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Memory-multi-fractional Brownian motion with continuous correlations
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We propose a generalization of the widely used fractional Brownian motion (FBM), memory-multi-
FBM (MMFBM), to describe viscoelastic or persistent anomalous diffusion with time-dependent
memory exponent α(t) in a changing environment. In MMFBM the built-in, long-range memory
is continuously modulated by α(t). We derive the essential statistical properties of MMFBM such
as response function, mean-squared displacement (MSD), autocovariance function, and Gaussian
distribution. In contrast to existing forms of FBM with time-varying memory exponents but reset
memory structure, the instantaneous dynamic of MMFBM is influenced by the process history, e.g.,
we show that after a step-like change of α(t) the scaling exponent of the MSD after the α-step may
be determined by the value of α(t) before the change. MMFBM is a versatile and useful process for
correlated physical systems with non-equilibrium initial conditions in a changing environment.

PACS numbers: 87.15.Vv, 87.16.dp, 82.56.Lz, 05.40.-a, 02.50.-r

The stochastic motion of individual colloidal particles
or labeled single molecules is routinely recorded by single-
particle tracking [1] in soft- and bio-matter systems [2–4],
i.a., crowded liquids [5, 6], cytoplasm of biological cells
[7–11], actively driven tracers [12–14], lipid membranes
[15–17], and porous media [18]. In silico, lipid and pro-
tein motion [19–21] or internal protein dynamics [21, 22]
are sampled. On larger scales, motile cells or small organ-
isms [23–25], and animals, e.g., marine predators or birds
[26–30] are traced. Often the observed motion deviates
from Brownian motion with its linear mean-squared dis-
placement (MSD) 〈x2(t)〉 ≃ t and Gaussian displacement
probability density function (PDF) [31]. Instead, anomal-
ous diffusion with MSD 〈x2(t)〉 ≃ tα emerges [2–4], with
sub- (0 < α < 1) and superdiffusion (α > 1) [2, 32]. De-
pending on the system, anomalous diffusion is described
by different generalized stochastic models [32–36].

Two such processes have turned out to be particularly
suited to model anomalous diffusion in a wide range of
systems. One is the continuous time random walk, in
which (waiting) times τ between two successive jumps
are randomly distributed [32–34]. When the PDF of τ
has the scale-free form ψ(τ) ≃ τ−1−α with 0 < α < 1, the
resulting motion is subdiffusive [32–34]. Power-law forms
for ψ(τ) were, i.a., measured for colloids in actin gels
[37, 38], membrane channels [15], doxorubicin molecules
in silica slits [39], ribonucleoproteins in neurons [40], for-
aging birds [30], or in weakly chaotic systems [41, 42].

The second common anomalous diffusion process is
fractional Brownian motion (FBM) [43, 44] based on

the stochastic equation dX(t)/dt = ξ(t) driven by frac-
tional Gaussian noise (FGN) with stationary autocovari-
ance function (ACVF) 〈ξ(t)ξ(t+τ)〉 ∼ 12α(α−1)Kατα−2
(0 < α ¬ 2) [45, 46]. Then, 〈X2(t)〉 ≃ Kαt

α with the
generalized diffusivity Kα of dimension length2/timeα.
The ACVF is negative (“antipersistent”) for subdiffu-
sion and positive (“persistent”) for superdiffusion. Dis-
placement ACVFs consistent with sub- and superdiffus-
ive FBM were identified, i.a., for tracers in crowded li-
quids [5–9, 47–50], doxorubicin [39], lipids [19], amoeba
motion [47, 48], and cruising birds [30]. Specifically, sub-
diffusive FBM models diffusion in viscoelastic systems
(cellular cytoplasm, crowded liquids) [5–9, 19], due to hy-
drodynamic backflow [51–54], or “roughness” in finance
[55, 56]. FBM is intrinsically Gaussian [43–45], yet, in
several viscoelastic systems non-Gaussian displacement
PDFs were found [8, 16, 20, 49, 50]. This phenomenon
(similar to Brownian yet non-Gaussian diffusion [57, 58])
was ascribed to the systems’ heterogeneity and modeled
by superstatistical viscoelastic motion [59], FBM switch-
ing between two diffusivities [49] or featuring a stochastic
(“diffusing” [60, 61]) diffusivity [62, 63], and subordin-
ated FBM [50]. Random anomalous memory exponents
α were studied in particle ensembles [64, 65].

Here we address systems in which the properties of
long-range correlated motions do not vary stochastic-
ally but the memory exponent α changes deterministic-
ally over time, α(t). Examples include smoothly chan-
ging viscoelastic environments, e.g., during biological
cell cycles [66], or when pressure and/or concentra-
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tions are changed in viscoelastic solutions [67, 68]. α(t)
may switch more abruptly when the test particle moves
across boundaries to a different environment. Jump-like
changes of α may be effected by binding to larger ob-
jects or surfaces [49, 69] or multimerization [69, 70] of
the tracer. Drops in α from superdiffusion with α ≈ 1.8
to strong subdiffusion α ≈ 0.2 of intracellular particles
were effected by blebbistatin treatment knocking out act-
ive molecular motor action in amoeba cells; after some
time, the positive correlations and thus superdiffusion
were restored [47]. Cellular sub-micron or micron-sized
“cargo” transported by molecular motors may switch
between motor-driven transport and rest phases, effect-
ing repeated sub/superdiffusive switches [71, 72]. Finally,
crossovers between sub/superdiffusive modes as well as
changes in exponents within sub- or superdiffusion may
occur for (intermittent) search of birds or other anim-
als. We model such situations by a specified protocol
α(t) for the memory exponent in our memory-multi-FBM
(MMFBM) model, in which the memory of MMFBM is
continuously modulated by α(t). Due to the uninterrup-
ted memory, the instantaneous dynamic of MMFBM is
influenced by the full history of the process. We study
these memory effects on trajectories, response function,
MSD, and ACVF. We show that MMFBM is Gaussian
and discuss relations to other generalized FBM models.
To motivate our approach, consider the simple case of
a Brownian particle with diffusivity K1, released at time
t = 0. At time t = τ it switches to a new diffusivity K2,
e.g., by crossing to a different environment, multimeriz-
ation [70], or conformational changes [21]. The MSD of
this particle has the form 〈x2(t)〉 = 2K1t for t ¬ τ and
= 2K2(t − τ) + 2K1τ for t > τ . A convenient way to
formulate such types of processes is based on the Wiener
process B(t) [31] using B̃(t) =

∫ t

0

√

K(s)dB(s). In this
formulation K(s) continuously modulates the Wiener in-
crements dB(s) and, e.g., leads to above MSD.
In a similar fashion we incorporate a time-dependent
memory exponent α(t) in FBM. For a physical process
initiated at t = 0 we use Lévy’s formulation [73] of non-
equilibrated FBM in terms of a (Holmgren) Riemann-
Liouville fractional integral (RL-FBM) [44, 74],

X(t) =
∫ t

0

√

α(s)(t− s)(α(s)−1)/2dB(s). (1)

In standard RL-FBM, the power-law memory kernel with
constant exponent α modulates the Wiener increments
dB(s) along the path and at long times is equivalent to
integrated FGN. Thus, at any point the process X(t) de-
pends on its full history. For α = 1 the kernel vanishes
and X(t) is Brownian motion [44]. For changing environ-
ments MMFBM incorporates these changes locally into
the memory function, i.e., by variation of how the correl-
ations of the Wiener increments dB(s) are modulated by
α(s) along the path. Thus the uninterrupted history of
α(t) is contained yet the strength of the memory varies

throughout the process history. We note that due to the
explicit time dependence of α(t) the noise ACVF is by
construction not stationary. We also note that the struc-
ture (1) for X(t) is similar to time-fractional dynamics
of CTRWs with scale-free waiting time PDF [33] and ex-
tensions to variable-order with time-dependent memory
exponent [75]. We show that MMFBM with its statistical
observables is a meaningful generalization of FBM.
Response function. We consider MMFBM (1), that is
originally Brownian (i.e., α = 1) up to time τ and then
experiences a short period δ with exponent α 6= 1. After
t = τ + δ, the process is again Brownian. With the incre-
ments Xδ(τ) = X(τ + δ) − X(τ) the response function
is

〈Xδ(τ)Xδ(τ+T )〉 = αδ α− 1
2T 1−α

B
(

δ

T
;
α+ 1
2

, 1− α
)

(2)

for δ → 0, at time T after start of the perturbation with
α [76]. B is the incomplete Beta function. When T →∞,
〈Xδ(τ)Xδ(τ+T )〉 ∼ α[(α−1)/(α+1)]δα/2+3/2Tα/2−3/2.
Thus, even after a long period T a short perturbation
still influences the process, and the sign of (2) depends
on whether α ≷ 1. For α = 1 (2) is zero, as expected. An
example for the scaling behavior of the response function
is shown in Fig. S7 in SM [76].
In fact, MMFBM (1) is formally similar to definitions
in continuous and discrete time of multifractional FBM
(MFBM) [77–80], a diverse family of processes based on a
deterministic α(t) [81, 82]. MFBM and dedicated testing
algorithms [83, 84] is used to describe data traffic dynam-
ics [85, 86], financial time series [87], turbulent dynamics
[88], or consumer index dynamics [89]. In most MFBM
formulations, it is of interest to describe the roughness
of trajectories and have a globally changing scaling ex-
ponent of the MSD. This is achieved by replacing α(s)
in (1) by α(t), i.e., the Wiener increments dB(s) at time
t are modulated by the same exponent throughout the
“history”. When α(t) changes, the memory of the cor-
relations is reset and globally replaced by a new weight
[90]. The changes of α(t) in MFBM directly affect the
MSD, which scales as 〈x2(t)〉 ≃ tα(t). This can be dir-
ectly seen when calculating the response function: for
MFBM (2) is identically zero, i.e., the reset of the history
in MBFM kills any influence of the perturbation even at
short periods T . We discuss further differences between
MMFBM and MFBM below, arguing that MMFBM re-
flects memory properties expected for long-range correl-
ated dynamics with uninterrupted memory.
Step-wise α(t)-protocol. To simplify the discussion of
the general properties of MMFBM, we consider a step-
wise protocol between two values of α switching at t = τ ,

α(t) =
{

α1, t ¬ τ
α2, t > τ

, (3)

in an unbounded space. More complicated behaviors can
be constructed as a sequence of values αi. Smooth ver-
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Figure 1: Sample trajectories for MMFBM (1) (red) and MFBM (S6) (blue) for step-like protocol (3) for α(t) with switching
time τ = 50 and (a): α1 = 0.2, α2 = 1.8; (b): α1 = 1.8, α2 = 0.2. In each panel both trajectories are based on the same
realization of the parental Wiener process. For smooth protocol α(t) see Fig. S1. On a log-log scale the behavior for smooth
and step-like protocol generally appear quite similar. Note the disparate behavior for t > τ in panel (b), see discussion below.

sions of the step-like protocol (3) can, e.g., be realized
by sigmoid functions (S19) [76]. Such forms, however,
require numerical analysis. Fig. 1 shows trajectories of
MMFBM for the step-like form (3), while Fig. S1 depicts
the case of a smooth protocol [76]. In both Figures we also
show the corresponding MFBM trajectories, for the same
parental Wiener processes B(s). For both processes the
roughness change in the trajectories at t = τ is distinct.
In both cases MMFBM appears more “continuous”.
MSD. With definition (1), the MMFBM-MSD reads

〈

X2(t)
〉

=
∫ t

0

α(s)(t − s)α(s)−1ds, (4)

due to the independence of the Wiener process at differ-
ent times. Indeed, the instantaneous value of the MSD
depends on the local modulation by α(s) along the pro-
cess history. For the stepwise protocol (3), the MSD reads

〈

X2(t)
〉

=
{

tα1 , t ¬ τ
tα1 − (t− τ)α1 + (t− τ)α2 , t > τ

. (5)

This form contrasts the MFBM result, for which
〈

X2(t)
〉

∝ tα(t) for all t, i.e., for step-change (3) of α
the MSD scaling exponent changes abruptly from α1 to
α2 at t = τ : by memory reset, at time t the history of the
previous memory exponents at s < t is erased in MFBM
[76, 81, 82]. We note that in MMFBM even for stepwise
α(t) considered here, the MSD is continuous at t = τ (the
derivative is continuous for strong memory, α1, α2 > 1).
The MSD (5) already shows the interesting property
that after the switching point t = τ , both α1 and α2
appear. Expanding the MSD at long time t≫ τ , we find

〈

X2(t)
〉

∼ (α1τ)tα1−1 + tα2 . (6)

Fig. 2 shows the time dependence of the MMFBM-MSD
for both step-like and sigmoid protocols, showing perfect
agreement with the predicted asymptotic behavior. In
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Figure 2: MSD for MMFBM X(t) (1) for step-like and smooth
protocol α(t) for two combinations of α1 and α2 (see legend).
Full lines represent Eq. (5), symbols represent stochastic sim-
ulations. A comparison with MFBM is shown in Fig. S2 [76].

(6), as long as α2 > α1−1, the second exponent will even-
tually dominate the MSD scaling. As shown in SM [76],
this convergence can, however, be very slow, much longer
than the switching time τ . Even more, when α1 > 1+α2
the MSD exhibits a continued scaling with α1 − 1 (as
confirmed in Fig. 2). In other words, the more superdif-
fusive behavior is dominant asymptotically, albeit with
the reduced slope α− 1.
ACVF. We now study the ACVF, which is defined as

C(t,∆) = 〈Xδ(t)Xδ(t+∆)〉 (7)

with the increments Xδ(t) = X(t + δ) −X(t). First we
consider short t, i.e., the first increment Xδ(t) in (7) is
taken before the switching time τ of α(t) in (3). Obvi-
ously, when also t+∆ < τ , the ACVF is the same as for
RL-FBM with exponent α1 and MFBM (Eq. (S12) [76]).
This result explicitly depends on both t and ∆, due to
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Figure 3: Numerical evaluations (lines) and simulations (symbols) for the ACVF C(t,∆) at different times for MMFBM (1) with
switching time τ = 1 (a): α1 = 1.8, α2 = 1.2; (b): α1 = 1.8, α2 = 0.2. The inset in panel (b) shows the numerically obtained
form close to ∆ = 0, demonstrating the antipersistence at long times t, when α2 = 0.2 becomes the dominant contribution.
Note than in the main panel (b) the ACVF is shown in non-normalized form for better visibility.

the non-stationarity of RL-FBM. When t = 0 and δ ≪ τ ,

C(0,∆)∆<τ ∼
α1(α1 − 1)δ(α1+3)/2

α1 + 1
∆(α1−3)/2. (8)

Interestingly, when we correlate increments from before
and after the switching time τ , t + ∆ > τ , the MFBM-
ACVF (S11) depends on both α1 and α2, while for
MMFBM the ACVF is exactly that of unswitched RL-
FBM and solely depends on α1. I.e., for t = 0 we recover
the form (8) with ∆ > τ . In fact, this result is not sur-
prising. MFBM after the switching is fully independent
of the process before the switching, and thus both expo-
nents occur in the ACVF. For MMFBM, in contrast, the
process right after the switching event is still dominated
by the memory from the evolution before the switching.
Consequently, the sole occurrence of α1 is indeed mean-
ingful. At intermediate times, the MMFBM-ACVF de-
pends on both α1 and α2, as expected (see (S13)). The
result needs to be evaluated numerically. However, in the
limit t→∞, we expect the ACVF to forget about its his-
tory and solely depend on α2, which is indeed fulfilled,

C(∞,∆) = α2(α2 − 1)Γ2 ((α2 + 1)/2) δ2
2Γ(α2)sin(πα2/2)

∆α2−2. (9)

Fig. 3 depicts different scenarios for the ACVF (7). Nice
agreement between stochastic simulations and the theor-
etical results is observed. Fig. S3 shows further cases. We
also highlight the difference of the ACVF between the
two models when t is close to the switching time τ but
long lag times ∆ are chosen in SM IV.C [76].

PDF. The PDF P1(x, t) of MMFBM for t ¬ τ is Gaus-
sian. To compute the PDF P2(x, t) after the crossover,
we separate the process into two parts, that are both

Gaussian. The PDF of the full process is obtained as

P (x, t) =
exp
(

−x2/[2(tα1 − (t− τ)α1 + (t− τ)α2 )]
)

√

2π (tα1 − (t− τ)α1 + (t− τ)α2 )
,

(10)
which is again a Gaussian process. MMFBM remains
Gaussian for any protocol α(t) of the memory exponent.
Local regularity. The self-similarity of a process de-
termines its fractal (Hausdorff) graph dimension [91].
For a Gaussian process it is determined by the semivari-
ogram (structure function) γt(δ) = 〈(Xδ(t))2〉. When
γt(δ) ∼ Dtδ

α, the fractal graph dimension is 2 − α/2.
This also holds for non-stationary increment processes
such as RL-FBM [92]. For MMFBM with protocol (3)
for t < τ , X(t) is identical to RL-FBM, so this part of
the trajectory has fractal dimension 2− α1/2. After the
switch it can be shown that the trajectory has fractal
dimension 2−α2/2. For any graph containing a piece be-
fore and after τ , the lower fractional index and thus the
higher fractal dimension dominates [93].
Conclusions. FBM is a widely used process to describe
anomalous diffusion in soft- and bio-matter systems. It
is characterized by long-ranged, positive or negative cor-
relations in time. Yet many real-world systems exhibit
changes in the anomalous diffusion exponent (and thus
the memory exponent modulating the correlations in the
motion) as function of time. Prime examples include en-
vironments, in which particles cross between areas of
different viscoelastic properties or when the degree of
crowding is controlled. Cargo being pulled intermittently
by molecular motors switch between sub- and superdiffu-
sion in cells, and search strategies of birds with correlated
increments may vary over time as they switch their mo-
tion mode in response to the environment, time of day, or
season. Tracers in fluidic setups that modulate between
effectively three- and two-dimensional embedding should
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change the exponent of the power-law Basset force. In fin-
ance the instantaneous degree of roughness of the trading
data may vary during the daily rhythm, following inter-
ventions in the market, or due to longer-lasting events
such as pandemics, wars, or vacation times. Long-range
correlated processes such as viscoelastic anomalous dif-
fusion necessarily feature effects of memory of the entire
dynamics in physical observables such as the MSD or the
ACVF, both of which can be measured.
We here introduced MMFBM as a generalization of
FBM to a deterministic form α(t) of the memory expo-
nent. In the correlation integral α(s) locally modulates
the Wiener increments dB(s) and thus contributes to the
correlation history of the process. The MSD, and the
ACVF of MMFBM exhibit crossovers carrying explicit
information from the process prior to switching. This con-
trasts MFBM, which resets the previous history globally,
as seen in the MSD 〈x2(t)〉 ≃ tα(t), that solely depends
on the instantaneous value of α at process time t. While
this reset of correlation history is irrelevant when dis-
cussing the instantaneous roughness of a trajectory, for a
physical process with long-range correlations this point is
crucial when the correlations are directly probed, e.g., in
single particle tracking experiments. Here, MMFBM ap-
pears physically consistent. We hope that MMFBM will
find wide use in soft- and bio-matter systems, finance,
ecology, etc. MMFBM will also extend the arsenal of gen-
eralized stochastic processes in data analysis [35, 36].
Our discussion was based on non-stationary RL-FBM.
MMFBM is thus useful for the description of typical
physical systems initiated at t = 0 that first have to equi-
librate. We demonstrated that at sufficiently long times
asymptotic stationarity is restored. It will be interest-
ing to see how MMFBM is modified in the fully station-
ary limit, i.e., generalizing Mandelbrot-van Ness FBM for
systems, that are equilibrated at the start of the meas-
urement. We note that apart from using a purely time-
dependent protocol α(t) corresponding to deterministic
modifications of the system, it will be interesting to con-
sider scenarios of space-varying scaling exponents in a
heterogeneous, quenched system, as well as to combine a
protocol α(t) with a time dependence of the (generalized)
diffusion coefficients as observed in [49]. Moreover, non-
Gaussian extensions of MMFBM should be studied, as
well as effects of cutoffs or tempering [94] of the correla-
tions. Finally it should be studied how the non-standard
behavior of FBM [95, 96] next to boundaries is modi-
fied for MMFBM, relevant, e.g., for growing serotonergic
fibers in inhomogeneous brain environments [97].
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KB acknowledges support through Beethoven Grant

DFG-NCN 2016/23/G/ST1/04083.

[1] C. Manzo and M. F. Garcia-Parajo, A review of progress
in single particle tracking: from methods to biophysical
insights, Rep. Prog. Phys. 78, 124601 (2015).

[2] E. Barkai, Y. Garini, and R. Metzler, Strange kinetics
of single molecules in living cells, Phys. Today 65(8), 29
(2012).

[3] M. J. Saxton, Anomalous subdiffusion in fluorescence
photobleaching recovery: a Monte Carlo study, Biophys.
J. 81, 2226 (2001).
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Supplementary Material:

Memory-multi-fractional Brownian motion with continuous correlations

LÉVY’S RIEMANN-LIOUVILLE-FBM

A well-known representation of fractional Brownian motion (FBM) is attributed by Mandelbrot [44] to Paul Lévy
[73]. It is given by the Holmgren-Riemann-Liouville fractional integral [44]

Bα(t) =
√
α

∫ t

0

(t− s)(α−1)/2dB(s) (S1)

B(t) is standard Brownian motion and α ∈ (0, 2]. It is easy to show that the MSD of Bα(t) yields as 〈B2α(t)〉 = tα.
This exact equality follows from the choice of the prefactor in definition (S1) [65].
With the increments of RL-FBM for disjoint intervals [t, t+ δ] and [t+∆, t+∆+ δ],

Bδα(t) = Bα(t+ δ)− Bα(t), Bδα(t+∆) = Bα(t+∆+ δ)−Bα(t+∆), (S2)

the ACVF of RL-FBM is given by

CB(t,∆) = 〈Bδα(t)Bδα(t+∆)〉. (S3)

For ∆≫ δ, after some transformations we obtain the ACVF

CB(t,∆) ≈
α(α− 1)(3− α)δ2

4

∫ t

0

q(α−1)/2(q +∆)(α−5)/2dq +
α(α− 1)δ
2

∫ t+δ

t

q(α−1)/2(q +∆)(α−3)/2dq

=
α(α− 1)(3− α)δ2

4
B
(

t/∆
1 + t/∆

;
α+ 1
2

, 2− α
)

∆α−2 +
α(α − 1)δ
2

∫ t+δ

t

q(α−1)/2(q +∆)(α−3)/2dq, (S4)

where B(z; a, b) is the incomplete Beta function [98]

B(z; a, b) =
∫ z

0

sa−1(1 − s)b−1ds. (S5)

RL-FBM has non-stationary increments at any given time t, i.e., it does not solely depend on the time lag ∆.

MFBM

A direct generalization of FBM to multifractional Brownian motion (MFBM) is to replace α by an explicitly
time-dependent function α(t). In comparison to mathematical literature (see, e.g., [77, 81, 82]) we base the

generalization on RL-FBM (S1) with the square-root prefactor,

Y (t) =
√

α(t)
∫ t

0

(t− s)(α(t)−1)/2dB(s). (S6)

In MFBM, the long-range correlations are reset, as only the instantaneous value of α at time t is considered in (S6),
and the MSD scales like

〈Y 2(t)〉 = tα(t). (S7)

Trajectories for MFBM and MMFBM for the step-like protocol (3) are shown in Fig. 1, and for a smooth protocol in
Fig. S1. While for the smooth protocol the discontinuity seen in Fig. 1 is remedied, the general shape of the

trajectories in both cases are quite similar.
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Figure S1: Trajectories for MMFBM (1) and MFBM (S6) for a smooth protocol (S19) for α(t) with switching time τ = 50
and (a): α1 = 0.2, α2 = 1.8; (b): α1 = 1.8, α2 = 0.2. In each panel both trajectories are based on the same realization of the
underlying Wiener process. The time series of the parental Wiener increments is also the same as for Fig. 1, in which we show
trajectories produced by a step-like protocol (2).
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Figure S2: MSDs for MFB and MMFBM with switching time τ = 10: (a) α1 = 0.2, α2 = 1.8,(b) α1 = 1.8, α2 = 0.2. The
theoretical MSD (5) of MMFBM is represented by solid black curves. Note that the MMFBM-MSD is always continuous, while
the derivative is continuous when α1, α2 > 1. For MFBM the MSD is always discontinuous.

MSD OF MFBM

The MSD of MFBM (S6) with step-like anomalous diffusion exponent jumping from α1 to α2 at t = τ , yields in the
form

〈Y 2(t)〉 =
{

tα1 , t ¬ τ
tα2 , t > τ

(S8)

Indeed, for t > τ , solely the value α2 appears, due to the reset correlations of MFBM. The MSDs for MFBM and
MMFBM are displayed in Fig. S2 along with stochastic simulations.

ACVF FOR MMFBM AND MFBM

We define the increment of MMFBM as Xδ(t) = X(t+ δ)−X(t). The ACVF is given by
CX(t,∆) = 〈Xδ(t)Xδ(t+∆)〉, where the time step δ is taken to be small, δ ≪ ∆, τ . Similarly, the ACVF for MFBM
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Figure S3: ACVF for MFBM and MMFBM with switching time τ = 1. The theoretical ACVF of classic MFBM (S9) switches to
(S12) when the anomalous diffusion exponent switches. The ACVF C(0,∆) of MMFBM (S9), (S10) remains the same depending
on α1.

(S6) is CY (t,∆). In the limits of short and long times t analytical results can be obtained for the ACVFs for
step-like protocol of α.

Short time limit of the ACVF

We first consider t < τ . Then we distinguish two cases:
(i) When t+∆ < τ we have the same ACVF (S4) as that of RL-FBM. In particular, when t = 0 and ∆≫ δ, we

have the ACVF for both MMFBM and MFBM according to

CX(0,∆)∆<τ = CY (0,∆)∆<τ = CB(0,∆|α1) ∼
α1(α1 − 1)δ(α1+3)/2

α1 + 1
∆(α1−3)/2. (S9)

(ii) When t+∆ > τ , the increment Xδ(t+∆) of MMFBM is measured after switching and Xδ(t) before switching.
Multiplying the two increments and averaging over the realizations, the ACVF is independent of α2 and coincides

with the results (S4) of RL-FBM. For t = 0 and ∆≫ δ,

CX(0,∆)∆>τ ∼
α1(α1 − 1)δ(α1+3)/2

α1 + 1
∆(α1−3)/2. (S10)

In contrast, for MFBM the increment after switching is given by Y (t+∆+ δ)− Y (t+∆) and the ACVF for MFBM
depends on both α2 and α1,

CY (t,∆)t+∆>τ =
√
α1α2(α2 − 1)(3− α2)δ2

4
B
(

t/∆
1 + t/∆

;
α1 + 1
2

, 2− α1 + α2
2

)

∆(α1+α2)/2−2

+
√
α1α2(α2 − 1)δ

2

∫ t+δ

t

q(α1−1)/2(q +∆)(α2−3)/2dq. (S11)

When t = 0 and ∆≫ δ, we have the MFBM-ACVF

CY (0,∆)∆>τ ∼
√
α1α2(α2 − 1)δ(α1+3)/2

α1 + 1
∆(α2−3)/2. (S12)

The ACVF of MMFBM and MFBM are shown in Fig. S3. When the anomalous diffusion exponent switches from α1
to α2, the ACVF for t = 0 of MFBM crosses over from the scaling ∆(α1−3)/2 to ∆(α2−3)/2, while the MMFBM-ACVF
retains the scaling ∆(α1−3)/2. This clearly shows the uninterrupted memory of MMFBM, in contrast to MFBM.
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Long time limit of the ACVF

When t > τ both increments are observed after the switching of α. After some transformations we obtain the ACVF

CX(t,∆) = f
(

α1,
t

∆

)

− f
(

α1,
t− τ
∆

)

+ f
(

α2,
t− τ
∆

)

+ g
(

α1,
t

∆

)

− g
(

α1,
t− τ
∆

)

+ g
(

α2,
t− τ
∆

)

, (S13)

where

f(α, s) =
α(α− 1)δ2
2

s(α−1)/2(1+s)(α−3)/2∆α−2, g(α, s) =
α(α− 1)(3− α)δ2

4
B
(

s

1 + s
;
α+ 1
2

, 2− α
)

∆α−2. (S14)

When t→∞,

CX(∞,∆) = g(α2,∞) =
α2(α2 − 1)Γ2 ((α2 + 1)/2) δ2

2Γ(α2)sin(πα2/2)
∆α2−2. (S15)

For MFBM, the increments depend locally on the Hurst exponents at time t. The ACVF of MFBM is the same as
that of FBM with the same α2 at time t after switching, and when t→∞,

CY (∞,∆) =
α2(α2 − 1)Γ2 ((α2 + 1)/2) δ2

2Γ(α2)sin(πα2/2)
∆α2−2. (S16)

As it should be, at extremely long times beyond the switching time, the ACVFs of RL-FBM, MFBM, and MMFBM
converge to the same behavior.

Long lag time limit of ACVF for times around the switching time

We finally consider the limit of long lag times, ∆≫ t, while the time t is taken to be close to the switching time,
t ' τ . As the incomplete Beta function B(s; a, b) ∼ sa/a when s≪ 1, the function g(α, s) ≃ s(α+1)/2∆α−2 with
s = t/∆ or s = (t− τ)/∆ in Eq. (S13) can be neglected in comparison with f(α, s), and one can approximate the

ACVF as

CX(t,∆) ∼ d1∆(α1−3)/2 + d2∆(α2−3)/2, (S17)

where d1 = 12α1(α1 − 1)δ2(t(α1−1) − (t− τ)(α1−1)) and d2 = 12α2(α2 − 1)δ2(t− τ)(α2−1). Thus the ACVF is a
combination of two scaling behaviors ∆(α1−3)/2 and ∆(α2−3)/2. The former scaling is inherited from before the
switching, i.e., is caused by the memory of MMFBM, and the latter emerges with the instantaneous exponent after
switching. In Fig. S4, the combination of the scaling of the ACVF is show by the green dashed curves. For the case
in the left panel of Fig. S4, the intermediate-scaling behavior predicted by Eq. (S17) is close to the simulated
behavior. In the right panel, the minimum of the ACVF is not captured well, however, we see convergence at

sufficiently long lag times.
In contrast to MMFBM, the ACVF of MFBM solely depends on the instantaneous exponent α2 and is given by

CY (t,∆) = CB(t,∆|α2) ∼
α2 (α2 − 1) Γ2 ((α2 + 1) /2) δ2

2Γ (α2) sin (πα2/2)
∆α2−2, (S18)

where CB(t,∆|α2) is the ACVF of RL-FBM with exponent α2.
Simulations for both CX(t,∆), Eq. (S17), and CY (t,∆), Eq. (S18), around switching time are represented by the
green symbols in Fig. S4. We note that the simulations at long lag time ∆ in the right panel exhibit more

pronounced fluctuations due to the subdiffusive behaviors after switching.

SMOOTH SWITCHING OF ANOMALOUS DIFFUSION EXPONENT

While the stepwise protocol (2) used here simplifies the analytical calculation, it is interesting to consider smooth
variations. We here briefly study the exponentially switching anomalous diffusion exponent

α(t) =
α2 − α1

1 + exp
(

− (t− τ)/T
) + α1, (S19)
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Figure S4: Simulations of the ACVFs for MFBM and MMFBM with switching time τ = 1 and (a) α1 = 1.8, α2 = 1.2, (b)
α1 = 1.8, α2 = 0.2. The ACVF of MFBM with t = 0 is discontinuous at the switching time τ and switches to ∆(α2−3)/2

from ∆(α1−3)/2 (blue squares). In contrast, the ACVF of MMFBM is always continuous with scaling ∆(α1−3)/2 (blue circles),
demonstrating the influence of the memory from the process before switching. The ACVF of MFBM at around the switching
time t ≈ τ solely depends on instantaneous the exponent α2 (green squares), Eq. (S18), while the ACVF of MMFBM depends
on both α1 and α2 (green circles) with the long lag time behaviors given by the combination the two scaling behaviors in
Eq. (S17) (green curves). The ACVFs converge at long time t to the scaling ∆α2−2.

where T is some characteristic time measuring how fast the exponent switches from α1 to α2 around t = τ . At short
times t≪ τ , we see that α(t) ≈ α1 while at long times t≫ τ , α(t) ≈ α2. Numerically evaluated trajectories and
MSDs for MFBM and MMFBM with smoothly switching exponent (S19) are displayed in Figs. S1 and 2.

PHYSICALLY ASYMPTOTIC BEHAVIOR

As we showed in the main text, a new scaling of the MSD of MMFBM with the power-law tα1−1 emergies at long
times when the memory before switching is strong, α1 > α2 + 1. Otherwise, when this inequality is not fulfilled, the
MSD of MMFBM converges to MFBM in the mathematically asymptotic limit t→∞. The natural question that
arises: what is the physically measurable time scale, after which the MSDs of the two models converge? The physical

time scale to compare with is given by the switching time t = τ . To reveal the characteristic time for the
convergence of the two MSDs, we test the ratio of the difference of the MSDs of the two models (MMFBM Eq. (1)

and MFBM Eq. (S6)) to that of MFBM at time t≫ τ ,

Error =

〈

X2(t)
〉

−
〈

Y 2(t)
〉

〈Y 2(t)〉 =
(tα1 − (t− τ)α1 + (t− τ)α2)− tα2

tα2

∼ α1τ

t1+α2−α1
− α2τ

t
. (S20)

This allows us to distinguish three cases:
(i) When α1 > α2 + 1, the relative deviation of the MSD of MMFBM to MFBM grows with the power tα1−α2−1. In
this case, the MMFBM never converges to MFBM at long times. Instead, the new scaling tα1−1 of the MSD

emerges, which corresponds to Eq. (6) and is shown in Fig. 2 in the main text.
(ii) When α2 < α1 < α2 + 1, the ratio (S20) decays to zero with power t−(1+α2−α1) (an example is shown in

Fig. (S5)) and the MSD of MMFBM starts to converge to MFBM after a time scale τ1/(1+α2−α1). This time scale
can become much longer than τ as 1/(1 + α2 − α1) > 1, where we note that in our dimensionless units, the time

scale τ ≫ 1, as unity represents the elementary diffusive step.
(iii) When α2 > α1, the ratio (S20) decays to zero with power t−1, and the MSD of MMFBM starts to converge to

MSD after a time scale which is equivalent to τ .
We provide simulations results for cases (ii) and (iii) to validate the physical limiting time observed for different
choices of the exponents. In Fig. S5 the much slower convergence of case (ii) is distinct. It is thus necessary to go to
extremely long times to observe the pure α2-scaling of MFBM. For practical, physical applications such scales can
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Figure S5: Error (S20) of the MSD from MMFBM to MFBM. While for α1 < α2+1 the two models converge in the mathematical
limit t → ∞, the speed of convergence is very different for cases (ii) and (iii). Namely, when α2 < α1, the deviation between
MMFBM and MFBM is dominated by the slower power-law t−(1+α2−α2), whereas for α2 > α1 the error decays to zero with
the faster power-law t−1.
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Figure S6: MSDs for MMFBM and MFBM with switching time τ = 10. The theoretical MSDs, Eq. (5) in the main text, are
represented by the full lines. In the left panel, the MSD of MMFBM starts to converge to MFBM when t  τ 1/(1+α2−α1) ≈ 316,
much longer than the switching time τ = 10, while in the right panel the convergence time is equivalent to the switching time
τ = 10.

rarely be reached, and it is thus relevant to consider the memory contained in MMFBM. We also show the
MSD-convergence for two examples in Fig. S6. For the case (ii) in the left panel, several orders of magnitude in time

need to be measured to observe convergence of the MMFBM result to that of MFBM.

RESPONSE FUNCTION

In Fig. S7 we show an example for the response function.
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Figure S7: Response function for MMFBM with switching time τ = 1. The dashed curves represent the exact response function,
Eq. (2) in the main text. Unlike the response function of MFBM, which is always zero (T > 0), the response function of MMFBM
decays with the power law T (α−3)/2.
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