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The Lie-group approach was applied to determine symmetries of the third-
order nonlinear equation formulated for description of shear elastic 
disturbances in soft solids. Invariant solutions to that equation are derived and 
it turned out that they could represent outgoing or incoming exponentially 
decaying or unbounded disturbances. 

 
 
 

I. INTRODUCTION 

Soft solids (like gels or some biological tissues) differ from Newtonian liquids in particular 
with possibility to maintain shear stresses and therefore with ability to guide transverse elastic 
waves. Nonlinear wave equation for shear elastic disturbances was considered in last decades in 
many works (see [1-3], for example). Nonlinear elastic constants as well as viscosity were taken in 
account so that the partial differential equation of the third order in derivatives was proposed for the 
one-dimentional case [2-3]: 
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where  and z t are the spatial and time coordinates respectively,  is the small-signal transverse-
sound-wave velocity,  is proportional to coefficients of viscosity and is defined in [2] as 

c
τ

( ) μη+ζ=τ 4 3  (ζ  and η  are so-called the second and the first viscosity coefficients [4]), μ  is 
the second of the Lamé’s elastic constants, ( ) ( )μ++μ=β 2/2/3 DA  is the nonlinearity 
coefficient, where A  and  are the third-order and the forth-order elastic constants [1-3]. D

Different solutions of Equation (1) were investigated analytically and numerically [1-3], and 
an attempt to derive one-way equation of the lower order in derivatives has been made [3]. 
Nevertheless it seems to be useful to investigate symmetries of the partial differential equation (1), 
because this approach can bring some new exact analytical solutions for problems, which were 
solved only approximately or numerically for years [5]. 

This short communication is devoted to application of methods of the classical theory of Lie 
groups for solution of Equation (1).  
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II. SOLUTION 
 

Before solving Eq. (1) its variables were changed in the next way [3]: 
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So we obtain the equation 
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where lower indices denote differentiation with respect to appropriate coordinates, as usual. 

Appling the standard Lie-group approach we consider the next operator of one-parametric 
group of infinitesimal transformation, which is prolonged to all necessary derivatives [6-7]: 
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Applying the latter differential operator to Equation (2) we can get the determining 

equations of the problem: 
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Solution of these PDE gives the next operators of infinitesimal transformation of Equation 

(2): 
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Linear combination of these three operators (where Q  and R  are some arbitrary 

constants) 
 

( )
w

NM
x

RQX
∂
∂

θ++
∂
∂

+
θ∂
∂

= 2  

 
leads to the next system of characteristic PDE (where  M  and N  are arbitrary constants) 
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Solving the latter system we obtain two invariants of Eq. (2): the independent variable λ  

and depending on it , obeying the next expressions: )(λΦ
 
                                      θ−=λ RQx       and                                                              2)( θ−θ−=λΦ NMQw
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Finding  from the second of Equations (3) and substituting the result in (2) we can reduce 
Equation (2) to the next ordinary differential equation in function 

w
)(λΦ  (with primes denoting 

differentiation): 
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This ODE can be easily integrated once, the result looks like 
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where  is the constant of integration. If 1C 01 == NC  then a hope remains that the final solution 
could be not surely unbounded and Equation (3) in this case is reduced to the homogeneous ODE in 

: )(' λΦ
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If  we suppose 
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then the general solution of Equation (4) obeys the next explicit formula: 
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where  and  are other constants of integration. In this case for the general solution to Equation 
(2) we have 

2C 3C
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on condition (5). So the appropriate solution to the initial Equation (1) could be found to be 
a) in the particular case 1==QR  (outgoing disturbance) 
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and 
b) for 1−=−= QR  (incoming disturbance) 
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If the constant M is equal to zero these solutions are decaying or unbounded in time and space for 

3β < 1. Indeed, it had been found experimentally that for some gels [8-9] in the nonlinearity 
constant  
 

( ) ( )μ++μ=β 2/2/3 DA  
 
μ  is positive, while A  is often negative and some times more than μ .  But in some other 
substances [9] both constants μ  as well as A  could be positive, thus leading to the possibility of 
periodically oscillating in time decaying in space displacements as the expression under the square 
root in (7) is negative leading to imaginary values of the exponential function. (Unfortunately, the 
author has not found in literature numerical values of the forth-order elastic constant , believing 
that its absolute value is less than those of 

D
μ  and A .) 

To make the picture complete, it should be also mentioned the particular solution (incoming 
and outgoing) of Equation (6), though it represents the unbounded displacement: 
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thus leading to the next trivial solutions to the Equation (1) : 
 

         ( ) MtCctzu ++
α
β

±±= 4                                                (9) 

 
4C  is another one constant of integration. 

 
 

III. CONCLUSION 
 

Classical Lie-group analysis of the nonlinear wave equation for soft tissues was conducted 
and the invariant solutions to that equation were derived. Those solutions turned out to be in fact  
outgoing and incoming disturbances, which could be unbounded or exponentially decaying in 
amplitude at infinite time or space coordinate. 
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The data that supports the findings of this study are available within the article.  
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