q. A detailed discussion about deriving the
continuum model can be found in Ref. [98].

Specifically, we use the two-dimensional version of the
Q-tensor model from [48] with the volumetric free energy:

Jv(u,Q) =

∫
Ω

(
fs(u) +B

∣∣∣∣D2u+ q2
(
Q+

I2
2

)
u

∣∣∣∣2
+ fn(Q,∇Q)

)
, (A10)

where

fs(u) :=
a1
2
u2 +

a2
3
u3 +

a3
4
u4, (A11)

and

fn(Q,∇Q) :=
K

2
|∇Q|2 − l

(
tr(Q2)

)
+ l

(
tr(Q2)

)2
.

(A12)
Here, K is the nematic elastic constant, l represents the
nematic bulk parameter, I2 is the 2 × 2 identity ma-
trix and a1, a2, a3, B, q are given real parameters. We
fix a1 = −5, a2 = 0, a3 = 5, B = 10−5, q = 30 and
l = 2, similar to the choice in Ref. [48]. In Eq. (A10),
D2 denotes the Hessian operator, so that the associated
Euler–Lagrange equation for u is a fourth-order partial
differential equation. One can intuitively understand the
free energy functional J as a combination of three contri-
butions: the smectic bulk energy fs, the coupling effect
(B-term) between the nematic director and smectic lay-
ers and the nematic elastic and bulk energies fn.

In extreme confinement, we cannot expect the hard
rods to perfectly satisfy tangential wall anchoring, as
represented by Dirichlet boundary conditions. There-
fore, we weakly impose tangential boundary conditions

on both inner boundaries (denoted as Γ1 and Γ2) and
outer boundary Γouter by means of Rapini–Papoular sur-
face anchoring. To this end, an additional anchoring en-
ergy is added to Eq. (A10), leading to the following total
energy:

J (u,Q) = Jv(u,Q) +
w

2

(∫
Γouter

|Q−Qouter|2

+ ar
( ∫

Γ1

|Q−Q1|2 +
∫
Γ2

|Q−Q2|2
))

(A13)

with the prescribed tangential configurations given by

Qouter =

[
y2

x2+y2 − 1
2 − xy

x2+y2

− xy
x2+y2

x2

x2+y2 − 1
2

]
, (A14)

Q1 =

[
y2

(x−c/2)2+y2 − 1
2 − (x−c/2)y

(x−c/2)2+y2

− (x−c/2)y
(x−c/2)2+y2

(x−0.3)2

(x−c/2)2+y2 − 1
2

]
, (A15)

Q2 =

[
y2

(x+c/2)2+y2 − 1
2 − (x+c/2)y

(x+c/2)2+y2

− (x+c/2)y
(x+c/2)2+y2

(x+c/2)2

(x+c/2)2+y2 − 1
2

]
. (A16)

Here, c is the inclusion distance ratio as defined in
Fig. 1, w denotes the anchoring weight with larger val-
ues representing stronger anchoring and ar accounts for
the expected curvature dependence of surface anchoring.
Specifically, the choice of ar indicates different anchoring
strength w on the outer and arw on the inner bound-
aries, which can affect the resulting final minimizer with
the lowest energy. Accordingly, we have verified that a
slightly weaker anchoring strength, ar < 1, on the in-
ner boundary gives a better consistency with experimen-
tal results for the two-holed disk problem. Therefore,
we take ar = 0.7 throughout the manuscript, except for
Fig. 5, where the focus lies on illustrating the Laminar-
Shubnikov transitions using the same anchoring strength
variation on both boundaries for each w-continuation
step and thus ar = 1 is taken for simplicity.

Due to the nonconvexity of J , there typically exist
multiple local minimizers. In our work we employ the
deflation technique to discover them [99]; in all figures,
we plot the minimizer with lowest energy found for dif-
ferent input parameters K and w (specified accordingly
in the manuscript) of the energy functional in Eq. (A13).
More details about the model and associated numerical
methods can be found in Refs. [48, 100] and [98, Chap-
ters 8-10]. Typical solution profiles in the two geometries
are shown in the fourth row of Fig. 2.
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M. Guendouz, Evidence of anisotropic quenched disor-
der effects on a smectic liquid crystal confined in porous
silicon, Phys. Rev. E 73, 011707 (2006).

[67] C. Scholz, F. Wirner, J. Götz, U. Rüde, G. E. Schröder-
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