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Abstract

We introduce a simulated digital model that learns a person’s optimal
blood health over time. Using a learning adaptive algorithm, our model
provides a risk assessment score that compares an individual’s chronolog-
ical age from birth to an estimation of a biological immune age derived
from the score. We demonstrate its efficacy against real and synthetic
data from medically relevant cases, extreme cases, and empirical blood
cell count data from 100K data records in the Centers for Disease Con-
trol and Prevention’s National Health and Nutrition Examination Sur-
vey (CDC NHANES) that spans 13 years. We find that the score is
informative when distinguishing healthy individuals from those with dis-
eases, both self-reported and abnormal blood tests manifested, providing
an entry-level score for patient triaging. The main contributions of this
work is that the risk assessment score is not a machine learning black-box
approach but a transparent adaptive learning algorithm and its calcula-
tion only requires existing common markers from a standard and most
popular medical (and blood) test widely performed worldwide. This may
allow a massively scalable approach to deploying a fast, personalised, sen-
sitive and predictive derivative index without the need or application of
a new test, assay, or prospective sampling as opposed to other biological
ageing-related scores through a clinical platform and SaMD model.

Keywords: adaptive health learning, personalised health, predictive medicine,
twin digital health, blood risk score, risk stratification, population as-
sessment, individual assessment, immune age, biological age, senescence,
longevity

∗Corresponding author: hector.zenil@algocyte.ai

1

ar
X

iv
:2

30
3.

01
44

4v
5 

 [
q-

bi
o.

Q
M

] 
 1

9 
M

ar
 2

02
4



1 Introduction

Risk assessment tools are often needed to improve patient safety and patient
outcomes. Risk assessment scores used for initial patient classification or di-
agnosis and triaging (i.e., assessment of priority for healthcare services) are
often qualitative and inter-subjective. Robust quantitative tools with clinical
relevance are required to optimise health monitoring choices across all levels of
healthcare systems.

Risk scores are valuable predictive tools that, when implemented, can be
utilised by clinicians with positive results, leading to better patient outcomes.
Risk assessment measures for patient triage are often needed to optimise patient
pathways and health monitoring across all levels of health care. However, most
scores are defined for very specific conditions, such as heart disease, cardiovas-
cular disease (CVD) or venous thromboembolism (VTE), to mention just a few.
Others reflect factors such as risk of severe disease [23, 31], clinical acuity [10,
33], and long-term outcomes [30, 32]. For example, the Intermountain risk
score [19] provides a complete/full blood count (CBC/FBC) risk score shown
to be associated with bleeding and in-hospital mortality based on red blood
cell size, originally used as an anaemia predictor [26], and is often reported in
FBC/CBC panels.

FBC/CBCs have been found to contain enough information to produce clin-
ically useful scores [3, 18]. At the same time, it has also been shown that
although a CBC is a low-cost laboratory test that is almost universally used,
its risk predictive information content is often underused [29].

Regular blood testing has been associated with short-term mortality and
with the ability to significantly improve emergency department triage [22]. Most
risk scores depend on multiple factors external to a single test result in itself
and have proven useful when available, even in the context of the immune sys-
tem [34]. A number of these scores are based on such factors as physiological
data, medical and family history, and lifestyle choices, and reference a range
of things, from age and sex to drinking and smoking habits. While numerical
scores and colour-based scores are relatively common, to the authors’ knowledge
no single general numerical and colour-based blood test risk assessment score ex-
ists that is based on a combination of distances from population or personalised
average values, in particular for CBC and immune-related data.

In medical practice, a simple risk score based solely on blood test results and
agnostic with respect to a specific condition while still being able to quantify
the results of a blood test has not been proposed, to the authors’ knowledge.
Here we introduce a general numerical and colour-based risk stratification score
to quantify any number of abnormal blood markers. The risk model introduced
is not data expensive when run ab initio, and yet it is shown to be informative,
and its implementation is easily interpretable, while allowing for adaptation to
enhance sophistication.

A marker, analyte or test parameter is a potentially non-mutually exclusive
property related to a blood test. Analytes can include protein-based substances,
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antibodies, biochemical entities and any other product or sub-product of cellular
function related to the blood or to the immune system. For example, in a Full (or
Complete) Blood Count, there are usually about 13 to 15 analytes, although the
proposed score is not limited to any particular set or number of such analytes.
In the context of a cell’s properties, relevant tests can index, for example, cell
count, cell size, cell morphology, cell nuclei morphology and cell maturity, among
a wide range of parameters/analytes.

2 Methods

Here we introduce a family of indices based on a distance metric and closed
learning algorithm for detecting rapid, small (precise), and personalised changes
in blood test results. The indexes have the advantage of being fully explainable,
unlike those featured in other statistical or machine-learning approaches. This
metric takes the form of a quantitative measure or score that aggregates data
from a set of numeric blood test results, combining and condensing them into
a single numerical value that allows rapid triage, sorting, and immune age as-
sessment. The main purpose of the score is to learn from, monitor, and provide
a quick assessment of divergence from population and personalised reference
values.

We will call this risk assessment score ”immune score”, given its connection
to the immune system through blood cell subpopulation counts, in particular
as registered in the most popular blood test, the FBC or the CBC.

The immune score constitutes a dimensional reduction technique based on
a single real-value number and a colour scheme that takes a multidimensional
blood test space with dimension size equal to the number of analytes, where
each value of a marker or analyte corresponds to the coordinate of that value
in that dimension. The score itself can be seen as the norm of a suitable vector
transformation that pinpoints the health status of the patient in that space,
relative to the test and the set of markers or analytes. Thus, the numerical
vector value integrates all the analyte’s space dimensions.

Let
x̄ = (x1, . . . , xn)

be a vector of raw analyte values obtained by a suitable (series of) lab tests, as
usually presented to physicians and patients.

We call the associated vector space for blood cell analytes the multidimen-
sional immune space, or the immune space for short.

CDC NHANES data were used to estimate deficiencies and toxicities of spe-
cific nutrients in the population and subgroups in the U.S., to extract population
reference data, and to estimate the contribution of diet, supplements, and other
factors to whole blood levels of nutrients. This data can be used for research
purposes and is publicly available [28].
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2.1 Numerical score

This first formulation of the score takes the form of a linear function because it
does not take into account possible interactions between analytes. CBC blood
cell counts can interact through immune system responses. For example, an
infection may increase neutrophils and decrease lymphocytes. RBC parameters
can also be impacted by complex environmental cues such as nutrient levels,
iron deficiency, stress conditions, or disorders. We also assume that each analyte
contributes equally to the immune score (this is likely to be only partially true, as
some of the analytes are more or less medically informative than others, with this
degree of informativeness itself varying with different conditions. Moreover, not
all analytes are independent, and some analytes may be statistically dependent
on others—suitable refinements will be introduced later). Some examples of
analytes that are independent of each other are RBC and WBC count (they do
not directly influence the counts of each other). The counts of some analytes
are dependent from each other. Examples include Neutrophils and WBC. In
essence, neutrophils are a type of leukocyte (WBC), so the neutrophil count is
included in and contributes to the total WBC. Another example is Hemoglobin
and hematocrit. Hemoglobin measures the amount of hemoglobin protein in
red blood cells. Hematocrit measures the percentage of blood volume taken
up by red blood cells. Thus, Hematocrit is mathematically dependent on the
hemoglobin concentration because one gives a subset or ratio of the other.

For ease of comparison between successive score versions, all values are nor-
malised within the range [0, 10]. Following user feedback, we then reverse the
scale by subtracting the normalised value from 10. This means that each analyte
will contribute with a maximum weight of

wa =

√
100

N
,

where N is the number of analytes. From now on we will consider the example of
N = 13 typical for a CBC or FBC. Before the scale inversion, from a geometrical
point of view, a vector of values in the multidimensional immune space will be
mapped to a point in aND-“quadrant” going from 0 to wa that will be called the
normalised immune space. This mapping will allow us to observe the evolution
of an individual’s score as a trajectory in the normalised immune space where
a notion of distance will come in handy.

While the score proposed is agnostic, in the sense that it can incorporate,
or not, any number of analytes, and requires no other input, it can be adapted
to incorporate medically relevant information by assigning weights that serve as
multipliers of an analyte’s effect according to its criticality for different profiles.

The adoption of a score within a maximum range of [0, 10] can be approached
in different ways. One is to assume no theoretical maximum values for analytes
and asymptotically approach the minimum score of 0, without ever reaching it in
individual cases. We adopted an alternative approach, capping values to a pre-
established “reasonable” maximum, beyond which all specific values mean the
same. The pre-established maximum is two standard deviations beyond normal
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(healthy) ranges, which sets the statistical significance critical value alpha at
0.05 (i.e., 95% confidence interval).

In an initial test, reference tables from Haematology Reference Ranges from
the NHS were used for normal (healthy) ranges for each analyte according to
age, sex, and pregnancy status [8]. G will denote the set of possible categories:

G = {Adult male, non-pregnant adult female, pregnant adult female,
newborn child, two-month-old child, six-month-old child,
one-year old child, 2-6-year-old child, 6-12-year-old child, 12-18-year-old teenager}

Let g denote any value in G.
For each analyte, ru(g, i) is the upper limit in the normal range of the analyte

i for an individual belonging to group g. Similarly, rl(g, i) is the lower limit.
An efficient computer implementation of the score can pre-calculate the fol-

lowing values:

• The expected vector, containing the mean value of each analyte for a given
group:

ē(g) = (e(g, 1), . . . , e(g,N)).

Mean values will derive from the analysis of suitable data to be obtained
from reliable databases or directly collected by us. For ease of explanation,
in the following we provisionally select the arithmetical average of the
lower and upper limits in the NHS table:

e(g, i) =
rl(g, i) + rl(g, i)

2
.

• The standard deviation for an analyte i in group g is denoted by

σ(g, i).

Again, these values will be empirically calculated. In the meantime, we
will use the distance from the mean to either limit within the normal
(healthy) range:

σ(g, i) =
(ru(g, i)− rl(g, i))

2
.

• The maximum difference vector, containing the maximum possible dis-
tance from the mean value of each analyte:

m̄(g) = (m(g, 1), . . .m(g,N)),

where

m(g, i) =
(ru(g, i)− rl(g, i))

2
+ 2σ(g, i).

(twice standard deviations from the limits of the healthy ranges).
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• The weighted vectors of each group (which will be used to normalise the
possible values to a maximum immune score, before reversion, of 10):

w̄(g) = (w(g, 1), . . . , w(g,N)),

where w(g, i) = wa/m(g, i).

Let c̄ = (c1, . . . , cN ) be a vector of analyte values for an individual of group
g. Then the normalised vector is calculated using the following formula:

n̄(c̄) = (f(c1, e(g, 1),m(g, 1), w(g, 1)), . . . , f(cN , e(g,N),m(g,N), w(g,N))),

where
f(x, y, z, w) = if |x− y| ≥ z then wa else |x− y| × w.

The value obtained by subtracting the normalised vector n̄(c̄) from 10 is
defined as the Normalised Immune Score, abbreviated as NIS:

NIS = 10− ∥n̄(c̄)∥.

We will denote the uninverted score by NIS∗, which is defined as NIS∗ = ∥n̄(c̄)∥.
One novel aspect of this metric is the ability to incorporate medical knowl-

edge into the score calculation using weights (scalar or piece-wise functions).
This allows adding clinical expertise to the data-driven score in a transparent
mathematical way, rather than using opaque statistical black-box approaches.
Statistical black-box approaches refer to complex statistical modelling tech-
niques that are not easily interpretable (e.g., neural networks). The weights
make it possible to adjust analyte contributions in a nonlinear fashion if needed.
Synthetic analytes can also be introduced to simulate nonlinear relationships in
a clear mathematical form, rather than dealing with nonlinearities directly in
a statistically obscure way. Unlike statistical or machine learning approaches,
the distance-metric-based score is transparent, so that clinicians can fully un-
derstand how it works, and even reproduces the calculation by hand with a
justification at every step without loss of generality.

2.2 Colour-based score

In addition to this numerical value, the score incorporates a second indicator
that will be easy to read and interpret. The idea is to utilise colour codes as
a means of flagging deviations from normal (healthy) reference values. This is
called the Colour-Coded Immune Score or CCIS for short.

The CCIS uses the same analytes and their normal (healthy) ranges as be-
fore. There are thresholds for each of the analytes that trigger different types
of alerts:

• A value within normal healthy ranges: No alert, colour coded green.

• An abnormal value within one standard deviation above/below healthy
reference values: amber alert.
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• An abnormal value beyond one standard deviation from the normal healthy
values: red alert. As in the normalised immune score, values are capped
to a maximum of two standard deviations.

Keeping the range to within two standard deviations when assessing a score
or metric has the following statistical implications: 1) About 95% of observations
fall within 2 standard deviations of the mean in a normal distribution. Thus,
restricting the range cuts off the most extreme 5% of outliers. This makes the
statistics more robust by removing very unusual values (outliers) that could
skew results. But it also reduces the variability seen in the data. However,
it may also provide an overly narrow or skewed view of the true variability in
the evaluated metrics. For the goals of our analysis, i.e., sample CBC analysis,
assuming a normal distribution justifies this rationale and its implications.

The results for each analyte are also combined in a single global value, which
will constitute the CCIS. The rules are as follows:

• Green: all values within normal range (green).

• Amber: 1-3 individual amber alerts.

• Red: More than 3 amber alerts or one or more red alerts.

Clearly, the CCIS is not a numerical value, but a colour-coded output, like
the individual alerts for separate analytes. This clearly distinguishes the CCIS
from the normalised immune score.

The information for the CCIS can be presented in a simple graphical way. We
construct a doughnut graph with one slice for each analyte. Analytes assigned
the same colour will be grouped together, which will produce doughnut graphs
of at most 3 different colour-coded sections. Some examples for purposes of
illustration are presented in Fig. 1.

3 A numerical score derived from the CCIS

We explored an alternative score that would follow the colour-coded scheme,
but would also produce a numerical value. The intention was to combine the
accessibility of the CCIS and the finer precision of the NIS in a single value. As
with the latter, the value would range from 0 to 10.

We expected the following property: If v1, v2 are possible score values and
v1 > v2, it should be the case that v2 indicates greater cause for concern than
v1.

On the other hand, values should be closely related to the colour codes.
That is, values v1, v2 and v3 correspond to CCIS scores of green, amber, and
red, respectively, and they should be ordered as follows:

v1 > v2 > v3.

A more precise way of expressing the above ideas is the set of rules codified
in Table 3.
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In the following section, we present a procedure for translating the CCIS
into a numerical value according to the above schema. We will call this value
the NCCIS. The expected behaviour of the NCCIS concerning the number of
analytes and its deviation from the norm can be observed in Fig. 3.

Table 1: NHS reference values: Typical tabular presentation for illustration
purposes of a Complete/Full Blood Count test. Minimum and maximum values
show minimum and maximum between male/female values. Typical values used
in the U.S. are available at https://myhematology.com/red-blood-cells/

full-blood-count-and-other-hematology-reference-ranges/

Parameter/Component Result Low Ref Value High Ref Value
Haemoglobin (HgB) 152.3 g/L 115 g/L 180 g/L
Total White Cell Count (WBC) 9.3 g/L 3.6 g/L 11.00 g/L
Platelet count (PLT) 286.5 ×109/L 140 ×109/L 400×109/L
Red cell count 5.5 ×1012/L 3.8×1012/L 6.5×1012/L
Mean Cell Volume (MCV) 93.3 fL 80 fL 100 fL
Haematocrit 0.4 L/L 0.37 L/L 0.47 L/L
MC Haemoglobin (MCH) 29 pg 27 pg 32 pg
MCH Concentration (MCHC) 315 g/L 310 g/L 350 g/L
Neutrophils 6.9 ×109/L 1.8 ×109/L 7.5×109/L
Lymphocytes 3.6×109/L 1.0×109/L 4.0×109/L
Monocytes 0.3×109/L 0.2 ×109/L 0.8 ×109/L
Eosinophils 0.2×109/L 0.1×109/L 0.4×109/L
Basophils 0.2×109/L 0.02 ×109/L 0.1×109/L

The behaviour of Fig. 3 illustrates how values at a remove from healthy
values are pushed towards higher values by design, as an alerting mechanism.

3.1 Calculating CCIS and NCCIS

The computation of NCCIS is performed using the uninverted NIS∗. Some of
the values used in the calculation of the NIS∗ include:

wa =
√
100/13 is the maximum normalised distance for each analyte in

the normalised vector of a patient’s readings.

e(g, i) is the mean (or expected) value for analyte i in group g.

σ(g, i) is the standard deviation from the mean.

n(g, i) = (ru(g, i) − rl(g, i))/2 is the normal (healthy reference) interval
length from the mean value (assuming upper and lower limits are equidis-
tant from the mean, an assumption to be revised in the future, both in
the NIS and here in the NCCIS).

Now the raw (not normalised) borders between colours are
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Table 2: Mean values and standard deviations found in the NHANES 2003–2016
database for the 13 analytes of the immune scores (same units as above).

Analyte Mean Male Std Male Mean Female Std Female
Haemoglobin (HgB) 150.72 11.51 133.33 11.62
Total White Cells 6.92 3.12 7.01 2.09
Platelet count (PLT) 228 54.33 255.42 64.19
Total Red Cells (RBC) 4.93 0.45 4.40 0.38
MCV 89.96 5.13 89.22 5.72
Hematocrit (HT) 0.44 0.03 0.39 0.03
MCH 26.96 10.33 26.55 10.47
MCHC 336.55 18.41 335.02 20.46
Neutrophils 4 1.85 4.16 1.66
Lymphocytes 2.11 2.21 2.11 0.79
Monocytes 0.57 0.21 0.52 0.18
Eosinophils 0.20 0.16 0.17 0.14
Basophils 0.04 0.06 0.04 0.05

raw maximum value for green: n(g, i).

raw maximum value for amber: n(g, i) + σ(g, i).

raw maximum value for red: n(g, i) + 2σ(g, i).

And the normalised version:

mgr(g, i) = n(g, i)× (wa/(n(g, i) + 2σ(g, i)))

ma(g, i) = (n(g, i) + σ(g, i))× (wa/(n(g, i) + 2σ(g, i)))

mr(g, i) = (n(g, i) + 2σ(g, i))× (wa/(n(g, i) + 2σ(g, i))) = wa

Therefore the current NIS∗ intervals for the different colours for individual
analytes are:

• Green: [0,mgr(g, i)] (that is, from 0 distance from the mean value up to
the normalised maximum value for green.)

• Amber: (mgr(g, i),ma(g, i)].

• Red: (mr(g, i), wa].

For global values the calculation has to take into account both the definition
of the CCIS and the fact that each analyte can have proportionally different
normal ranges and standard deviations:
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Figure 1: CCIS colour-based alerts. On the left, an individual with all values
normal (healthy) and thus coded green. At the centre, an individual with two
amber alerts. On the right-hand side, an individual with three red alerts, which
produce a global red flag quantifying potential risk by colouring the numerical
score depicted in the centre. In applications, colours following the guidelines of
national health systems such as the NHS are recommended. For convenience,
the numerical score has been inverted (with respect to NIS∗) to conform to the
popular 0-10 grading scheme, where 10 is best and 0 is worst.

• Green: The minimum global green corresponds to 0 in every analyte. The
maximum is mgr(g, i) in each analyte. This gives us the following interval:

[0,

√√√√ 13∑
i=1

mgr(g, i)2]

• Amber : The minimum global amber is 1 analyte value, just above green.
The maximum is 3 maximum amber values and the rest (10) at the upper
limit of green. Let analyte j be such that mgr(g, j) is the minimum of the
green upper limits, and let analytes k, m, n be the three biggest of the
amber upper limits. Then we have the following interval:

(mgr(g, j),√
(ma(g, k)2 +ma(g,m)2 +ma(g, n)2) +mgr(g, i1)2 + · · ·mgr(g, i10)2].

• Red. The minimum global red is 1 red analyte value or 3 amber analyte
values. The maximum is, obviously, 10 (13 maximum individual analyte
values). Let us suppose that the lowest minimum for red is (mr(g, k)) and
that there are no 3 upper limits for amber analytes whose sum is below
this. Then the intervals are:

(mr(g, k), 10].

We will designate the ends of these intervals mingreen, maxgreen, minamber,
maxamber, minred and maxred.
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The NCCIS∗ is calculated using the following function:

NCCIS∗(v) = if CCIS(v) = green then agreen(NIS∗(v))

else if CCIS(v) = amber then aamber(NIS∗(v))

else ared(NIS∗(v))

where CCIS and NIS∗ are functions calculating the respective scores and the
functions ga, aa and ra map the NIS∗ to the intervals set in the table at the
beginning of Section 4:

agreen(x) = wgreen × x

aamber(x) = (10/3) + wamber × (x−minamber)

ared(x) = (20/3) + wred × (x−minred)

and the NIS∗ value is weighted according to a normalising weight:

wgreen = 10/(3×maxgreen)

wamber = 10/(3× (maxamber −minamber))

wred = 10/(3× (10−minred))

Finally, as in the case of NIS, we invert the scale to obtain the NCCIS:

NCCIS = 10−NCCIS∗.

Table 3: Mapping of score segments and colours. For convenience, the numerical
score has been inverted to conform to the popular 0-10 grading scheme, where
10 is best and 0 is worst.

Colour from CCIS Ideal interval for a numerical score
Green (20/3, 10]
Amber (10/3, 20/3]
Red [1, 10/3]

3.2 NHANES Age Prediction

The zero counts were removed from the NHANES data prior to all analysis.
However, the sex was replaced by 1 for males and 2 to denote females, for the
quantitative analysis. The sex groups were separated by health status as was
determined by binning the immune scores and ages by the healthy range thresh-
olds as indicated on Table 1, which are as follows: Red Blood Cell (RBC) count
(between 3.8 to 5.8), and for the multivariate measure, the healthy ranges were
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as follows: normal Mean Corpuscular Hemoglobin (MCH) (27-33), Hematocrit
(HCT) (37-47), lymphocytes (LYMP) (1.0-4.0), and neutrophils (NEUT) (1.8-
7.5). Above, or below these healthy count ranges, the individuals were binned
into the unhealthy groups. Further, the error rates analysis for the age predic-
tion between the actual ages and immune-score computed ages were performed
using these binned subsets.

Figure 2: Immune score space: The x axis represents the deviation of all the
analytes from the expected value, while the y axis measures the total number of
analytes. A negative standard deviation indicates that the value is lower than
expected and a positive one indicates a larger than expected value. The cut-off
seen on the negative x axis shows the fact that real-life values for analytes have
a strict lower bound but, technically, have no upper bounds. For instance, it is
not possible to have a negative white blood cell count.
The behaviour of the numerical value is consistent through varying numbers of
analytes and scales linearly with respect to deviation from the norm, and this
graph explores the behaviour of the immune score over synthetically generated
patient values as a function of number of analytes and divergence from healthy
reference values.

4 Results

We have introduced a set of scores for patient triaging purposes tested against
a large dataset based on numerical distance and a colour scheme. The most
relevant part of the score is its single numerical value ranging from 0 to 10,
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Figure 3: The behaviour of NCCIS over synthetically generated patients with
differing values and a deviation from the norm with respect to the respective
expected values. The x axis measures the stated analyte, while the y axis
measures the total number of analytes. In contrast to the behaviour of the
immune score (Fig. 2), NCCISS is a non-linear function that displays a step-like
behaviour by design, while remaining independent of the number of analytes.

Comparison Sample Size (n) p-value
Healthy vs Unhealthy 7007 vs 6074 P ¡ 0.0001
Self rep. Healthy vs Unhealthy 11976 vs 6074 P ¡ 0.0001
Healthy vs Anemia 7007 vs 980 P ¡ 0.0001
Healthy vs HIV 7007 vs 62 P ¡ 0.0001
Healthy vs Hodgkin’s Disease 7007 vs 37 P ¡ 0.0001
Healthy vs Leukemia 7007 vs 18 P ¡ 0.0001
Healthy vs Blood Cancer 7007 vs 8 P ¡ 0.0001

Table 4: Differences in NIS Mean Values. All comparisons were performed using
ANOVA.

capturing the distance of all other test values from population or personal refer-
ence values. Results show that such triage is statistically significant even in the
face of noise, as in the NHANES database (containing 100K unfiltered surveys
and tests), where disease is self-reported by interviewees who may have had the
disease at the time of the survey or at some prior point in time. Filtering the
score by test results also makes for a significant improvement, showing that it
will perform better under less noisy conditions.
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Figure 4: Distribution of the Normalised Immune Score (NIS) from 0 to 10 (y
axis) among adult individuals in the NHANES 2000–2014 database. The Healthy
cohort is defined as those individuals with all analytes within the normal ranges
as defined by the NHS (1), others comprise the Unhealthy set. The Self rep.
healthy cohort compromises individuals that self-reported health of 3 (”Good”)
or less The number of individuals in each cohort are shown in table 4.

Comparison Sample Size (n) p-value
Healthy vs Unhealthy 7007 vs 6074 P ¡ 0.0001
Self rep. Healthy vs Unhealthy 11976 vs 6074 P ¡ 0.0001
Healthy vs Anemia 7007 vs 980 P ¡ 0.0001
Healthy vs HIV 7007 vs 62 P ¡ 0.0001
Healthy vs Hodgkin’s Disease 7007 vs 37 P ¡ 0.0001
Healthy vs Leukemia 7007 vs 18 P ¡ 0.0001
Healthy vs Blood Cancer 7007 vs 8 P ¡ 0.0001

Table 5: Differences in NCCIS Mean Values. All comparisons were performed
using ANOVA.

In Table 6, we provide examples of CCIS and its correspondent NCCIS
values for a sample of real-life and artificial cases. The second column of the
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Figure 5: Distribution of the Normalised Colour-Coded Immune Score (NC-
CIS) from 0 to 10 (y axis) among adult individuals in the NHANES 2000–2018
database. Individuals are defined as Healthy if all their analytes are within the
normal ranges as defined by the NHS (1) and Unhealthy otherwise. Self rep.
healthy compromises individuals that self-reported health of 3 (“Good”) or less.
The number of individuals in eah cohort is shown in table 5. One explanation
for the bimodality of some of these plots is the nature of the source data as
self-reported where respondents may or may not have been ill at the time of
giving their answers, or from the application of the separating cutoff value from
NIS. In either case, both score-separating capabilities are highly statistically
significant.

table shows the NIS, for purposes of comparison. It is worth noting that these
examples were generated using the NHS values for normal healthy subjects,
and based on the provisional assumption that the distance between the upper
and normal ranges is twice the standard deviation. The examples were taken
from [7] as they were intended as very preliminary tests. We are aware that
their source clearly states they are meant only for teaching purposes. Here they

15



are used for purposes of illustration only, and the development of the NIS and
NCCIS is not dependent on them.

One can observe how the NCCIS values meet the requirements we set in
advance of their definition. We tested the NIS and NCCIS against real data from
the National Health and Nutrition Examination Survey 2003–2016 (NHANES),
provided in [28]. One measure of success was their ability to show how accurately
the score discriminates between healthy subjects and patients suffering from
various diagnosed illnesses.

To this end, we examined thousands of cases from [28] and calculated the
distribution, mean values, and standard deviations for each of the analytes (see
Fig. 7. We used the means and standard deviations from the data to define the
metrics for both the NIS and NCCIS. Finally, we calculated the NIS and NCCIS
for thousands of cases in the NHANES database to find individual scores. The
resulting values were grouped as belonging to healthy individuals or to a selected
list of common diseases.

In order to maximise the discriminatory power of both scores, we tried differ-
ent alternative combinations of means, normal ranges and standard deviations,
either taking these values from NHS values as of early 2022 or inferring them
from the NHANES database (Fig. 7). At the end of the day, we settled for
(1) NHS normal healthy reference values and means and standard deviations
for the NIS; (2) means and standard deviations calculated from the NHANES
database, and normal ranges from the NHS for the NCCIS. NHANES means
and standard deviations are shown in Table 3.

Figure 4 illustrates the distribution of NIS values across various (self-declared)
conditions for individuals in the NHANES database. The table 4 presents the
number of data points used, along with the respective ANOVA results to test
statistical significance. It must be noted that the self-reported conditions were
not independently confirmed. Moreover, the survey participants did not distin-
guish between current or past diagnoses. This could be expected to introduce
some noise, as some currently healthy people will be labelled as having a con-
dition and some people with conditions will not have been diagnosed. We hope
to improve accuracy by filtering the data or by adding other data sources in the
future.

Nevertheless, the NIS was able to discriminate between healthy and non-
healthy individuals, as most healthy individuals are clustered around very low
NIS values. In contrast, different conditions produced higher NIS values on
average.

Conversely, the NCCIS did not substantially improve our knowledge of how
some diseases impact analyte counts. There may be underlying co-morbidities
or cases of blood-immune disorders that could create anomalous deviations from
the predictions. Regardless, the methods are shown to be valid for predicting
the complex immune profiles/trends (variation over time) observed in diverse
patients when considering socio-clinical metadata parameters such as age, and
sex, thereby suggesting their clinical applicability for purposes such as triaging
and fast screening and extensions to such deviant clinical cases in prospective
studies. In Fig. 5, it can be seen that reported medical conditions produce
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a higher average NCCIS value, but also induced some anomalous clustering.
Furthermore, the distribution of scores was even wider than that of the NIS.
We thus concluded that the NCCIS did enhance the knowledge already gleaned
from the NIS and the CCIS.

Table 6: Different tested scores perform differently according to each score’s
definition.

Individual NIS CCIS NCCIS

Adult male with all values at the mean 10.00 Green 10.00

Adult male values slightly removed
from mean within normal healthy
reference interval

8.16 Green 8.16

Adult male with all abnormal values 0.00 Red 0.00

Adult male with leukocytosis and
diabetes

5.85 Red 2.40

Adult male with pancytopenia 4.46 Red 1.82

Adult male with mycosis 5.31 Red 2.17

Adult female with fatigue 6.93 Amber 4.57

Adult female with shortness of breath 3.30 Red 1.32

Adult female with thrombocytopenia 4.50 Red 1.84

Adult (female) with infection 6.37 Red 2.61

4.1 Linearisation and Separability

While the calculation of the score can incorporate normal ranges adjusted for
age, race, sex, pregnancy stage, geography and any other consideration war-
ranted by the literature, the score is intended to go beyond this clinical utility
by capturing medical knowledge. A feature of the proposed (immune) score is
the option to incorporate weights as multipliers in the form of scalars or piece-
wise functions per analyte to modify its contribution relative to other analytes
in a non-linear fashion, even under time sensitive conditions [11]. For example,
in a blood differential test, conditions related to decreased white cell counts are
milder than those associated with higher cell counts. However, the literature
on conditions where there is a decrease of basophils, mast cells, monocytes and
eosinophils in isolation is sparse, and reduced weights can be assigned to these
possibly less-relevant markers.

Differences in cell shape and size, however, are usually more clinically signif-
icant and can be assigned greater weights. Typically, disorders affecting bone
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marrow function (i.e., blood cancers) result in the presence of abnormal (often
immature) cells in peripheral blood; their presence in peripheral blood beyond
this level would almost always be abnormal. A related point is whether the
score can reflect subtle/minor changes in shape (variation in cell size, nuclear
size, presence of other organelles) or only very crude and major deviations in
size. For white blood cells, we do not yet understand what significance these
have.

For example, the neutrophil-to-lymphocyte ratio relation is a key determi-
nant of severity for sepsis, and involves 2 analytes. The synthetic analyte that
can be added is the ratio itself, thus replacing a non-linear rule that would even-
tually make the score’s description too convoluted to read with ease with a key
marker as another analyte [20, 25].

The scores introduced here are not intended to be used as a diagnostic tool
on their own and can only quantify abnormality in terms of deviation from
healthy reference (absolute or adaptable) values. The score is sensitive to out-
of-range values and increases its value or changes its colour as a function of how
removed values are from lower and upper bounds of reference values according
to the number of standard deviations from the medians, but it cannot quantify
diseases or conditions. The score indicates how far the bulk of all markers are
from normal (healthy) reference values, the median, and an interval determined
by published reference values for specific demographic or health conditions. Me-
dians can be derived from empirical data (Fig. 6).
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Figure 6: Distributions within ‘healthy’ reference values are heavily skewed in
most cases, do not follow a normal or uniform distribution and often have long
tails suggesting a personalised approach to reference values for abnormal results.
The list of analyte labels is in the Supplementary Information.

Figure 11 shows how male and female NHANES data can be distinguished by
the scores using Red Blood Cell (RBC) counts as a health status predictor. The
normal versus abnormal RBC ranges from the NHS were used to label the person
as healthy or unhealthy. The Pearson R2 value for RBC-dependent health
status was found to be 0.176, for both sexes considered together. The Pearson
R2 values were 0.203 and 0.455, for male and female RBC counts considered
separately, when comparing healthy and unhealthy groups.

We observed that the self-reported health status of the patients did not
accurately predict their clinically assessed blood analytes. This was expected
because self-reports may have reflected illness at various points in time in a
person’s life rather than ongoing conditions. In other words, with this exper-
iment, we de-noised the data by disregarding self-reported status to test the
score against cleansed data based exclusively on CBC results as a discriminant,
according to medical guidance on normal population reference values. That is,
the interpretation of the health status a person could have potentially received
from a medical doctor based exclusively on their CBC.

When healthy and unhealthy patients were separated using a subset of four
CBC/FBC analyte measures, namely, MCH, HCT, neutrophil, and lymphocyte
counts, as shown in Figure 13, we obtained the second best R2 value of 0.075,
for both sexes. The R2values were 0.050 and 0.123, for the male and female
groups, respectively. We found that neutrophil count alone, as a single clinical
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parameter, had a near equal performance as the composite measure of these
four analyte parameters, with an R2 of 0.072 when including both sexes. The
inclusion of other white blood cell (WBC) parameters, such as monocyte count,
eosinophil, and basophil, did not outperform these correlates. We observed
that different subsets of a CBC/FBC by health status separated the data. All
reported measures were statistically significant, with a two-tailed P< 0.0001.

This also suggests that the mutlivariate biopsychosocial determinants of
health should also be integrated for a top-bottom analysis of the disease pre-
disposition and health dynamics of patients when assessing such self-reported
measures. The irreducibility (multidimensionality) of these self-reported health
measures may help explain why they are highly noisy and intersect with multi-
ple other health factors, including multi-scale stressors such as the time of day,
basic survival factors such as nutritional status/intake, sleep-related mood, psy-
chological state, and social determinants of health, together with other health
parameters.

4.2 Adaptive reference values

The reference ranges found in the medical literature are based on population-
wide statistics that often fail to account for individual differences [6, 5]. To
address this, we introduced an adaptive version of the immune score with the
objective of providing personalised reference ranges to an individual’s medical
history data. Our rationale is that, in applying the immune score to the resulting
adaptive ranges, we obtain an immune score that is more significant in the
statistical and clinical sense.

The main underlying assumption of this adaptive immune score definition is
that, if a significant event (in the clinical sense) can be measured via an analyte,
such an event will present itself as a value that breaks from the trend defined
by the behaviour of the analyte over time. A second assumption is that such
events can occur within the normal range as defined by a population reference
range. A third assumption is that, while a trend becomes more incontrovertible
the more data points there are, past values are less significant than proximate
events. The next assumption is that the trend can be non-monotonous. The
final assumption is that standard reference ranges can detect such events with
acute sensitivity, while low specificity can thus be improved by narrowing the
ranges but not by expanding them.

The adaptive feature of the immune score starts with a mathematical func-
tion that models the behaviour of an analyte as a time series (observed values
over time). For each given point, the function assigns a linear approximation
to the current and past data over a fixed time span (called a time step). The
differential of this approximation is weighed against the differentials obtained
for previous data via a linear combination of the current and previous deriva-
tives. Finally, this linear approximation is evaluated over the mean time for
the corresponding time-step. The resulting model is a function that carries
the momentum of all previous values, and only previous values, yet remains
adaptable for future long-term trends while being robust in the face of temporal
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disruptions to the trend. The speed of this adaptation can be controlled by
hyper-parameters such as the size of the time step and the coefficients for the
linear combination of differentials.

The function described in the preceding paragraph represents the adaptive
mean, from which the adaptive ranges are inferred. The adaptive ranges consist
of two functions, the upper limit and the lower limit. The upper limit is defined
as the adaptive mean plus the standard deviation of all the values that are
above the mean, up to the point of time in question. Similarly, the lower limit
is the adaptive mean minus the standard deviation of all the values that are
below the adaptive mean up to the relevant point in time. Next, we smooth
the transition from the population ranges to the adaptive ranges by means of
a linear combination of both ranges such that the adaptive range becomes the
dominant factor in the time function.

Furthermore, this linear combination ensures that the adaptive ranges stay
within the population ranges by defaulting to the population ranges whenever
the resulting adaptive maximum is above the population maximum or the adap-
tive minimum is below the adaptive mean.

Figure 7: Statistical inference without smart outlier detection. In contrast to
the smart outlier detection technology, simple statistical regression towards the
observed values results in skewed inferred ranges.

5 Immune age estimation

The immune system plays an important role in protecting against infections and
in maintaining human health. Blood is the medium in which most immune cells
circulate through the body.

Ageing is associated with complex changes and dysregulation of cellular pro-
cesses. Nine tentative hallmarks that represent common denominators of ageing
in different organisms have been described before[24].
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Figure 8: Smart outlier detection example. The machine learning technology
can adapt the range of expected values for all analytes, showing stable trends,
while also detecting abnormal values or trends. In the image, we can show the
result of machine learning inference of the ranges of normal values for a patient
while also detecting abnormal values.

As lifespan increases in many countries, there is a concomitant increase in
age-related morbidities, particularly cardiovascular diseases, and increased sus-
ceptibility to seasonal infections, cancers, and neurodegenerative disorders. A
unifying link between the higher rates of these disparate diseases observed in
ageing populations is the progressive decline in immune functions.

It has been postulated that inflammation plays a critical role in regulating
physiological ageing. Inflammatory components of the immune system are often
chronically elevated in aged individuals, a phenomenon that has been termed
“inflammageing” [12, 14, 13, 15, 17, 2].

However, the dynamics of this process at the individual level have not been
characterised, hindering quantification of an individual’s ‘immune age’.

[2] used multiple ‘omics’ technologies to capture population- and individual-
level changes in the human immune system in individuals of different ages sam-
pled longitudinally over a nine-year period. They observed high inter-individual
variability in the rates of change of cellular frequencies that was dictated by the
individual’s baseline values, allowing identification of steady-state levels toward
which a cell subset converged and the ordered convergence of multiple cell sub-
sets toward older adult homeostasis.

In [16], an IMM-AGE score was described that captured an individual’s
immune-ageing process. The IMM-AGE score correlated with age, yet it cap-
tured additional metrics such as cell-cytokine response better than chronological
age.

Here we present a method where a single blood test, as in a complete full
blood count of 13 blood analytes, gives insight into the immune age as compared
to chronological age. Chronological age simply indicates the age of the individ-
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ual, as determined by the length of time someone has lived or is living since
their birth. This term should not be confused in the context of other literature,
such as age estimates predicted by DNA methylation patterns from the Horvath
algorithm.

5.1 Immune Score Over time

We hypothesised that as the human body ages the immune score will vary over
time. In particular, we expected to see an upwards trajectory in direct relation
to age.

To test the hypothesis, we selected two cohorts comprising all the data en-
tries of individuals with ages ranging between 20 to 90 years, from the dataset,
separating them by sex (male or female). These cohorts were used to build two
immune spaces by computing the respective mean and standard deviations for
each of the thirteen analytes. Afterward, for each sex, we selected seven cohorts
of adults aged 20 to 25, 25 to 35, 35 to 45, 45 to 55, 55 to 65, 65 to 75, and 75
to 85 years of age, making for a total of 14 cohorts. Finally, we computed the
immune score for each entry. The mean immune age for each of the cohorts is
shown in Fig. 9.

The results show significantly different behaviour over time for male and
female cohorts. For subjects over the age of 30, it is evident that the male
population presents an upward trajectory with respect to age for the mean
immune score, as well as an increase in the 50th percentile and variance. The
immune score decreases slightly for males between 20 and 25 year old. However,
the trend in females is slowed down (compared to males) between ages 40 and 50
and reversed between ages 50 and 60. It remains to be investigated whether some
of the analytes involved are confounded with contradictory trends from other
physiological differences, such as menopause, which occurs exactly between the
ages where the slow-down and reversal in the age score trend for females is
detected. It is known and has been reported that pregnancy and menopause
produce a higher and more progressive increase in red cell counts, haematocrit
levels and increased mean cell volume (MCV), and haemoglobin concentrations
[21, 4, 9, 27, 1].

5.2 Immune age based on the immune score

We define the immune age as the reverse function of the relation between the
expected immune score and the age of an individual. Formally:

Definition 5.1. For a given immune score α, the immune age A : α 7→ a is
defined as the function:

A(α) = a.{S(p) : p age is a}) = α,

where {S(p) : p age is a}) is the mean immune score for all the individuals of
age a.
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In other words, the immune age is defined as the age in the function of the
expected immune score; the immune age for a given score is the age cohort for
which such a score is expected.

Given the observed behaviour of the mean immune score over time, we as-
sert that we can apply the given immune age definition for males aged 20 or
older. However, we have shown that the functional relation is much weaker, or
nonexistent, in the female population.

In a manner akin to that presented in Section 5.1, we compiled data into a
list of seven values representing the mean immune score for each of the seven
age cohorts1. In order to apply the Definition 5.1, we fitted a linear model of
degree 3 to the data, obtaining a monotonously decreasing function that allows
us to interpolate and extrapolate the expected immune score over specific ages.
The resulting curve, which we call an immune age curve, is shown in Fig. 10.

Figure 10: A linear approximation of degree 3 to the mean score over seven age
cohorts from the healthy groups only. The linear model smooths the curve and
allows for extrapolation.

We will only consider integer ages in years. Therefore we can represent the
immune age curve by a list of 70 real values that contains the inferred immune
score for each age between 30 and 85. Let us denote this curve by the list of
pairs IAC = ⟨(20, 6.87), (30, 6.91), . . . , (a, α), . . . , (80, 5.97)⟩.

1The corresponding ages are 20 to 25, 25 to 35, 35 to 45, 45 to 55, 55 to 65, 65 to 75 and
75 to 85.
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We now can obtain the immune age A by means of the following function:

A(α) =


20 ifα ≥ 6.91

85 ifα ≤ 5.624

a.(a, α∗) ∈ IAC elsewhere

where α∗ is the closest score in IAC to α. If there are two scores at the
same distance, we choose the leftmost option. The resulting function is shown
in Fig. 13. The curve shows some minor bumps which are the results of the
discretisation used. We maintain that this distortion is not significant.

As a tool that returns an estimated age with respect to a score, we can
analyse its predictive power. Using the NHANES data and focusing on males
aged 20 to 90, we can measure the error of using the score to predict a person’s
age.

As shown in Figure 14, prediction error rates are much lower in healthy
NHANES data, compared to unhealthy groups, for both sexes and therefore
can be used to estimate the chronological age of healthy patients. Prediction
error rates for the immune score age were overestimated by approximately 7
years, for the healthy groups, in both sexes, allowing a correction (mean error
rate of 7.33 ± 1.21 for healthy females, and 7.62 ± 1.17 for healthy males).
Furthermore, there is a statistically significant difference between the healthy
and non-healthy groups (regardless of sex) in the error rates of age prediction.
Pearson’s correlation statistics on the age error rates predicted, by the health
status of the red blood cell count, as discussed before, were an R square value
of 0.293 and 0.168, for men (P< 0.0001) and females (P<0.013). Age prediction
error rates were high and not significant when self-reported health measures
were used to separate health status groups, but were significant when taking
abnormal CBC values only.

Table 7 shows the statistics of the predictors and separators of age for healthy
and unhealthy populations. These plots show that common blood marker dy-
namics are predictive of age and health.

There are small but potentially meaningful differences between reference
ranges. This could affect the classification of out-of-range counts when apply-
ing mismatched country-specific ranges. Using uniform, population-appropriate
references is important for generalisable models but our main contribution is to
learn each individual personal reference values hence making the reference dis-
crepancies per country less relevant.
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Table 7: Statistics of each CBC analyte as a predictor or discriminant of health
and age.

Counts Healthy Unhealthy Age

BASO 0.0051 0.0166 0.0004
EOS 0.0012 2.00E-05 0.0049
HCT 0.0036 0.0055 0.0696
HGB 0.1179 0.1397 0.0635
LYMP 0.0429 0.4983 0.0928
MCH 0.0831 0.0001 0.1538
MCHC 0.0025 0.0043 0.0047
MCV 0.2661 0.337 0.2186
MONO 0.0121 0.0004 0.0073
NEUT 0.0084 0.0069 0.018
RBC 0.0268 1.00E-05 0.0009
PLT 0.0921 0.3334 0.1029

Figure 11: Age Prediction Error Rates between actual patient (biological) age
and Immune-score predicted age from NHANES dataset by RBC counts. The
health status was determined by the best blood analyte correlate in this case,
as previously discussed, the RBC counts, to separate healthy from unhealthy
groups by sex. The results show that the immune-score predicted age has the
lowest prediction error rate among healthy groups, for both sexes and overesti-
mates age when the individuals are not healthy.
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Table 8: Best predictors for each category

Healthy Unhealthy Age

MCV LYMP MCV
HGB MCV MCH
PLT PLT PLT
MCH HGB LYMP
LYMP BASO HCT
RBC NEUT HGB

MONO HCT NEUT
NEUT MCHC MONO
BASO MONO EOS
HCT MCH MCHC
MCHC EOS RBC
EOS RBC BASO

6 Conclusions

We have introduced risk-assessment scores and studied their behaviour against
typical synthetic and empirical disease cases. We have introduced a learning
procedure to adapt normal versus abnormal reference values to personalised
ranges for more precise and individual medical assessment and demonstrated the
capabilities and applications of the scores for triaging purposes against a pop-
ular public database showing how the scores separate healthy from unhealthy
cohorts both self-reported with significant noise and determined by typical nor-
mal reference values. The approaches were shown to be informative for quick
and entry-level patient health sorting and triaging.

The numerical score was shown to be able to define an ‘immune age’, with
some differences for males and females who are known to show greater fluc-
tuations due to e.g. menopause. In the case of estimation of immune age, the
chronological age of healthy people was closely predicted by common hematolog-
ical markers typically measured in FBC or CBC, and for unhealthy self-reported
or by typical abnormal reference values, the score was not predictive of chrono-
logical age, conforming with the theoretical expectation of a good predictor of
health by the divergence between estimated immune and actual chronological
age.

Unlike statistical or traditional machine learning and black-box approaches,
the approach introduced is transparent to clinicians, health professionals, and
health consumers who can follow the calculations and interpretation to be as-
sessed in a clinical context for rapid screening and decision support.
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(SECTEI).

References

[1] Aldrighi, J. M., Oliveira, R. L. S., D’Amico, E., Rocha, T. R. F., Gebara,
O. E., Rosano, G. M. C., et al. “Platelet activation status decreases after
menopause”. In: Gynecol Endocrinol 20.5 (2005), pp. 249–57. doi: 10.
1080/09513590500097549..

[2] Alpert, A., Pickman, Y., Leipold, M., Rosenberg-Hasson, Y., Ji, X., Gau-
joux, R., et al. “A clinically meaningful metric of immune age derived
from high-dimensional longitudinal monitoring”. In: Nat Med 25.3 (2019),
pp. 487–495. doi: 10.1038/s41591-019-0381-y..

[3] Anderson, J. L., Ronnow, B. S., Horne, B. D., Carlquist, J. F., May, H. T.,
Bair, T. L., et al. “Usefulness of a complete blood count-derived risk score
to predict incident mortality in patients with suspected cardiovascular
disease”. In: Am J Cardiol. 99.2 (2007), pp. 169–74. doi: 10.1016/j.
amjcard..

[4] Aneke, J., Nancy, I., Okocha, C., Kenneth, N., and Manafa, P. “Changes in
Haematological Indices of Women at Different Fertility Periods in Nnewi,
South-East, Nigeria”. In: J Med Res 2 (Dec. 2016), pp. 166–169. doi:
10.31254/jmr.2016.2610.

[5] Brodin, P. and Davis, M. M. “Human immune system variation”. In: Nat
Rev Immunol. 17.1 (2017), pp. 21–29. doi: 10.1038/nri.2016.125..

[6] Brodin, P., Jojic, V., Gao, T., Bhattacharya, S., Angel, C. J. L., Furman,
D., et al. “Variation in the human immune system is largely driven by
non-heritable influences”. In: Cell 160.1-2 (2015), pp. 37–47. doi: 10.
1016/j.cell.2014.12.020..

[7] “Case Index by Patient History”. In: University of Pittsburgh, Department
of Pathology (2022), Accessed on. url: https://path.upmc.edu/cases/.

[8] “Case Index by Patient History”. In: NHS Foundation Trust, York Teach-
ing Hospital (). url: https://www.yorkhospitals.nhs.uk/seecmsfile/
?id=2396.

28

https://doi.org/10.1080/09513590500097549.
https://doi.org/10.1080/09513590500097549.
https://doi.org/10.1038/s41591-019-0381-y.
https://doi.org/10.1016/j.amjcard.
https://doi.org/10.1016/j.amjcard.
https://doi.org/10.31254/jmr.2016.2610
https://doi.org/10.1038/nri.2016.125.
https://doi.org/10.1016/j.cell.2014.12.020.
https://doi.org/10.1016/j.cell.2014.12.020.
https://path.upmc.edu/cases/
https://www.yorkhospitals.nhs.uk/seecmsfile/?id=2396
https://www.yorkhospitals.nhs.uk/seecmsfile/?id=2396


[9] Cruickshank, J. M. “Some Variations in the Normal Haemoglobin Con-
centration”. In: British Journal of Haematology 18.5 (1970), pp. 523–530.
doi: https://doi.org/10.1111/j.1365-2141.1970.tb00773.x. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-

2141.1970.tb00773.x. url: https://onlinelibrary.wiley.com/doi/
abs/10.1111/j.1365-2141.1970.tb00773.x.

[10] Edwards, F. H., Grover, F. L., Shroyer, A. L., Schwartz, M., and Bero, J.
“The Society of Thoracic Surgeons National Cardiac Surgery Database:
current risk assessment”. In: Ann Thorac Surg. 63.3 (1997), pp. 903–8.
doi: 10.1016/s0003-4975(97)00017-9..

[11] Erdemir, I. “The comparison of blood parameters between morning and
evening exercise”. In: European Journal of Experimental Biology 3.1 (2013),
pp. 559–563.
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Appendix

Table 9: List of blood-related label headers in the NHANES database

LBXWBCSI White blood cell count (1000 cells/uL)
LBXLYPCT Lymphocyte percent (%)
LBXMOPCT Monocyte percent (%)
LBXNEPCT Segmented neutrophils percent (%)
LBXEOPCT Eosinophils percent (%)
LBXBAPCT Basophils percent (%)
LBDLYMNO Lymphocyte number
LBDMONO Monocyte number
LBDNENO Segmented neutrophils number
LBDEONO Eosinophils number
LBDBANO Basophils number
LBXRBCSI Red blood cell count (million cells/uL)
LBXHGB Haemoglobin (g/dL)
LBXHCT Haematocrit (%)
LBXMCVSI Mean cell volume (fL)
LBXMCHSI Mean cell haemoglobin (pg)
LBXMC MCHC (g/dL)
LBXRDW Red cell distribution width (%)
LBXPLTSI Platelet count SI (1000 cells/uL)
LBXMPSI Mean platelet volume (fL)

Data

The National Health and Nutrition Examination Survey[28] is a research pro-
gram conducted by the National Center for Health Statistics (NCHS) of the
United States of America. This program offers a public database that con-
tains information relating to the demographic, health, and nutritional status of
adults and children in the USA. In particular, it offers individual laboratory
results for the thirteen analytes, along with demographic information (such as
age, biological sex, among others) for thousands of individuals collected over 20
years.

For the immune age sections, we extracted a subset of 31900 individuals
chosen according to the following criteria.

All the data was made available through Zenodo at https://zenodo.org/
records/10426175

• 20 years of age or older as stated by RIDAGEYR.

• The general health condition (all self-reported) variable (HSD010)
was stated as Good, Very Good or Excellent.
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• The values for the 13 analytes, along with the general health condition,
age and sex (RIAGENDR) were present in the data.
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(a) Mean

(b) Distribution

Figure 9: (a) The mean immune age as a function of age for NHANES data.
The reference ranges were computed over the population aged 20 to 85 for males
and females, respectively. Each of the data points represents the mean immune
score for the cohort [age − 5, age + 5]; for example, 50 represents the immune
score for the population aged 45 to 55 years. (b)The distribution of immune age
as a function of age. While a correlation trend is visible (especially for males),
across sex the correlation is weak because healthy and non-healthy cohorts (both
self-reported and by ground truth) are confounded.
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