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Abstract

We discuss an algorithm for Tchakaloff-like compression of Quasi-MonteCarlo (QMC) volume/surface in-
tegration on union of balls (multibubbles). The key tools are Davis-Wilhelmsen theorem on the so-called
“Tchakaloff sets” for positive linear functionals on polynomial spaces, and Lawson-Hanson algorithm for
NNLS. We provide the corresponding Matlab package together with several examples.
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1. Introduction

Numerical modelling by finite collections of disks, balls and spheres is relevant within different application
fields. Problems involving intersection, union and difference of such geometrical objects arise for example
in molecular modelling, computational geometry, computational optics, wireless network analysis; cf., e.g.,
[1, 2, 12, 16, 19, 22] with the references therein. A basic problem is the computation of areas and volumes
of such sets, followed by the more difficult task of computing volume and surface integrals there by suitable
quadrature formulas.

Indeed, the numerical quadrature problem on intersection and union of planar disks has been recently
treated in [28, 30], providing low-cardinality algebraic formulas with positive weights and interior nodes. On
the other hand, though there is some literature, mainly in the molecular modelling field, on the computation
of volumes and surface areas of arbitrary union of balls (multibubbles), to our knowledge specific numerical
integration codes on such domains are not available yet.

In this paper, we begin to fill the gap by providing compressed Quasi-Montecarlo (QMC) formulas
for volume and surface integration on multibubbles, along the lines of [13]. Such formulas preserve the
approximation power of QMC up to the best uniform polynomial approximation error of a given degree to the
integrand, but using a much lower number of sampling points; see Figure 1 for two examples of multibubbles
and QMC sampling compression. The key tools are Davis-Wilhelmsen theorem on the so-called “Tchakaloff
sets” for positive linear functionals and Lawson-Hanson algorithm for NNLS, which allows to extract a set
of “equivalent” re-weighted nodes from a huge low-discrepancy sequence.

We stress that differently from [13], the present approach is able to compress not only QMC volume
integration, but also QMC integration on compact subsets of algebraic surfaces (in particolar, the surface
of a multibubble which is a subset of a union of spheres). Notice that one of the main difficulties in surface
instances, consists in adapting the compression algorithm to work on spaces of polynomials restricted to an
algebraic variety, finding an appropriate polynomial basis. Indeed, to our knowledge the present work is the
first attempt in this direction within the QMC framework.
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(a) (b)

Figure 1: Compressed QMC points (red) extracted from low-discrepancy points (grey) on the surface of ball union at degree
n = 9. Left: 200 points extracted from about 8200 (3 balls), compression ratio 43; Right: 220 points extracted from about
69000 (100 balls), compression ratio over 300.

The paper is organized as follows. In Section 2, we discuss theoretical and computational issues of QMC
compression for volume and surface integration in R3. In Section 3 we describe our implementation on 3d
multibubbles, presenting several numerical tests. The open-source codes are freely available at [14].

2. Compressed QMC formulas

Compression of QMC formulas is nothing but a special instance of discrete measure compression, a topic
which has received an increasing attention in the literature of the last decade, in both the probabilistic and
the deterministic setting. Indeed, several papers and some software have been devoted to the extraction of
a smaller set of re-weighted mass points from the support of a high-cardinality discrete measure, with the
constraint of preserving its moments up to a given polynomial degree; cf., e.g., [15, 20, 23, 27, 33] with the
references therein.

From the quadrature point of view, this topic has a strong connection with the famous Tchakaloff theorem
[32] on the existence of low-cardinality formulas with positive weights. On the other hand, Tchakaloff
theorem itself is contained in a somewhat deeper but somehow overlooked result by Wilhelmsen [34] on
the the discrete representation of positive linear functionals on finite-dimensional function spaces (which
generalizes a previous result by Davis [5]). Indeed, only quite recently this theorem has been rediscovered
as a basic tool for positive cubature via adaptive NNLS moment-matching, cf. [13, 18, 29, 31].

Theorem 1. (Davis, 1967 - Wilhelmsen, 1976) Let Ψ be the linear span of continuous, real-valued, linearly
independent functions {φj}j=1,...,N defined on a compact set Ω ⊂ Rd. Assume that Ψ satisfies the Krein
condition (i.e. there is at least one f ∈ Ψ which does not vanish on Ω) and that L is a positive linear
functional on Ψ, i.e. L(f) > 0 for every f ∈ Ψ, f ≥ 0 not vanishing everywhere in Ω.

If {Pi}∞i=1 is an everywhere dense subset of Ω, then for sufficiently large m, the set Xm = {Pi}i=1,...,m

is a Tchakaloff set, i.e. there exist weights wk > 0, k = 1, . . . , ν, and nodes {Tk}k=1,...,ν ⊂ Xm ⊂ Ω, with
ν = card({Tk}) ≤ N , such that

L(f) =

ν∑
k=1

wkf(Tk) , ∀f ∈ Ψ . (1)

As an immediate consequence, we may state the following

Corollary 1. Let λ be a positive measure on Ω, such that supp(λ) is determining for Pdn(Ω), the space of
total-degree polynomials of degree not exceeding n, restricted to Ω (i.e., a polynomial in Pdn(Ω) vanishing
there vanishes everywhere on Ω). Then the thesis of Theorem 1 holds for L(f) =

∫
Ω
f dλ.
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Indeed, the integral of a nonnegative and not everywhere vanishing polynomial f ∈ Pdn(Ω) must be
positive (otherwise f would vanish on supp(λ)). Observe that the classical version of Tchakaloff theorem
corresponds to

L(f) = LINT(f) =

∫
Ω

f(P ) dP ,

with Ψ = Pdn(Ω) and
N = Nd

n = dim(Pdn(Ω)) . (2)

From now on we shall concentrate on the 3-dimensional case (d = 3), though most considerations could
be extended in general dimension. Notice that the formulation of Davis-Wilhelmsen theorem is sufficiently
general to include volume integrals, i.e. Ω is the closure of a bounded open set and N = dim(Pdn(R3)) =(
n+3

3

)
= (n+ 1)(n+ 2)(n+ 3)/6, as well as surface integrals on compact subsets of an algebraic variety (in

this case dP = dσ for the surface measure). In the latter case the dimension of the polynomial space could
collapse, for example with Ω = S2 ⊂ R3 we have N = (n+ 1)2 <

(
n+3

3

)
= (n+ 1)(n+ 2)(n+ 3)/6.

On the other hand, Wilhelmsen theorem can also be applied to a discrete functional like a QMC formula
applied to f ∈ C(Ω)

L(f) = LQMC(f) =
µ(Ω)

M

M∑
i=1

f(Pi) ≈
∫

Ω

f(P ) dP , (3)

where
XM = {Pi}i=1,...,M , M > N ,

is a low-discrepancy sequence on Ω, and µ(Ω) can be either a volume or a surface area. Typically one
generates a low-discrepancy sequence of cardinality say M0 on a bounding box or bounding surface B ⊇ Ω,
from which the low-discrepancy sequence on Ω is extracted by a suitable in-domain algorithm. We observe
that if µ(Ω) is unknown or difficult to compute (as in the case of multibubbles), it can be approximated as
µ(Ω) ≈ µ(B)M/M0.

Positivity of the functional for f ∈ Ψ = P3
n(Ω) is ensured whenever the set XM is P3

n(Ω)-determining, i.e.
polynomial vanishing there vanishes everywhere on Ω, or equivalently dim(P3

n(XM )) = N = dim(P3
n(Ω)),

or even
rank(VM ) = N , (4)

where
VM = V (n)(XM ) = [φj(Pi)] ∈ RM×N (5)

is the corresponding rectangular Vandermonde-like matrix. Notice that, XM being a sequence, for every
k ≤M we have that

Vk = V (n)(Xk) = [(VM )ij ] , 1 ≤ i ≤ k , 1 ≤ j ≤ N . (6)

The full rank requirement for VM is not restrictive, in practice. Indeed, the probability that det(VN ) = 0
dealing with uniformly distributed points is null, since the former equation defines the zero set of a polynomial
in ΩN , whose product measure is null (cf., e.g., [21, §§3-4] for a more complete discussion on this point).

By Theorem 1, when M � N we can then try to find a Tchakaloff set Xm, with N ≤ m < M , such that
a sparse nonnegative solution vector u exists to the underdetermined moment-matching system

V tmu = p = V tMe , e =
µ(Ω)

M
(1, . . . , 1)t . (7)

In practice, we solve (7) via Lawson-Hanson active-set method [17] applied to the NNLS problem

min
u≥0
‖V tmu− p‖2 , (8)

accepting the solution when the residual size is small, say

‖V tmu− p‖2 < ε (9)
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where ε is a given tolerance. The nonzero components of u then determine the nodes and weights of a
compressed QMC formula extracted from Xm, that is {wk} = {ui : ui > 0} and {Tk} = {Pi : ui > 0},
giving

L∗QMC(f) =

ν∑
k=1

wkf(Tk) , ν ≤ N �M , (10)

where L∗QMC(f) = LQMC(f) for every f ∈ P3
n(Ω).

Notice that existence of a representation like (10) for m = M is ensured by Caratheodory theorem on
finite-dimensional conic combinations, applied to the columns of V tM (cf. [23] for a full discussion on this
point in the general framework of discrete measure compression). In such a way, however, we would have to
work with a much larger matrix, that is we would have to solve directly

min
u≥0
‖V tMu− p‖2 . (11)

On the contrary, solving (8) on an increasing sequence of smaller problems m := m1,m2,m3, . . . with
m1 < m2 < m3 < · · · ≤M ,

min
u≥0
‖V tmj

u− p‖2 , j = 1, 2, 3, . . . , m1 ≥ N , (12)

corresponding to increasingly dense subsets Xm1
⊂ Xm2

⊂ · · · ⊆ XM (say, “bottom-up”), until the residual
becomes sufficiently small, could substantially lower the computational cost. Indeed, as shown in [13], with
a suitable choice of the sequence {mj} the residual becomes extremely small in few iterations, with a final
extraction cardinality much lower than M .

Concerning the approximation power of QMC compression, following [13] it is easy to derive the following
error estimate

|L∗QMC(f)− LINT(f)| ≤ EQMC(f) + 2µ(Ω)En(f ;X)

≤ EQMC(f) + 2µ(Ω)En(f ; Ω) , (13)

valid for every f ∈ C(Ω), where EQMC(f) = |LQMC(f)−LINT(f)| and we define En(f ;K) = infφ∈P3
n(K) ‖f − φ‖∞,K

with K discrete or continuous compact set.
The meaning of (13) is that the compressed QMC functional L∗QMC retains the approximation power of

the original QMC formula, up to a quantity proportional to the best polynomial approximation error to f
in the uniform norm on X (and hence by inclusion in the uniform norm on Ω). We recall that the latter
can be estimated depending on the regularity of f by multivariate Jackson-like theorems, cf. e.g. [24] for
volume integrals where Ω is the closure of a bounded open set.

On the other hand, we do not deepen here the vast and well-studied topic of QMC convergence and error
estimates, recalling only that (roughly) the QMC error EQMC(f) is close to O(1/M) for smooth functions, to
be compared with the O(1/

√
M) error of MC. For basic concepts and results of QMC theory like discrepancy,

star-discrepancy, Hardy-Krause variation, Erdös-Turán-Koksma and Koksma-Hlawka inequalities, we refer
the reader to devoted surveys like e.g. [11].

Remark 1. The QMC compression algorithm can be easily extended to the case where Ω (either a volume
or a surface) is the finite union of nonoverlapping subsets, say Ω = ∪L`=1Ω`, such that sequences of low-
discrepancy points are known on bounding sets B` ⊃ Ω`. In this case the overall QMC points areX = ∪L`=1Y`,

with Y` = {P`,i}M`
i=1 and M = card(X) =

∑L
`=1M`, where Y` are the low-discrepancy points of B` lying

in Ω`. We stress that the low-discrepancy points have to be chosen alternatively in order to construct an
evenly distributed sequence XM on the whole Ω, picking the first point in each Ω`, then the second point
in each Ω` and so on, i.e. the sequence {P1,1, P2,1, . . . , PL,1, P1,2, P2,2, . . . , PL,2, . . .}.

Moreover, by additivity of the integral the QMC functional becomes

LQMC(f) =

L∑
`=1

M∑̀
i=1

w`,if(P`,i) ≈
L∑
`=1

∫
Ω`

f(P ) dP =

∫
Ω

f(P ) dP , (14)

where w`i = µ(Ω`)/M`, i = 1, . . . ,M`, and hence the QMC moments in (7) have to be computed with such
weights.
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3. Implementation and numerical tests

In order to show the effectiveness of the bottom-up compression procedure described in the previous
section, we briefly sketch a possible implementation and we present some numerical tests for both, volume
and surface integration on arbitrary union of balls (multibubbles).

Indeed, we compare “Caratheodory-Tchakaloff” compression of multivariate discrete measures as imple-
mented in the general-purpose package dCATCH [10], with the bottom-up approach. All the tests have been
performed with a CPU AMD Ryzen 5 3600 with 48 GB of RAM, running Matlab R2022a. The Matlab
codes and demos, collected in a package named Qbubble, are freely available at [14].

Below, we first give some highlights on the main features of the implemented algorithm on multibubbles.
These are essentially:

• for multibubble volume integrals we simply take Halton points of the smaller bounding box

[a1, b1]× [a2, b2]× [a3, b3] ⊃ Ω

and select those belonging to Ω; for multibubble surface integrals we follow the procedure sketched
in Remark 1, taking on each sphere B` low-discrepancy mapped Halton points by an area preserving
transformation (see (19) in Section 3.2 below), and then selecting those belonging to the surface;

• in view of extreme ill-conditioning of the standard monomial basis, we start from the product Cheby-
shev total-degree basis of the smaller bounding box for Ω (for either volumes or surfaces), namely

pj(x, y, z) = Tα1(j) (σ1(x))Tα2(j) (σ2(y))Tα3(j) (σ3(z)) , j = 1, . . . , J ,

where J = (n + 1)(n + 2)(n + 3)/6, σi(t) = 2t−bi−ai
bi−ai , i = 1, 2, 3, and j 7→ α(j) corresponds to the

graded lexicographical ordering of the triples α = (α1, α2, α3), 0 ≤ α1 + α2 + α3 ≤ n;

• for surface integrals we determine a suitable polynomial basis by computing the rank and then possibly
performing a column selection by QR factorization with column pivoting of the trivariate Chebyshev-
Vandermonde matrix;

• in order to cope ill-conditioning of the Vandermonde-like matrices Vmj
(that increases with the degree),

we perform a single QR factorization with column pivoting Vmj
= Qmj

Rmj
to construct an orthogonal

polynomial basis w.r.t. the discrete scalar product 〈f, g〉Xmj
=
∑mj

i=1 f(Pi)g(Pi) and substitute Vmj
by

Qmj in (12); consequently the QMC moments p in (7) have to be modified into (R−1
mj

)tp (via Gaussian
elimination);

• the (modified) bottom-up NNLS problems (12) are solved by the recent implementation of Lawson-
Hanson active-set method named LHDM, based on the concept of “Deviation Maximization” instead
of “column pivoting” for the underlying QR factorizations, since it gives experimentally a speed-up of
at least 2 with respect to the standard Matlab function lsqnonneg (cf. [6, 8, 9]).

In the next subsections we present several numerical tests, to show the effectiveness of the bottom-up
approach for volume and surface QMC compression on multibubbles.

3.1. Volume integration on multibubbles

In this subsection we consider volume integration on union of balls (solid multibubbles), namely

Ω =

s⋃
j=1

B(Cj , rj) (15)

where B(Cj , rj) ⊂ R3 is the closed 3-dimensional ball with center Cj and radius rj . Here we generate a
sequence of Halton points in the smallest Cartesian bounding box for Ω and, then, we select those belonging
to the union, say X = {Pi}, simply by checking that ‖Pi − Cj‖2 ≤ rj for some j.

More precisely, we consider the following
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• first example: union of the 3 balls with centers C1 = (0, 0, 0), C2 = (0, 1.3,−0.2), C3 = (2.5, 0, 1) and
radii r1 = 1.4, r2 = 0.9, r3 = 1, respectively;

• second example: union of 100 balls with randomly chosen and then fixed centers in [0, 2]3 and radii in
[0, 2, 0.6].

The results concerning application of the bottom-up approach are collected in Tables 1-2, where we
compress QMC volume integration by more than one million of Halton points, preserving polynomial mo-
ments up to degree 3, 6, 9, 12, 15 (the moments correspond to the product Chebyshev basis of the minimal
Cartesian bounding box for the ball union).

We start from 2,400,000 Halton points in the bounding box and we set m1 = 2N and mj+1 = 2mj , j ≥ 1.
The residual tolerance is ε = 10−10. The comparisons of the present bottom-up compression algorithm, for
short Qbuc , are made with a global compression algorithm that works on the full Halton sequence XM ,
namely the general purpose discrete measure compressor dCATCH developed in [10], which essentially
solves directly (11) by Caratheodory-Tchakaloff subsampling as proposed in [27, 23].

In particular, we display the cardinalities and compression ratios, the cpu-times for the construction of
the low-discrepancy sequence (cpu Halton seq.) and those for the computation of the compressed rules,
where the new algorithm shows speed-ups from about 6 to more than 24 in the present degree range,
ensuring moment residuals always below the required tolerance in at most 3 iterations. It is worth stressing
a phenomenon already observed in [13], that is possible failure of QdCATCHc which in some cases give much
larger residuals than Qbuc .

In order to check polynomial exactness of the QMC compressed rules, in Figures 2-3 we show the relative
QMC compression errors and their logarithmic averages (i.e. the sum of the log of the errors divided by the
number of trials) over 100 trials of the polynomial

g(P ) = (ax+ by + cz + d)n , P = (x, y, z) (16)

where a, b, c, d are uniform random variables in [0, 1]. Moreover, in Tables 3-4 we show the integration
relative errors on three test functions with different regularity, namely

f1(P ) = |P − P0|5

f2(P ) = cos(x+ y + z) (17)

f3(P ) = exp(−|P − P0|2)

where P0 = (0, 0, 0) ∈ Ω, the first being of class C4 with discontinuous fifth derivatives whereas the second
and the third are analytic. The reference values of the integrals have been computed by a QMC formula
starting from 108 Halton points in the bounding box.

We see that the compressed formulas on more than one million points show errors of comparable order
of magnitude, that as expected from estimate (13) decrease while increasing the polynomial compression
degree until they reach a size close to the QMC error (observe however that in Table 3 at degree n = 15
only the bottom-up algorithm has reached the size of the QMC error).

3.2. Surface integration on multibubbles

We turn now to surface integration, on a domain Ω that is the boundary of an arbitrary union of balls,
namely

Ω = ∂

s⋃
j=1

B(Cj , rj) =

s⋃
j=1

∂B(Cj , rj)\
s⋃
j=1

◦
B(Cj , rj) , (18)

i.e. the set of all points lying on some sphere ∂B(Cj , rj), j = 1, . . . , s, but not internally to any of the balls
B(Ck, rk), k 6= j. We present two examples, corresponding to the same centers and radii considered above
for volume integration, i.e. the surface of the union of 3 balls and of 100 balls in Section 3.1. Notice that Ω is
a subset of an algebraic surface, i.e. the union of the corresponding spheres. Though the polynomial spaces
dimension could be computed theoretically by algebraic geometry methods (cf., e.g., [4]), we do not enter
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Figure 2: Relative QMC compression errors and their logarithmic average (circles) over 100 trials of random polynomials for
the bottom-up algorithm (left) and dCATCH (right) on the union of 3 balls. Note that the scales of the left and right figure
are different.
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Polynomial integrals matching between QMC and dCATCH
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Figure 3: Relative QMC compression errors and their logarithmic average (circles) over 100 trials of random polynomials for
the bottom-up algorithm (left) and dCATCH (right) on the union of 100 balls. Note that the scales of the left and right figure
are different.
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deg 3 6 9 12 15

card. QMC M = 1,128,709

card. QdCATCH
c 20 84 220 452 806

card. Qbu
c 20 84 220 455 816

compr. ratio 5.6e+04 1.3e+04 5.1e+03 2.5e+03 1.4e+03

cpu Halton seq. 9.0e-01s

cpu QdCATCH
c 3.4e+00s 1.9e+01s 4.9e+01s 1.4e+02s 3.1e+02s

cpu Qbu
c 2.2e-01s 9.0e-01s 2.4e+00s 5.7e+00s 2.6e+01s

speed-up 15.4 21.1 20.5 24.4 11.9

mom. resid. QdCATCH
c 8.9e-12 8.9e-12 8.9e-12 ? 5.1e-06 ? 1.1e-05

mom. resid. Qbu
c

iter. 1 4.55e-16 1.51e-02 1.63e-01 3.81e-01 7.12e-01
iter. 2 1.12e-15 1.85e-15 3.62e-15 8.06e-15

Table 1: Example with the union of 3 balls, in a bounding box with 2,400,000 low-discrepancy points.

deg 3 6 9 12 15

card. QMC M = 1,195,806

card. QdCATCH
c 20 83 220 450 795

card. Qbu
c 20 84 220 455 816

compr. ratio 5.6e+04 1.3e+04 5.1e+03 2.8e+03 1.5e+03

cpu Halton seq. 1.3e+00s

cpu QdCATCH
c 3.4e+00s 2.3e+01s 6.5e+01s 1.5e+02s 3.7e+02s

cpu Qbu
c 2.5e-01s 8.7e-01s 2.6e+00s 9.5e+00s 6.7e+01s

speed-up 13.8 26.6 25.0 15.7 5.6

mom. resid. QdCATCH
c 1.1e-11 ? 1.2e-05 1.1e-11 ? 5.6e-05 ? 7.3e-05

mom. resid. Qbu
c

iter. 1 2.08e-16 9.41e-02 4.99e-01 1.51e+00 1.78e+00
iter. 2 1.32e-15 2.20e-15 4.72e-15 8.30e-02
iter. 3 7.32e-15

Table 2: Example with the union of 100 balls, in a bounding box with 2,400,000 Halton points.

this delicate matter here, since the algorithm computes numerically such a dimension by a rank revealing
approach on a Vandermonde-like matrix.

In this case we have applied the extension discussed in Remark 1, constructing an evenly distributed
sequence XM on the whole Ω by taking a large number of low discrepancy points on each sphere ∂B(Cj , rj),
and then selecting those belonging to the portions of the sphere that contribute to the surface of the union,
that are those not internal to any other ball. Namely, we have taken on each sphere the mapped Halton
points from the rectangle [−1, 1]× [0, 2π] by the area preserving transformation

(t, φ) 7→ Cj + rj(
√

1− t2 cos(φ),
√

1− t2 sin(φ), t) , (19)

which preserves also the low-discrepancy property. The points are finally ordered by picking alternatively
one point per active portion of the surface of the union, with a local weight attached to each point. An
illustration of compressed points extracted starting from 4000 mapped Halton points on each sphere is given
in Figure 1.

In Tables 5-6 we report for this surface integration examples the same quantities appearing in Tables 1-2
for the volume integration, where we use again the dCATCH code in [9] to compress the QMC formula on
the whole XM , since also that algorithm was conceived to work with polynomial spaces possibly restricted to
algebraic surfaces. Here we start from 500,000 mapped Halton points on each sphere in the 3 balls example,
and from 60,000 in the 100 balls instance, obtaining a sequence of about one million low-discrepancy points
on the corresponding ball union surfaces. As before we set mj+1 = 2mj , j ≥ 1 with m1 = 2N and ε = 10−10.

Again we get impressive compression ratios, and speed-ups varying from about 5 to more than 16.
Moreover, the bottom-up algorithm gives always a residual below the given tolerance, whereas dCATCH

8



deg 3 6 9 12 15

EQMC(f1) 3.5e-04

EdCATCH(f1) 1.3e-01 3.4e-04 3.5e-04 3.5e-04 3.5e-04
Ebu(f1) 2.3e-03 3.2e-04 3.5e-04 3.5e-04 3.5e-04

EQMC(f2) 7.3e-04

EdCATCH(f2) 2.4e+00 7.0e-02 4.3e-03 7.3e-04 7.3e-04
Ebu(f2) 7.5e-01 3.7e-03 4.8e-04 7.4e-04 7.3e-04

EQMC(f3) 8.7e-05

EdCATCH(f3) 7.1e-01 1.4e-01 9.4e-03 2.1e-03 1.1e-04
Ebu(f3) 5.8e-01 2.8e-02 1.5e-02 9.5e-04 2.5e-05

Table 3: Example with 3 balls (the reference values are computed via QMC starting from 108 Halton points in the
bounding box).

deg 3 6 9 12 15

EQMC(f1) 1.1e-04

EdCATCH(f1) 8.3e-02 8.8e-05 1.1e-04 1.1e-04 1.1e-04
Ebu(f1) 1.7e-03 9.8e-05 1.1e-04 1.1e-04 1.1e-04

EQMC(f2) 1.7e-04

EdCATCH(f2) 2.9e-01 8.7e-04 1.6e-04 1.7e-04 1.7e-04
Ebu(f2) 5.6e-02 1.5e-04 1.7e-04 1.7e-04 1.7e-04

EQMC(f3) 2.2e-04

EdCATCH(f3) 2.3e-01 2.3e-03 8.4e-04 2.3e-04 2.2e-04
Ebu(f3) 6.1e-03 3.6e-03 1.2e-04 2.3e-04 2.2e-04

Table 4: Example with 100 balls (the reference values are computed via QMC starting from 108 Halton points in the
bounding box).

turns out to be more prone to failure (see the residuals for degree n = 15 in the example with 3 balls and
degrees n = 9, 15 in the example with 100 balls).

The logarithmic average errors concerning surface integration of the random polynomial (16), restricted
to the boundary of the union, are plotted in Figures 4-5. In Tables 7-8 we show the surface integration errors
for the three test functions in (17), where P0 is a suitably chosen point on the surface of the ball union. We
see again that the compressed formulas on more than one million points show errors of comparable order
of magnitude, that as expected from estimate (13) decrease while increasing the polynomial compression
degree, until they reach a size close to the QMC error.
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