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Irradiation with light provides a powerful tool to interrogate, control or induce new quantum
states of matter out of equilibrium, however a microscopic understanding of light-matter coupling
in interacting electron systems remains a profound challenge. Here, we show that light grants a
new quantum-geometric handle to steer and probe correlated quantum materials, whereby photons
can couple directly to the shape and center of the maximally-localized Wannier functions that com-
prise the material’s interacting bands, dressing both electronic motion and electronic interactions
with light. Notably, this effect is generic to any material and purely geometric in origin, but domi-
nates emergent optical responses in correlated electron systems with poorly-localized or obstructed
Wannier functions. Spectroscopic consequences are first illustrated for a paradigmatic strongly-
interacting model with a tunable Wannier obstruction. We then present ramifications for non-
equilibrium control of moiré heterostructures and find that subjecting magic-angle twisted bilayer
graphene to weak THz radiation can conspire with a fragile topological obstruction to profoundly
alter the material’s competing interactions and tune across boundaries to competing phases.

Introduction

Understanding how photons couple to quantum matter
is foundational to interrogating and manipulating ma-
terials with light. With free-electron optical responses
largely well understood, the past decade has seen rapid
advances in photon-based and time-resolved spectro-
scopies to probe and control strongly-correlated elec-
tron systems [1–3] which are in turn found to host an
ever expanding panoply of quantum phases with novel
and useful properties. However, while these phases are
well-captured in equilibrium to emerge from an intricate
competition between electronic motion and interactions
within only a small open-shell set of the material’s va-
lence orbitals [4–6], remarkably no such simple under-
standing exists for coupling these degrees of freedom to
light.

Fundamentally, the photon frequency grants a natural
handle to target excitations at select energy scales. Some
of these – such as optical interband transitions or core-
hole excitations – involve select additional degrees of free-
dom; conversely, one should expect on physical grounds
that low-frequency photons – typically, in the terahertz
regime – should couple only to interacting electrons
within the relevant valence states near the Fermi en-
ergy, while leaving filled deeper valence bands and higher-
energy empty conduction bands inert. A microscopic un-
derstanding of this effective coupling between light and
correlated electrons is crucial to interpret spectroscopic
responses, to understand what THz spectroscopy actu-
ally measures, and to steer correlated phases with strong
driving fields into non-equilibrium states with new and
useful properties. However, its study poses a surpris-
ing theoretical challenge for strongly-interacting quan-
tum materials.

∗ claassen@sas.upenn.edu

Indeed, formalizing the above intuition is immediately
fraught with conceptual difficulties: While light-matter
coupling in solids can be conventionally thought of as the
field coupling to a current (in velocity gauge) [7], the ef-
fective electron velocity can be suppressed or even vanish
in correlated flat band compounds [8] although the in-
traband coupling to THz photons should not. Similarly,
strong fields are commonly described to couple to inter-
acting electrons via a Peierls phase accrued upon hopping
between neighboring valence orbitals in a crystal [9, 10],
with recent works introducing and benchmarking correc-
tions to account for dipole transitions in multi-orbital
models for classical and quantized light [11–14]. However,
a faithful description of the active valence bands of a solid
naturally leads to Wannier orbitals with a finite spatial
extent [15], precluding a sharp definition of the hopping
trajectory. Simultaneously, a finite Wannier spread is
intimately tied to finite-range electron-electron scatter-
ing even for a priori well-screened Coulomb interactions,
which, even if irrelevant in equilibrium, must acquire
a Peierls phase and couple to light as well. While the
above obstacles apply to all quantum materials, they are
exacerbated for partially-filled obstructed or topological
bands, which do not admit a representation in terms of
local Wannier functions at all [16, 17]. This prominently
includes moiré heterostructures of two-dimensional van
der Waals materials such as twisted bilayer graphene
(TBG) or twisted transition-metal dichalcogenides [18–
30] – systems with almost dispersionless bands com-
posed of charge puddles trapped by the moiré superlat-
tice potential which realize a myriad of interaction-driven
phases.

Theoretically, apparent discrepancies between electro-
magnetic gauge choices provide a complementary per-
spective of the problem [31]. Quantum mechanics pre-
scribes that electrons couple to the gauge-dependent vec-
tor (A) and scalar (φ) potentials as opposed to the
physical electric and magnetic fields. However, while
local gauge invariance is trivially satisfied by the bare
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many-body Hamiltonian, the equivalence between differ-
ent gauge choices becomes exceedingly hard to retain in
effective theories of the bands near the Fermi energy, with
well-known repercussions arising already in calculations
of free-electron optical responses in insulators, which van-
ish as expected at zero frequency in length gauge (A = 0)
while exhibiting spurious low-frequency divergences in
velocity gauge (φ = 0) calculations. The former have
been successfully employed to calculate non-linear opti-
cal susceptibilities [32, 33]. However, the former do not
readily extend to periodic many-body systems, whereas
sum rules for the latter dictate that these divergences
cancel if and only if all the solid’s bands are included
in the calculation [34–37] – a task that is unfeasible for
many-body systems and stands in stark contrast with the
expectation that low-frequency responses should involve
only low-energy degrees of freedom of a solid. Similar
considerations apply to gauge-invariant Peierls-coupled
multiband tight-binding models; for instance, quantum-
metric contributions to light-matter coupling in TBG
have recently been proposed to arise after projecting to
flat bands near charge neutrality [38], but can instead be
shown to erroneously arise as a result of gauge-invariance-
breaking terms that again lead to spurious low-frequency
divergences. Conversely, para- and diamagnetic current
operators for an individual topologically-trivial flat band
were shown to involve solely interaction-mediated con-
tributions [39]. Similarly, careful ab initio benchmarks
have recently shed light on failures of light-matter cou-
pled tight-binding descriptions constrained to the active
bands [35, 40], and possible ad hoc corrections to cure
low-frequency divergences have been proposed [41].

In this work, we present a new quantum-geometric
interaction of light and matter in correlated materials,
whereby photons directly deform the shape and motion
of the Wannier orbitals that comprise a quantum mate-
rial’s bands near the Fermi energy, thereby dressing both
electronic motion and electronic interactions with light.
This mechanism is generic to all materials and purely ge-
ometric in origin, complements the usual Peierls phase in
velocity gauge calculations, but dominates optical driving
and responses for strongly-interacting electron systems
with poorly localized Wannier orbitals. This includes ma-
terials with finite Berry curvature or a finite quantum ge-
ometric tensor, and prominently encompasses moiré het-
erostructures and interacting topological materials. We
first illustrate spectroscopic consequences by example of
a strongly-interacting topological one-dimensional chain,
which reveals a quantum-geometric coupling of photons
to an emergent domain wall mode which can be inter-
rogated and melted with light. We then present ramifi-
cations for non-equilibrium control of moiré heterostruc-
tures by subjecting magic-angle twisted bilayer graphene
to weak THz radiation, which conspires with a fragile
topological obstruction to profoundly alter the material’s
competing interactions, thereby granting a new photon-
based knob to tune TBG across boundaries to competing
phases.

FIG. 1. Coupling Light to Correlated Electrons. (a)
Schematic of a strongly-correlated electron system irradiated
with light. If the frequency is detuned from interband transi-
tions ∆ between the partially-filled bands near the Fermi en-
ergy and inert higher-energy bands, (b) the light pulse should
couple solely to interacting electrons in the material’s open
shell orbitals, which in turn (c) governs low-frequency non-
linear optical responses.

Coupling Light to Quantum Matter

In equilibrium, well-established approaches to the
many-electron problem in strongly-correlated materi-
als canonically start from low-energy interacting tight-
binding descriptions of the open-shell orbitals, con-
structed either empirically or via calculating their Wan-
nier orbitals ab initio. Formally, starting from the Hamil-
tonian of interacting electrons in a crystal

Ĥ =

∫
dr Ψ̂

†
[

p̂2

2m
+ U(r) +

~
4m2c2

σ̂ · p̂×∇U(r)

]
Ψ̂

+
1

2

∑
σσ′

x
drdr′V (r− r′)Ψ̂†σ(r)Ψ̂†σ′(r

′)Ψ̂σ′(r
′)Ψ̂σ(r)

(1)

with crystal potential U(r), Coulomb interactions V (r−
r′) and spin-orbit coupling, these low-energy models
emerge via expressing the interacting problem either in
a momentum-space basis of single-particle (Bloch) eigen-
states unk(r) with dispersion εnk or, equivalently, a cor-
responding tight-binding model of maximally-localized
Wannier orbitals ϕm(r)

Ψ̂(r) =
∑
nk

eikrunk(r) ĉnk =
∑
mR

ϕm(r−R)ĉmR (2)

and keeping only a small set n ∈ A of partially-filled
bands or corresponding Wannier orbitals {ϕm} that span
these bands. Here, u, ϕ include spin, R is a lattice
vector, and n and m index spin-orbit-coupled bands
and Wannier orbitals, respectively. Maximally-localized
Wannier orbitals in equilibrium

ϕm(r−R) =
∑
k

eik(r−R)ũmk(r) (3)
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FIG. 2. Quantum geometry and time-dependent Wannier functions. Equilibrium Bloch bands with rapidly varying
orbital character yield interband current matrix elements that diverge with the band gap ∆, which necessitates taking into
account highly-detuned processes ∼ ∆/(∆−ω) whereby (a) an electron is photo-excited to an off-resonant inert higher-energy
band and subsequently (b) Coulomb scattered off a second electron to create two electron-hole pairs near the Fermi energy.
Theses spurious processes cancel precisely when accounting for (c) the concurrent light-induced deformation of both the shape
and center of the Wannier orbitals that comprise the low-energy bands, which yields an effective quantum-geometric light-matter
interaction.

are defined via a gauge-fixing unitary transformation for
Bloch functions

ũmk(r) =
∑
n

Umn(k)unk(r) (4)

that minimizes the Wannier spread of ϕm as a func-
tion of the N dimensional unitary matrix Umn(k) by
“entangling” a group of N bands near the Fermi en-
ergy. Effective Coulomb interactions V (r) in the re-
sulting tight-binding description are typically of short-
ranged Hubbard-Kanamori form due to screening, but
can prominently become longer-ranged in systems such
as twisted bilayer graphene or fractional topological in-
sulators which have poorly-localized Wannier functions
due to geometric or topological obstructions. Further-
more, Wannier functions computed via density functional
theory (DFT) approaches must be interpreted as quasi-
particle orbitals that already account for a subset of the
Coulomb interaction vertex, necessitating in principle the
inclusion of functional-dependent “double counting” cor-
rections to the effective low-energy theory.

Coupling to light enters the bare Hamiltonian [Eq.
(1)] via straightforward minimal substitution p̂ → p̂ +
eA(t), U(r)→ U(r) + φ(r), but describing the resulting
coupling of photons to the effective electronic degrees of
freedom near the Fermi energy remains a profound chal-
lenge. To illustrate the insufficiency of conventional ap-
proaches for strongly-correlated electron systems and the
emergence of a new quantum geometric contribution that
encodes the deformation of the Wannier functions with
light, we start without loss of generality from a veloc-
ity gauge A(r, t) = E0 sin(ωt)/ω, φ(r, t) = 0 description,
which yields a diamagnetic ∼ A2 term coupling to the
charge density, and a paramagnetic interaction Ĵ ·A with
current operator matrix elements

Jnn′(k) =
e

m

∫
dr u?nk(r)

δH

δA
un′k(r) (5)

between bands n, n′. These can be separated into intra-
and interband contributions Jnn′ = Jintra

n δn,n′ + Jinter
nn′ ,

where the intraband current is given by the band velocity
Jintra
n = e

~∇kεn(k), and the interband current can be
expressed [42]

Jinter
nn′ (k) = i

e

~
∆nn′(k) Ann′(k) (6)

in terms of the energy gap ∆nn′(k) ≡ (εn(k)− εn′(k))
between bands and the interband Berry connection
Ann′(k) ≡ −i

∫
dr u?nk(r)∇kun′k(r), which in turn de-

fines the gauge-invariant non-Abelian Berry curvature
Fµν = ∂kµAν − ∂kνAµ + [Aµ, Aν ]. Notably, the mag-
nitude of the interband Berry connection |Ann′(k)| is a
gauge-invariant quantity as well, hence cannot be elimi-
nated via a gauge choice for the Bloch states.

Suppose now that the material hosts a set of partially-
filled bands at the Fermi energy, schematically depicted
in Fig. 1(a) and separated from the nearest filled or
empty inert bands via a gap ∆. Physically, if this
band gap is larger than the photon frequency ∆ �
ω, the effective light-induced dynamics should be gov-
erned solely by electronic motion within the strongly-
interacting partially-filled bands [Fig. 1(b)], with any
corrections due to interband transitions becoming sup-
pressed by the inverse detuning 1/(∆−ω) and vanishing
rigorously in the large band gap limit ∆ → ∞. Näıvely,
this implies that light couples solely to the intraband ve-
locity Jintra as well as transitions between the partially-
filled bands, whereas higher-energy conduction bands or
deeper valence bands remain inert. This observation has
problematic ramifications, suggesting, for instance, that
a Mott insulator forming in a single flat band in a moiré
heterostructure cannot couple to light, as the band ve-
locity vanishes.

The above intuition fails drastically in a material with
non-trivial quantum geometry. If the interband Berry
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connection A to an inert band is non-zero, the inter-
band current operator [Eq. (6)] can immediately be
seen to scale with the band gap ∆. Consequently, in-
terband transitions scale as ∆/(∆ − ω) and apparently
remain non-negligible even if ∆ → ∞. In free-electron
systems such as band insulators, a careful resummation
of all interband transitions remains feasible, has been
shown to yield correct low-frequency linear and second-
order optical responses, and can be altogether circum-
vented in length gauge calculations. However, this situa-
tion changes dramatically in strongly-interacting electron
systems, in which the above interband transitions must
necessarily become dressed by electron-electron scatter-
ing. Fig. 2(a) schematically depicts the simplest allowed
second-order process. Absorption of an off-resonant pho-
ton triggers a virtual interband transition (∼ Jinter ·A)
to an empty high-energy band, followed by interband
Coulomb scattering (∼ U) off a second electron near the
Fermi energy, which returns the photoexcited electron
back to the partially-filled band to yield a pair of low-
energy electron-hole excitations. The resulting process
scales as ∼ UA∆/(∆ − ω) and crucially again remains
nonnegligible even if the interband transition is far from
resonance and must be expected to dominate the opti-
cal response in strongly-interacting materials, a highly
problematic result that näıvely suggests – in contradic-
tion with physical intuition – that high-energy degrees of
freedom can contribute to optical responses of correlated
materials even if they are far off resonance with the light
field.

Quantum-Geometric Gauge Choice for Light-Matter
Interactions

A resolution readily follows from observing that the
material’s equilibrium Bloch states [Eq. (2)] and corre-
sponding Wannier functions must themselves deform in
the presence of the light field [Fig. 2(b)], in precisely such
a manner that this deformation cancels the ∆-divergent
contributions [Eq. (6)] to the interband current ma-
trix elements Jinter

nn′ (k) to higher-energy empty conduc-
tion states or deeper fully-filled valence states. For an
individual isolated band at the Fermi energy, the unique
eigenbasis that satisfies this requirement

Ψ̂(r, t) =
∑
nk

eikrun,k+A(t)(r) e−iφn(k,t) ĉnk (7)

admits an appealingly-simple physical interpretation as
Bloch states for the gauge-invariant momenta subjected
to a quantum-geometric phase

φn(k, t) =

k+A(t)∫
k

An(k′) · dk′ (8)

that encodes their parallel transport back to the
gauge-dependent momentum k, with An(k) the band’s

(Abelian) Berry connection. The residual gauge freedom
of the equilibrium Bloch state un,k should be fixed to
guarantee a maximally-localized Wannier function after
Fourier transform, as discussed below. Notably, the re-
sulting theory remains formulated – without loss of gen-
erality – in velocity gauge A 6= 0, φ = 0 for the electro-
magnetic field, but amounts to a new gauge choice for the
Bloch wave functions by virtue of the quantum-geometric
phase factor.

Applied to the bare Hamiltonian (1) with Ĥ −∫
dr Ψ̂

†
(r, t)i∂tΨ̂(r, t), one immediately finds that the

resulting interband light-matter coupling to inert bands∑
n 6=n′,k An,n′(k + A(t)) ·E(t) ĉ†nkĉn′k remains indepen-

dent of the band gaps ∆, guaranteeing that interband
transitions to inert bands are suppressed by the detun-
ing ∼ 1/(∆ − ω) as physically expected. Crucially how-
ever, and in addition to the usual Peierls substitution,
the effective light-matter-coupled Hamiltonian for the
partially-filled band (dropping its index n)

Ĥ =
∑
k

ε(k + A(t)) ĉ†kĉk

+
1

L

∑
kk′q

V eff
kk′q(A(t)) ĉ†k+qĉ

†
k′−qĉk′ ĉk (9)

now acquires a field-dressed time-dependent interaction

V eff
kk′q = V (q)

〈
uk+q+A(t)

∣∣uk+A(t)

〉 〈
uk′−q+A(t)

∣∣uk′+A(t)

〉
× ei[φ(k+q,t)+φ(k′−q,t)−φ(k′,t)−φ(k,t)] (10)

which describes photons directly dressing the band’s
effective electron-electron interactions and encodes the
Coulomb interaction assisted absorption/emission pro-
cesses of Fig. 2(a).

The generalization to multiband models follows
straightforwardly via promoting Eq. (8) to a non-Abelian
geometric phase. Given a set of N “entangled” bands
G near the Fermi energy, the light-induced geometric
phase factor eiφn(k,t) must now be replaced by an N -
dimensional unitary rotation

Q(k, t) = P̂ exp

−i
k+A(t)∫
k

AG(k′) · dk′

 (11)

where ÂG is the N -band non-Abelian Berry connection

and P̂ denotes the momentum space path ordering op-
erator. Q(k, t) describes the parallel transport of all N
states from the gauge-invariant momentum back to k,
thereby admixing the original N bands [see Appendix
A].

Time-Dependent Wannier Functions

Insight into the origin of the field-dressed interaction
can be gleaned from a Fourier transform to real space
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ĉmR = 1√
L

∑
k e

ikRĉmk. The resulting field operator

Ψ̂(r, t) =
∑
mR

e−iA(t)·(r−R)ϕmR(r, t) ĉmR (12)

can now be written in terms of products of Peierls phases
and N photon-dressed Wannier functions

ϕmR(r, t) =
∑
knn′

eik(r−R)

P̂ e
i

k−A(t)∫
k

AG(k′)·dk′

n′m

Uk
nn′unk(r)

(13)

These time-dependent Wannier functions consti-
tute a central result of this work. They provide
an effective description of the coupling of photons
to strongly-interacting electrons by accounting for
the light-induced deformation of the effective elec-
tronic orbitals m that compose the N partially-filled
bands near the Fermi energy. Their Bloch states
unk(r) are gauge fixed via an N dimensional uni-
tary transformation Uk

mn to yield maximally-localized
Wannier functions in equilibrium, and subjected to
a field-dependent unitary transform – the quantum-
geometric non-Abelian phase – which changes the
Wannier function localization as a function of time.
Here, the non-Abelian Berry connection Amm′

G (k) =∫
dr
∑
nn′ U

?
nm(k)unk(r)(−i∇k)un′k(r)Un′m′(k) must

be defined with respect to the gauge-fixed basis.
The resulting orbital changes both its shape and its

Wannier center 〈r〉m as a function of the field as de-
picted schematically in Fig. 2(c), with both effects re-
markably depending solely on the quantum geometry of
the band. The total “center of mass” Wannier center
of all N orbitals per unit cell however remains invari-
ant. Different path choices for the parallel-transport
coefficients constitutes a residual gauge freedom of the
time-dependent Wannier construction and are unitar-
ily equivalent, with a change of paths amounting to a
transformation using Wilson loop operators for AG ; for
weak fields, changes to the time-dependent localization
remain negligible for smooth and short-distance paths.
Notably, the formalism remains well-defined only for non-
singular Berry connections and breaks down for a Chern
band. Conversely, coupling light to correlated electrons
in symmetry-protected topological bands can be cap-
tured faithfully by choosing exponentially localized Wan-
nier representations that implement the protecting sym-
metries in a non-local manner [43], as will be demon-
strated for twisted bilayer graphene.

Notably, in contrast to previous approaches, the time
dependent Wannier basis permits a consistent velocity
gauge formulation of the light-driven dynamics of inter-
acting electrons, whereby electrons couple solely to the
magnetic vector potential A, with φ = 0. The formula-
tion is asymptotically exact if resonances to bands not
included in the tight binding description are sufficiently
detuned. However, the choice of velocity gauge is arbi-
trary, in principle, and the resulting theory is gauge in-
variant. For instance, a length gauge description readily

follows from a Power-Zienau-Wooley transformation in

the time-dependent Wannier basis ĉmR −→ ĉmRe
iR·A(t),

which eliminates Peierls factors in favor of a dipole

contribution Ĥdip = e
∑

R (E(t) ·R) ĉ†mRĉmR that
couples to the electric field E, in addition to the
motion of Wannier orbitals. Alternatively, the

latter can be formally transformed via ĉmR −→∑
R′ ĉmR′e

iR′·A(t)
(∑

k e
ik(R−R′)P̂ exp{i

∫ k+A

k
dA}

)
and yields theory of non-local dipole transitions∑

R,R′(DR,R′ + R) · E(t) [11] in addition to non-local
interactions. Here, the concurrent necessity to account
for non-local dipole transitions and non-local interac-
tions is a key constraint due to quantum geometric
bounds discussed below [44] and can be viewed as an
alternate cause of the responses described in this work.
We note that dipole terms are formally defined only in a
finite system and have norms that diverge with system
size, both of which makes velocity-gauge formulations
preferable for analytical and computational treatments
of the light-matter-coupled many-body problem.

Starting from the usual equilibrium Bloch Hamiltonian
for Wannier orbitals, which is formally defined

hnn
′

k =
∑
l

U?ln(k)εl(k)Uln′(k) (14)

via the band dispersion εl(k) of Bloch state l and
the Wannier gauge unitary transformation Uln(k), the
photon-dressed kinetic hopping matrix elements

tmm
′

R−R′ =
∑
knn′

eik(R−R′)Q?nm(k−A, t)hnn
′

k Qnm′(k−A, t)

(15)

remain invariant for a single isolated band, for which Q
is a scalar phase, but admix the local orbitals as a func-
tion of the driving field in multiband descriptions. The
resulting lattice Hamiltonian

Ĥ =
∑
RR′

∑
mm′

tmm
′

R−R′(t) e
i(R−R′)·A(t) ĉ†mRĉmR′ +

+
∑

R1···R4
m1···m4

V m1...m4

R1...R4
(t) ei(R1+R2−R3−R4)·A(t) ×

× ĉ†m1R1
ĉ†m2R2

ĉm3R3
ĉm4R4

(16)

includes Peierls phase factors by virtue of working in
velocity gauge. Crucially, the field-dressed electron-
electron interactions can now be understood to emerge
from two distinct contributions: (1) a time-dependent
modification of the Coulomb integrals

V m1...m4

R1...R4
(t) =

x
drdr′V (r− r′)

[
ϕ?m1R1

(r, t)ϕ?m2R2
(r′, t)

× ϕm3R3
(r′, t)ϕm4R4

(r, t)
]

(17)

due to quantum-geometric deformations of the Wannier
functions, and (2) a Peierls phase acquired by non-local
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FIG. 3. Spectroscopy of time-dependent Wannier functions. (a) Non-linear optical responses are jointly governed
by single-particle (left) and interaction-assisted (right) current vertices that emerge from time-dependent deformations of the
Wannier orbitals, with the latter dominating the response for strongly-correlated electrons. Consequently, already (b) linear
optical absorption comprises diagrammatic contributions with pairs of single-particle (J) and two-particle (T ) current vertices
as well as mixed terms. Shaded boxed denote fully dressed two-, three- and four-particle propagators that resum all self energy
contributions from intraband Coulomb interactions. (c) Analogous velocity-gauge calculations in the original Bloch band basis
must account for Coulomb assisted interband transitions [depicted in Fig. 2(a)] via an intermediate conduction band (or deeper
valence band) state CB. Green dashed lines denote interband Coulomb scattering that scatters an electron in an inert band off
a valence electron, with both final states located in the valence bands of interest.

scattering processes with R1 + R2 −R3 −R4 6= 0 that
describe correlated hopping or spin exchange processes.

Importantly, these two effects are not independent, as
both are rooted in the quantum geometry of the bands.
Non-local two body scattering (or, equivalently, the k,k′

dependence of the momentum space interaction vertex
V (k,k′,q) of Eq. (10)) is bounded from below by the

Wannier function spread functional
〈
r2
〉
− 〈r〉2, which

in turn is bounded by the trace of the gauge invariant
Fubini-Study metric [15]. For a single band, the met-
ric reads gµν(k) = 1

2

〈
∂kµ ũk

∣∣ [1 − |uk〉〈uk|] |∂kν 〉 + (µ ↔
ν). The Fubini-Study metric is bounded from below
tr g(k) ≥ |Ω(k)| by the band’s Berry curvature Ω(k) =
εµν∂kµAν(k) [44] which in turn determines (for a smooth
maximally-localized gauge choice) the non-Abelian Berry
connection A which governs the time-dependent defor-
mation of the Wannier orbitals.

Linear and Nonlinear Optical Response

These observations are prominently reflected in calcu-
lations of nonlinear optical responses. In velocity gauge,
the time-dependent Wannier basis readily defines param-
agnetic, diamagnetic and higher-order current operators
that contribute to non-linear responses such as second
harmonic generation or shift currents, by varying Ĥ with
respect to the gauge field

Ĵpara
µ =

δĤ

δAµ
, Ĵdia

µν =
δ2Ĥ

δAµδAν
, Ĵ (3)

µνσ =
δ3Ĥ

δAµδAνδAσ
(18)

Crucially, each current operator now entails both a
single-particle and two-particle contribution

Ĵµ =
∑

kmm′

Jmm
′

kµ ĉ†mkĉm′k

+
∑
kk′q
m1...4

Tm1...4

kk′qµ ĉ
†
m1k+qĉ

†
m2k′−qĉm3k′

ĉm4k
(19)

reflecting that both kinetic hoppings and Coulomb inter-
actions are dressed by photons. For the paramagnetic
current operator, the single-particle (

[
Jpara
µ

]
mm′

) contri-
bution

Jpara
kµ =

∂hk

∂kµ
+ i [Aµ

k, hk] (20)

includes both the usual k derivative of the Bloch Hamil-
tonian hk due to the Peierls phase and a commutator of
hk and the non-Abelian Berry connection A for the N
bands of interest which accounts for the deformation of
the Wannier orbitals. Similarly, the two-particle param-
agnetic vertex

Tm1...m4

kk′qµ = 2V (q) ρm2m3

k′−q,k′

×
[
∂ρk+q,k

∂kµ
+ i
(
Aµ

k+qρk+q,k −Aµ
kρk+q,k

)]m1m4

(21)

can be defined in terms of the projected density operator

ρmm
′

k,k′ = 〈umk|um′k′〉 (22)

and includes both Peierls phase contributions (non-
vanishing k,k′ derivatives of ρk,k′ due to non-local two-
particle scattering) and a Aµ

G contribution due to the
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light-induced deformations of the Wannier orbital. The
ith order current operator can be defined using a covari-
ant derivative

DµF = ∂kµF + i
[
Aµ
G , F

]
(23)

which acts on hk and ρk+q,k ⊗ ρk′−q,k′ to yield single-
particle (J) and two-particle (T ) contributions respec-
tively. Here, care must be taken to interpret the commu-
tator [Aµ, ρk,k′ ] = Aµ

kρk,k′ − ρk,k′A
µ
k′ .

Fig. 3(a) depicts these processes diagrammatically,
in terms of two types of i-photon vertices that scat-
ter either a single electron or a pair of electrons within
the bands near the Fermi energy. For simplicity, con-
sider first the ramifications for linear optical conductivity
σ(ω). For a single isolated, dispersionless and topolog-
ically trivial band, the real part of σ(ω) was shown to
remain finite at low-frequencies due to Coulomb inter-
actions despite a vanishing band velocity [39]. Such a
contribution can be immediately seen to arise from per-
turbations of the two-particle Coulomb interactions in
the time-dependent Wannier basis to linear order in the
field. It formally involves a pair of two-particle-scattering
photon vertices Tkk′q with a fully-dressed four-particle
propagator for the partially-filled flat band [Fig. 3(b),
second diagram]. More generally, the linear optical re-
sponse for a group G of dispersive partially-filled bands
instead mirrors thermal conductivity calculations, with
N -band paramagnetic and diamagnetic current vertices
comprising both a single-particle and two-particle contri-
bution and requiring the evaluation of a two-particle, a
four-particle and two mixed diagrams as shown in Fig.
3(b). The resulting multiband current operators obey a
reduced f -sum rule for the low-energy bands of the model
Re
∫∞

0
σ(ω)dω = π〈Ĵdia〉.

To illustrate how these Coulomb interaction mediated
contributions to σ(ω) and higher-order responses emerge
from apparent interband transitions in the original Bloch
basis [Fig. 2(a)], consider the corresponding calculation
in the usual velocity gauge for the equilibrium bands,
depicted in Fig. 3(c). Here, the divergence of the in-
terband current operators [Eq. (6)] with the band gap
∆ necessitates that, for low-frequency photons (far de-
tuned from interband transitions), any diagram that in-
volves an equal number of interband transitions (current
vertices, ∼ A∆) and propagators for high-energy in-
ert bands (red arrows, ∼ 1/(∆ − ω)) must contribute
∼ O(1) to the optical response, with subleading contri-
butions suppressed by the inverse detuning. Already for
optical absorption, this necessitates carefully resumming
interaction-mediated interband scattering processes over
all bands of the solid, a herculean task. Importantly
however, the current vertices and diagrams in the time-
dependent Wannier basis [Fig. 3(a), (b)] can now be
readily seen to emerge from neglecting the internal dy-
namics of the propagator 1/(ω − εCB

k − ∆) for the vir-
tual photoexcited electron in the inert conduction band
(CB), which is valid if the detuning to interband transi-
tions is large; in this case, the propagator for inert bands

can be contracted and all virtual interband contributions
can be resummed to again yield the effective two-particle
current vertex [Eq. 21] that depends solely on the quan-
tum geometry of the partially-filled bands near the Fermi
energy [see Appendix B]. The correspondence between
conventional but careful response calculations in veloc-
ity gauge and optical responses from the effective time
dependence of Wannier functions is mandatory due to
gauge invariance and reveals the central advantage of the
quantum-geometric gauge as a faithful effective theory
of low-frequency light matter interactions which more-
over readily encompasses non-perturbative driving and
dynamics as discussed below.

Quantum Geometric Optical Response in a
Strongly-Interacting Topological Hubbard Chain

As a first illustration of ramifications of the quantum
geometric coupling of light to Wannier functions in cor-
related materials, consider an interacting two-band Hub-
bard chain, depicted schematically in Fig. 4(a), with
Hamiltonian

Ĥ =
∑
kαβ

hαβ(k) ĉ†kαĉkβ + U
∑
i

n̂i,sn̂i,p (24)

with Coulomb repulsion U between two orbitals α = s, px
per site i and a Bloch Hamiltonian

h(k) =
M

2
σ̂z − (tss + tpp) cos(k) σ̂z

− (tss − tpp) cos(k) σ̂0 + 2tsp sin(k) σ̂y (25)

where M is a local orbital splitting, tαβ denotes hoppings
between orbital α and β, and σν are orbital Pauli matri-
ces. As the bare model is composed of atomic orbitals,
coupling to light can be approximated without loss of
generality via a Peierls substitution k → k +A(t) [45].

The inversion-symmetric model exhibits a topological
Z2 band inversion to an obstructed atomic insulator as
M/2 − tss − tpp switches sign [Fig. 4(b)], for which
the Wannier centers shift from atomic sites to bonds.
Moreover, the model admits an exact flat band if tsp =√

(tss + tpp)
2
/4− (M/4)2 is satisfied. To characterize

its behavior, it is convenient to define three independent
band structure parameters ε0 = (tss − tpp)/2 − M/4,
∆ = 2(tss + tpp)−M and λ = −M/[2(tss + tpp)]. Here,
ε0 controls the dispersion −2ε0 cos(k) of the lower band
and will henceforth be set to zero, ∆ is the band gap to
an inert conduction band, and λ controls the spread of
the maximally-localized Wannier function for the lower
band with gauged Bloch state |u(k)〉 = [

√
1 + λ(e−ik +

1),
√

1− λ(e−ik − 1)]>/Nk with Nk = 2
√

1 + λ cos(k).
The Wannier function is perfectly localized on a pair of
neighboring sites for λ = 0, and has increasing spread
with an exponential tail as |λ| increases [see Fig. 4(c)
and Appendix C].
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FIG. 4. Spectroscopy and dynamics of an interacting atomically-obstructed chain. (a) Schematic of an interacting
two-orbital chain, which hosts (b) an exact flat band and a tunable topological band inversion distinguished by maximally-
localized Wannier orbitals that are centered (c) on atomic sites or bonds and exhibit an independently tunable extent. (d) and
(e) schematically depict the bond density wave ground state at quarter filling, and its elementary domain wall excitations. (f),
(g), depict low-frequency and high-frequency (interband) optical absorption computed from the quantum-geometric low-energy
theory of the coupling of light and Wannier orbitals, and for the full two-band model of atomic orbitals as a function of the band
gap ∆, revealing the geometric origin of the low-frequency response up to interband corrections that vanish with increasing
detuning ∆− ω →∞. (h) and (i) demonstrate analogous behavior for time-dependent charge C(q) and bond B(q) correlation
functions upon irradiation with low-frequency light. The low-frequency optical response (j) reveals an emergent domain wall
mode which exhibits both a dispersion and coupling to light that depends Wannier orbital extent λ, providing a spectroscopic
probe of the system’s geometrical obstruction.

The confluence of electronic interactions, tunable
atomically-obstructed Wannier orbitals, and a rigorous
flat band limit with vanishing single-electron velocity es-
tablishes the topological two-band Hubbard chain as an
ideal illustration of the quantum-geometric coupling of
light and correlated electrons. Suppose now that the
lower flat band is half-filled (overall quarter filling). Re-
markably, its ground state admits an exact solution as
a q = π bond density wave (BDW) [see Appendix C 2]
which is schematized in Fig. 4(d).

We first establish the validity of the quantum-
geometric gauge by studying optical absorption Re σ(ω)
using large-scale exact diagonalization. Here, while the
large frequency behavior for ω > ∆ is governed by
single-particle interband transitions [Fig. 4(g)], the low-
frequency intraband response ω < ∆ is dictated en-

tirely by the coupling of light to Wannier orbitals as the
single-electron velocity vanishes. Starting from the intro-
duced effective quantum-geometric light-matter Hamilto-
nian for the single partially-filled band [Eqs. (9), (10)],
Fig. 4(f) compares the “geometric” optical conductivity
Re σ(ω < ∆) (black line) with a direct computation of
σ(ω) for the full two-band model as a function of the band
gap ∆ and for a chain length L = 14. As anticipated, the
quantum-geometric response that arises purely from de-
formations of the Wannier orbitals mirrors precisely the
exact response at low-frequencies, up to an energetic shift
from residual detuned interband transitions that vanishes
exactly as the detuning to the inert band becomes large
with ∆� ω.

Similar observations apply to the full non-equilibrium
dynamics of charge C(q) =

∑
q〈ρ̂qρ̂−q〉 and bond B(q) =
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q〈∆̂q∆̂−q〉 correlation functions upon irradiation with

a pump field A(t) = A0 sin(ωt) with ω = U/4 and
A0 = 1 in dimensionless units, depicted in Fig. 4(h)

and (i). Here, ρq is the density operator and ∆̂q =∑
kαβ(ei(k+q) +(−1)α)(e−ik+(−1)β)ĉ†k+q,αĉk,β describes

bond-localized charges. The strong pump field is reso-
nant with BDW excitations and results in the slow melt-
ing of bond density correlations, with the dynamics again
exactly reproduced in the quantum-geometric theory in
the limit ∆/ω →∞. In comparison, a näıve conventional
velocity gauge calculation in the single band (dashed line)
fails to even qualitatively reproduce the emergent dynam-
ics, a consequence of the poor localization of the Wannier
functions as expected.

Strikingly, closer inspection of dependence of the low-
frequency response on the Wannier spread λ shown in
Fig. 4(j) reveals an emergent collective domain wall pair
excitation, the dynamics of which is itself entirely geo-
metric in the flat band limit and dictated by the bound
on the spread of Wannier functions. The mode is de-
picted schematically in Fig. 4(e). Its coupling to light
depends on the Wannier function extent and vanishes in
the limit of a strictly-local orbital λ = 0 while growing in
magnitude as λ 6= 0, coinciding with a broadened mode
dispersion. Insight into the latter can be gleaned from
expanding the low-energy interacting Wannier Hamilto-
nian for small λ

Ĥ =
U

8

∑
i

[
(n̂i + n̂i+1)

2
+
λ

2
ĉ†i+1ĉi (n̂i+2 + n̂i−1) + h.c.

]
(26)

with ĉi the fermionic operators for Wannier orbitals. For
λ = 0, the BDW domain wall pair excitation shown
in Fig. 4(e) is an eigenstate with fixed interaction en-
ergy U/4 and cannot move. However, as λ deviates from
zero, the finite extent of the bond-centered Wannier or-
bitals yields subdominant correlated hopping processes
that permit the domain wall pair to move, which fur-
nishes the mode with a finite dispersion observed in Fig.
4(j) that thus serves as a spectroscopic probe of the sys-
tem’s quantum geometry and Wannier extent.

Steering Correlated Phases in Twisted Bilayer
Graphene with Light

Moiré heterostructures of two-dimensional van der
Waals materials provide a natural platform for explor-
ing the quantum-geometric coupling between light and
Wannier functions. These structures combine twist-
tunable electronic bands that become almost dispersion-
less at small angles with strong electronic interactions
and poorly localized Wannier functions, whose light-
induced deformation can be expected to dominate op-
tical driving and responses. Magic angle twisted bilayer
graphene constitutes a particularly illustrative example,

with isolated bands with meV bandwidth at charge neu-
trality which form from charge pockets at the AA stack-
ing sites [Fig. 5(a)]. A fragile topological obstruction
prevents the construction of localized Wannier functions
if all emergent spatial symmetries are taken into account
[17, 25], however can be circumvented by implementing
some symmetries in a nonlocal manner. The resulting
maximally-localized Wannier functions generally have a
“fidget-spinner” shape [22–24]; they are centered on the
AB and BA stacking regions of the moire unit cell and
form a honeycomb lattice, however exhibit three lobes
that localize on neighboring AA charge pockets at the
center of its hexagons. Starting from the Bistritzer-
MacDonald continuum model for TBG [46], we construct
Wannier functions in equilibrium using the gauge-fixing
procedure outlined in Ref. [24] for the two Bloch states
per valley ũnk(r) [see Appendix E]. The pair of AB/BA
centered equilibrium Wannier functions is depicted in
Fig. 5(b) for a single valley. As a consequence of the
three-lobe orbital structure, and even for well-screened
Coulomb interactions, the resulting effective Hamiltonian

Ĥ = −teq

∑
〈ij〉lσ

ĉ†ilσ ĉjlσ + U
∑
9

(
Q̂9 + αT̂9 − 4

)2

(27)

must minimally include an effective Coulomb repulsion
U between all hexagon-adjacent AB / BA centered or-
bitals, described via a hexagon charging contribution
Q̂9 =

∑
jlσ n̂j,lσ/3 as well as correlated two-particle hop-

ping around hexagons T̂9 = i
∑
jlσ(−1)lĉ†j+1,lσ ĉj,lσ+h.c.

where l is the layer index [23, 47, 48].
Coupling to light now deforms both the shape and cen-

ter of the AB and BA fidget-spinner Wannier orbitals,
which can be computed from Eq. (13) and are depicted
for a single valley in Fig. 5(c) as a function of time for
a single pump period, for both linear and circular polar-
ization. This deformation depends solely on the quan-
tum geometry of the TBG bands via the non-Abelian
intravalley Berry connection, determined by the gauge-
fixed Bloch states that yield the original Wannier func-
tion in equilibrium. We choose a readily attainable field
strength of 15 kV/cm at 2.4THz; the pump frequency
does not affect the Wannier orbital dynamics but must be
chosen not to place higher-energy bands into resonance
with the bands near charge neutrality. Remarkably, the
weak field already yields a pronounced shift of the Wan-
nier center, in equal and opposite directions for the AB
and BA site Wannier functions. The direction is set by
the sign of the non-Abelian Berry connection, projected
in the direction of the gauge field. Conversely, for circular
polarization, the Wannier centers precess about the re-
spective honeycomb lattice sites with a handedness that
reflects the chirality of the underlying Bloch state.

The deformation of the TBG fidget-spinner orbitals
immediately entails drastic modifications of the effec-
tive electronic hopping and Coulomb interactions. First,
consider the time-dependent magnitude and phase of
hopping amplitudes, depicted in Fig. 6(a) and (b)
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FIG. 5. Photon-dressed Wannier functions in twisted bilayer graphene. (a) Band structure and moiré lattice of
twisted bilayer graphene around the magic angle θ ∼ 1.08◦. An almost-dispersionless band (inset) emerges at charge neutrality,
with the charge density accumulating in the AA regions of the moiré lattice. (b) “Fidget-spinner” Wannier functions of the
twisted bilayer graphene flat band in equilibrium are centered at the AB/BA sites but peaked on the three neighboring AA
regions. (c) Snapshots of the photon-dressed time-dependent Wannier functions for linearly (top row) and circularly (bottom
row) polarized THz pulses. Insets depict the instantaneous electric field.

for a vertical nearest-neighbor bond between AB and
BA sites, for linear polarization along the vertical axis.
While the phase predominantly reflects the Peierls phase
eiA(t)·(RAB−RBA), surprisingly the magnitude of the hop-
ping matrix element becomes rapidly quenched with in-
creasing field strength due to the out-of-phase oscillation
of the Wannier centers of the AB and BA time-dependent
Wannier orbitals, which reduces their overlap. A similar
situation arises for circular polarization, depicted in Fig.
6 (c) and (d).

Crucially, the effective Coulomb interactions that gov-
ern the correlated phase now become dressed by light as
well and oscillate with the field. This contribution domi-
nates the coupling of magic-angle TBG to light for strong
interactions and constitutes the key observation of this
work. Fig. 6(e) and (f) illustrates this effect by exam-
ple of the density interaction between two AB and BA
sites, mediated via overlapping orbital lobes at the AA
region in the shared hexagon’s center. Remarkably, the
interaction is coherently suppressed by ∼ 50% already for
comparatively weak THz fields of 40kV/cm, with similar
observations for circular polarized light [Fig. 6(f)]. The
root cause can be readily inferred from time snapshots
of the overlaps of the two AB, BA field-dressed Wannier
functions shown in Fig. 6(k) for circular polarization,
which show that the weight of both AB and BA centered
Wannier functions is shifted away from the shared AA
region to other lobes, as a function of time.

The dynamical light-induced renormalization of cor-
related hopping interactions is even more pronounced,
with the tie-dependent amplitude and phase depicted
in Fig. [Fig. 6(g) - (j)] for linear and circular polar-
ization. Here, the modification of the overlap of the
constituent Wannier function conspires with a Peierls

phase accrued by the correlated hopping process. Con-
sequently, the pump period averaged effective correlated
hopping interaction rapidly becomes suppressed already
for weak fields, granting a light-induced handle to change
the range and nature of effective Coulomb interactions.

The corresponding Floquet predictions for period-
averaged hoppings and interactions that govern the tran-
sient steady state for wide pump pulses are depicted in
Fig. 6(l) and (m) for circular polarization and a single
valley, as a function of the field strength. The effective
nearest-neighbor hopping is rapidly quenched and van-
ishes at a critical field strength to realize an ideal flat
band, before reverting again to a finite bandwidth. The
critical field strength E0 remains dictated primarily via
the Peierls phase and hence closely follows expectations
for Floquet dynamical localization teff ∼ teqJ0(A0) where
J0 is the zeroth Bessel function and A0 = a0eE0/~Ω is
the dimensionless field strength with a0 the moiré length.
Importantly however, the Floquet modification of the
Coulomb interactions in Eq. (27) that arises from the
period-averaged deformation of the Wannier functions si-
multaneously yields a reduced Ueff , reaching 50% of its
equilibrium value for a field strength of ∼ 50kV/cm [Fig.
6(l)]. This intriguingly suggests that off-resonant THz
radiation can be used to coherently tune magic-angle
TBG across regimes teff/Ueff with strong and weak cor-
relations.

Further insight into possible light-induced phase tran-
sitions can be gleaned from inspecting the concurrent
modification of the competition between density and cor-
related hopping interactions, which is depicted via the
dimensionless parameter α [Eq. 27] in Fig. 6(m). Start-
ing from its equilibrium value ∼ 0.2 [23, 24], α can be
quenched to zero and flips its sign beyond a critical field
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FIG. 6. Controlling Twisted Bilayer Graphene with Light. (a), (b) and (c), (d) depict the light-induced time-dependent
modification of nearest-neighbor hopping amplitudes thop due to photon-induced deformations of the fidget-spinner Wannier
orbitals in twisted bilayer graphene for linearly and circularly polarized light, respectively, as a function of electric field
strength (A0 = 1 corresponds to 7.5kV/cm at 2.4THz). While arg(thop) primarily reflects the Peierls phase, the hopping
magnitude becomes drastically suppressed due to dynamically reduced overlap between neighboring fidget spinner orbitals.
(e)-(j) depicts the corresponding photon-dressed Coulomb interactions for a single valley, exemplified for next-nearest-neighbor
density interactions U(t) and correlated hopping K(t). Remarkably, both reveal a dynamical suppression of up to 50% of
their equilibrium value, which can be understood from (k) the time-dependent deformation and reduced overlap of two fidget
spinner Wannier orbitals centered in AB and BA regions of the moiré unit cells. For broad monochromatic pulses, (l) depicts
corresponding Floquet predictions for the period-averaged effective hopping and interaction matrix elements that govern the
transient prethermal dynamics of driven TBG. The renormalization of U as well as the relative contribution α of correlated
hopping interactions (m) in TBG reveals a new quantum-geometric handle, by which light can directly manipulate Coulomb
interactions in moiré materials with poorly-localized Wannier orbitals and steer correlated phases, for instance (n) across a
transition at 3/4 filling between quantum anomalous Hall and a proximal charge ordered phases.

strength that is distinct from kinetic dynamical local-
ization. An immediate ramification is the possibility to
dynamically access to competing phases in the rich phase
diagrams that have recently been proposed for TBG to
emerge from the competition between kinetics, interac-
tions and correlated two-electron hopping [23, 47, 48].
An intriguing example is the quantum anomalous Hall
state at 3/4 filling, which competes with ferromagnetic
charge order and can be stabilized via correlated hopping
beyond a critical αc ∼ 0.12. Starting from an equilibrium
value α ∼ 0.2, this transition can be reached via irradia-
tion already for field strengths∼ 15kV/cm, schematically
depicted in Fig. 6(n).

Discussion and Outlook

This work introduced a new quantum geometric han-
dle to probe and steer strongly correlated quantum ma-
terials with light, whereby light can directly deform the
material’s Wannier orbitals that comprise the states near
the Fermi energy. This effect has profound implications
for strongly interacting electron systems, leading to a
concurrent light-induced modulation of electronic mo-
tion and electronic interactions that can dominate optical
driving and responses in materials with non-trivial quan-
tum geometry. Consequences for optical spectroscopy
were first illustrated for a strongly interacting Hubbard
chain, which can be driven across a topological phase
transition to reveal a new class of domain-wall excita-
tions whose motion and coupling to light yields an op-
tical probe of the material’s quantum geometry. We
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then presented ramifications for non-equilibrium control
of moiré heterostructures and demonstrated that subject-
ing magic-angle twisted bilayer graphene to weak THz
radiation can conspire with a fragile topological obstruc-
tion to profoundly alter the material’s competing inter-
actions. This mechanism is distinct from conventional
dynamical localization, and permits tuning TBG across
boundaries to competing phases.

The results of our work have important implications
for theories of photon-based spectroscopies, which will
need to be reevaluated in the context of correlated and
topological materials [49, 50]. While conventional theo-
ries of probes such as second harmonic generation, Ra-
man spectroscopy and shift currents assume that photons
couple to the motion of individual electrons [51], the di-
rect quantum-geometrical dressing of a Mott insulator’s
strong Coulomb interactions with light due to Wannier
orbital deformations can readily dominate such spectro-
scopic responses. This can permit new insight into excita-
tions of unconventional phases. For instance, symmetry-
allowed higher-order non-local responses in Mott quan-
tum magnets can become enhanced via photon-induced
shifts of the constituent Wannier orbitals that host the
local moments; an intriguing example is the polarization-
resolved Raman response mediated via longer-ranged ex-
change processes which can probe subdominant chiral ex-
citations in frustrated quantum magnets [52]. At the
same time, the quantum-geometric coupling of light and
Wannier orbitals can in principle enable new functional
behavior. For instance, building on recent progress in
the microscopic understanding of the bulk photovoltaic
effect and shift currents in band insulators [53], an in-
triguing question concerns whether Mott insulators with
non-trivial quantum geometry can yield new quantum-
geometric design principles for obtaining enhancements
to bulk photovoltaic responses mediated via light-dressed
Coulomb interactions. Here, the requisite noncentrosym-
metry for shift currents guarantees a non-vanishing Berry
curvature for the Mott insulator’s constituent bands near
the Fermi energy.

More broadly, the dynamics of topological correlated
materials driven far from equilibrium via strong-field
Wannier orbital modulations can yield a new route to-
wards strong-field dressing and Floquet control [54, 55].

The tradeoff between realizing substantial prethermal
Floquet modifications and suppressing heating to retain
short-time quantum coherence remains a key challenge
[1], hence an interesting question concerns whether the
presented direct quantum geometric dressing of materi-
als with strong Coulomb interactions can establish new
and targeted mechanisms for optical control already for
weak pump fields. Similarly, strong coupling to quan-
tized photon modes in optical and THz cavities has
recently emerged as a promising alternative to modify
emergent properties of quantum materials [56, 57]. It will
hence be especially interesting to generalize the presented
quantum-geometric coupling of light and correlated elec-
trons to a theory of polaritonic Wannier orbitals.

Methodologically, a key application of the introduced
time-dependent Wannier basis is as a faithful effective de-
scription of the coupling of strongly-interacting electrons
near the Fermi energy to strong light fields, remaining
independent of electromagnetic gauge choices and exact
up to corrections in the inverse detuning to off-resonant
higher-energy bands transitions. As the formalism relies
solely on knowledge of the material’s non-Abelian Berry
connections in the equilibrium Wannier basis, a promis-
ing direction concerns extracting this quantum-geometric
data directly from ab initio density functional theory
(DFT) calculations, as a route towards the first princi-
ples construction of effective tight-binding descriptions of
light-matter interactions for correlated electrons. An im-
portant open question concerns the role of light-induced
dynamical screening corrections to the effective Coulomb
interactions and their relative importance compared to
the quantum-geometric contribution. These could be
addressable via a time-dependent generalization of con-
strained random-phase approximation calculations with
double counting corrections treated with appropriate
care, or alternatively via computing the time-dependent
Wannier functions directly from time-dependent DFT
simulations of the irradiated material [58, 59]. The lat-
ter approach will necessitate an ab initio implementation
of the gauge fixing procedure for Wannier orbitals anal-
ogous to the one presented here, to again guarantee a
faithful description of dynamics for low-frequency opti-
cal excitation. Finally, it will be interesting to generalize
our quantum-geometric formalism beyond the dipole ap-
proximation to assess the role of finite-q corrections.
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Appendix A: Light-Matter Coupling in the
Quantum-Geometric Gauge

The main text presents a new quantum-geometric
Bloch-Wannier basis for interacting electrons dressed by
light [Eqns. (7), (11)] that encodes a photon-induced
deformation of the Wannier functions that comprise the
bands near the Fermi energy which dominates optical
driving and responses in strongly-correlated materials.
This deformation cancels ∆n,n′ -divergent contributions
to the interband current operators between band n and
inert bands n′ that are far from resonance with the light
field. To arrive at the effective light-matter-coupled low
energy Hamiltonian, we start without loss of generality
from the bare Hamiltonian in velocity gauge

Ĥ = Ĥ0 + Ĥint (A1)

with

Ĥ0 =

∫
dr Ψ̂

†
(r)

[
1

2m
[p̂ + A(t)]

2
+ U(r)

]
Ψ̂(r)

(A2)

Ĥint =
1

2

∑
σσ′

x
drdr′V (r− r′)Ψ̂†σ(r)Ψ̂†σ′(r

′)Ψ̂σ′(r
′)Ψ̂σ(r)

(A3)

with crystal potential U(r) and Coulomb interactions
V (r − r′). We use a sign convention for intra- and in-
terband Berry connections

Ann′(k) = −i
∫

cell

u†n,k(r)∇kun′,k(r) (A4)

1. Single band

The case of a single isolated band is particularly
straightforward and involves the geometric gauge ansatz
described in the main text

Ψ̂(r, t) =
∑
nk

eikrun,k+A(t)(r) e
−i

k+A(t)∫
k

dAnn

ĉnk (A5)

where Ann(k) denotes the intraband Berry connection
for band n. Substituting into Eq. (A2), and accounting

for the time-dependence of the fields Ψ̂
†
(r, t)i ∂∂tΨ̂(r, t),

one obtains

Ĥ0 =
∑
nn′

kk′

∫
dr e−i(k−k

′)re
i
k+A(t)∫
k

dAnn

u†n,k+A(r)

[
1

2m
(p̂ + k′ + A)

2
+ U(r)− i∂t

]
un′,k′+A(r)e

−i
k′+A(t)∫
k′

dAn′n′

ĉ†nkĉn′k′

=
∑
nk

εn(k + A(t)) ĉ†nkĉnk −
∑
nn′

kk′

∫
dr e−i(k−k

′)re
i
k+A(t)∫
k

dAnn

u†n,k+A(t)(r) i∂t un′,k′+A(t)(r)e
−i

k′+A(t)∫
k′

dAn′n′

ĉ†nkĉn′k′

=
∑
nk

εn(k + A(t)) ĉ†nkĉnk −
∑
nn′k

∂A(t)

∂t
·
{∫

cell

u†n,k+A(t)(r)
[
i∇k + An′n′(k + A(t))

]
un′,k+A(t)(r)

}
ĉ†nkĉn′k

=
∑
nk

εn(k + A(t)) ĉ†nkĉnk +
∑
nn′k

∂A(t)

∂t
· {Ann′(k + A(t))− δn,n′Ann(k + A(t))} ĉ†nkĉn′k

=
∑
nk

εn(k + A(t)) ĉ†nkĉnk −
∑
n 6=n′

∑
k

E(t) ·Ann′(k + A(t)) ĉ†nkĉn′k (A6)

The first term of the transformed non-interacting Hamil-
tonian describes the band dispersion with the usual
Peierls substitution. The second term describes light-
induced interband transitions which crucially remain in-
dependent of the energy difference between bands and
can therefore be neglected for detuned light fields, as de-
scribed in the main text. The interacting Hamiltonian

transforms as

Ĥint =
1

L

∑
kk′q

V nn
′m′m

kk′q (A(t)) ĉ†n,k+qĉ
†
n′,k′−qĉm′,k′ ĉm,k

(A7)
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with a field-dressed time-dependent interband interaction
vertex

V nn
′m′m

kk′q = V (q)
〈
un,k+q+A(t)

∣∣un′,k+A(t)

〉
×
〈
um′,k′−q+A(t)

∣∣um,k′+A(t)

〉
× ei[φn(k+q,t)+φn′ (k

′−q,t)−φm′ (k
′,t)−φm(k,t)]

(A8)

where

φn(k, t) =

k+A(t)∫
k

An(k′) · dk′ (A9)

is the geometric phase that describes the deformation of
the corresponding Wannier functions. If the partially-
filled band is energetically isolated and the light field
is detuned from interband transitions, the expression
quoted in the main text follows straightforwardly via dis-
carding all interband electron-photon and Coulomb scat-
tering terms.

2. Multiband Models

Consider now a set of “entangled” bands near the
Fermi energy. The geometric gauge formalism straight-
forwardly generalizes by separating this set G from other

(inert) bands I

Ψ̂(r, t) = Ψ̂G(r, t) + Ψ̂I(r, t) (A10)

where the entangled bands

Ψ̂G(r, t) =
∑

n,n′∈G

∑
k

eikrun,k+A(t)(r) QGnn′(k, t) ĉn′k

(A11)

transform via a non-Abelian quantum geometric phase
Q̂(k, t), and the inert bands again transform individually,
following Eq. (A5)

Ψ̂I(r, t) =
∑
n/∈G

∑
k

eikrun,k+A(t)(r) e
−i

k+A(t)∫
k

dAnn

d̂nk

(A12)

The non-Abelian quantum geometric phase for the bands
of interest G

Q̂(k, t) = P̂ exp

−i
k+A(t)∫
k

dÂ
G

 (A13)

can be expressed as a momentum space path ordered (P̂)

integral over their non-Abelian Berry connection Â
G

and
satisfies

i∂tQ̂(k, t) =

(∑
µ

Â
G
µ(k + A) ∂tAµ

)
· Q̂(k, t) (A14)

Substituting again into Eq. (A2), one obtains

Ĥ0 =
∑

nn′mm′∈G
kk′

∫
dr e−i(k−k

′)rQ†nn′(k, t)u
†
n,k+A(r)

[
1

2m
(p̂ + k′ + A)

2
+ U(r)− i∂t

]
um,k′+A(r)Qmm′(k

′, t) ĉ†n′kĉm′k′

=
∑
nm∈G

k

hnm(k, t) ĉ†nkĉmk − i
∑
nn′∈G
mm′∈G

k

∫
cell

dr Q†nn′(k, t)u
†
n,k+A(r)

∂

∂t
um,k+A(r)Qmm′(k, t) ĉ

†
n′kĉm′k′ (A15)

Here, the first term hnm(k, t) describes the Peierls-substituted multi-band Bloch Hamiltonian, transformed into the
basis of photon-dressed time-dependent Wannier orbitals

h(k, t) = Q̂†(k, t) h0(k + A(t)) Q̂(k, t) (A16)

where

h0
nm(k) =

∫
cell

u†n,k(r)

[
(p̂ + k)

2

2m
+ U(r)− i∂t

]
um,k(r) (A17)
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is the equilibrium Bloch Hamiltonian. Conversely, the second term vanishes:

− i
∑
nn′∈G
mm′∈G

k

∫
cell

dr Q†nn′(k, t)u
†
n,k+A(r)

∂

∂t
um,k+A(r)Qmm′(k, t) ĉ

†
n′kĉm′k′

= t
∑
nn′∈G
mm′∈G

k,µ

∂Aµ(t)

∂t
Q†nn′(k, t)

−i ∫
cell

dr u†n,k+A(r)
∂

∂kµ
um,k+A(r)


︸ ︷︷ ︸

= Aµ
nm(k+A(t))

Qmm′(k, t) ĉ
†
n′kĉm′k

−
∑
nn′∈G
mm′∈G

k,µ

∂Aµ(t)

∂t
·


Q†nn′(k, t)

 ∫
cell

dr u†n,k+A(r)um,k+A(r)


︸ ︷︷ ︸

= δn,m

∑
m′′∈G

Aµ
mm′′(k + A(t)) Qm′′m′(k, t)


ĉ†n′kĉm′k

= 0 (A18)

Appendix B: Diagrammatic analysis of optical
responses in the quantum-geometric gauge and

conventional velocity gauge

The main text presents a new diagrammatic dictio-
nary for efficiently calculating linear and nonlinear op-
tical responses in the quantum-geometric velocity gauge
that encodes the light-induced deformation of the sys-
tem’s Wannier orbitals. To connect this exposition with
conventional computations of optical responses in veloc-
ity gauge, this section elaborates on a formally exact di-
agrammatic analysis of optical absorption Reσ(ω) pre-
sented in the main text in Fig. 3(c), demonstrating that
calculations in the quantum-geometric gauge represent
the formally exact gauge-invariant response, up to ne-
glecting 1/(∆−ω) corrections from interband transitions
that are off-resonant with detuning ∆− ω.

Choosing the quantum-geometric time-dependent
Wannier basis in velocity gauge, optical conductivity of
a set G of interacting energetically-isolated bands is gov-
erned by four Feynman diagrams depicted in Fig. 3(c),
in addition to imaginary diamagnetic contributions. We
focus here on low-frequency optical absorption, off reso-
nance from interband transitions; the imaginary response
readily follows via Kramers-Kronig relations. At photon
frequencies ω � ∆ the gap to higher-energy conduction
bands or deeper fully-filled valence bands, the final state
after an absorption event cannot generate any interband
excitations. This can be straightforwardly expressed via
the Fermi golden rule expression

Reσ(ω) =
2π

ω

∑
j∈G

∣∣∣〈j| Ĵ(ω) |0〉
∣∣∣2 δ(ω + E0 − Ej) (B1)

where j ∈ G denotes the set of many-body states which
account for excitations solely within the partially-filled
bands near the Fermi energy, with all inert bands /∈ G
fully filled or empty.

In ordinary velocity gauge approaches for non-
interacting quantum systems, the current operator
Ĵ(ω) ≡ Ĵ intra involves solely the “intraband” current op-
erator acting on the subset of bands n, n′ ∈ G near the
Fermi energy

Ĵ intra =
∑
nn′k

jnn
′

k ĉ†nkĉn′k (B2)

where electron spin is again included in band indices n.

Crucially however, and as described in the main text,

the interband current operator jn,lk for transitions to de-
tuned inert bands l /∈ G scales with the band gap if

the bands have non-trivial quantum geometry An,l
k 6= 0.

However, placing an electron in a higher-energy inert
band immediately places an energy cost ∼ ∆ on such
photo-excited intermediate states. Hence, to leading or-
der O(1) in the inverse detuning of interband transitions,
the photo-excited intermediate state must immediately
recombine and scatter back to the original band near
the Fermi energy. In strongly-interacting quantum ma-
terials, the dominant scattering contribution comes from
Coulomb scattering, and entails a higher-order contribu-
tion to the effective current operator. Denoting inter-
mediate many-body states with a single photo-excited
electron in band l as

|j′, lk〉 ≡ |j′〉 ⊗ d̂†lk |0l〉 (B3)

with |j′〉 again a many-body state for excitations solely in

G and d̂†lk the fermion creation operator for an electron
in an inert higher-energy band, these processes can be
included in Eq. (B1) via

Ĵ(ω) = Ĵ intra + Ĵ inter
eff (ω) +O(1/∆) (B4)
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where

Ĵ inter
eff (ω) =

∑
j′nlk

V̂inter |j′, lk〉〈j′, lk|
(

∆ln
k Aln

k d̂
†
lkĉnk

)
ω + E0 − Ej′ −∆ln

k + iη

−
∑
j′nlk

(
∆ln

k Anl
k d̂
†
lkĉnk

)
|j′, lk〉〈j′, lk| V̂ †inter

ω + E0 − Ej′ −∆ln
k + iη

(B5)

where Aln
k is the interband Berry connection and

V̂inter =
∑
kk′q

n1n2n3l

V n1n2n3l
kk′q ĉ†n1,k+qĉ

†
n2,k′−qĉn3,k′

d̂k,l (B6)

with

V n1n2n3l
kk′q = 〈un1,k+q|ul,k〉 〈un2,k′−q|un3,k′〉 (B7)

the interband Coulomb scattering matrix element that
scatters one photo-excited electron in inert band l off an
electron in band n3 near the Fermi energy, leaving both
electrons in G.

To recover the results derived in the quantum-
geometric gauge of time-dependent Wannier functions,
suppose now that the band gaps ∆nl to inert bands are
much larger than the photon frequency. In this case, Eq.
(B5) simplifies drastically

Ĵ inter
eff (ω) =

∑
kk′q

n1n2n3n

Tn1n2n3n
kk′q ĉ†n1,k+qĉ

†
n2,k′−qĉn3,k′

ĉnk (B8)

with

Tn1n2n3n
kk′q = 〈un2,k′−q|un3,k′〉

∑
l/∈G

〈0l| d̂lkd̂
†
lk |0l〉

×
(
−〈un1,k+q|ul,k〉Aln

k + An1,l
k+q 〈ul,k+q|un,k〉

)
(B9)

As l formally sums over all inert bands 〈0l| d̂lkd̂
†
lk |0l〉 = 1

that are not included in the set of partially-filled bands
G, the second line can be simplified drastically via using∑

l/∈G

|l〉〈l| = 1−
∑
n∈G
|n〉〈n| (B10)

and Anl
k = −i 〈unk|∂kulk〉 = +i 〈∂kunk|ulk〉, which

yields

Tn1n2n3n
kk′q = 〈un2,k′−q|un3,k′〉

× (−i)
∑
l/∈G

{〈un1,k+q|ul,k〉 〈ul,k|∂kun,k〉

+ 〈∂kun1,k+q|ul,k+q〉 〈ul,k+q|un,k〉}

= 〈un2,k′−q|un3,k′〉
{

(−i∂k) 〈un1,k+q|un,k〉

+
∑
n′∈G

(
〈un1,k+q|un′,k〉An′n

k −An1,n
′

k+q 〈un′,k+q|un,k〉
)}

(B11)

This recovers precisely the paramagnetic current op-
erator for a set of bands G that was derived using
the quantum-geometric gauge in the main text [Eq.
(21)]. The derivation demonstrates rigorously that the
quantum-geometric gauge introduced in this manuscript
permits an asymptotically exact description of low-
frequency optical responses and non-equilibrium driving
in correlated materials, up to ignoring off-resonant in-
terband transitions that are suppressed with the inverse
detuning. For conciseness, the above derivation implic-
itly assumed that all inert bands l are unoccupied con-
duction bands; the results remain unchanged upon also
accounting for fully-filled deep valence bands.

Appendix C: Quantum-Geometric Excitations in an
Interacting Topological 1D Chain

1. Wannier Functions

The maximally-localized Wannier functions for the
lower band |ϕR〉 = 1√

L

∑
k e

ikR |u−(k)〉 can be con-

structed from the Bloch state |u(k)〉 with a gauge choice

|u(k)〉 =

[ √
1 + λ

(
1 + e−ik

)
√

1− λ
(
1− e−ik

) ]
2
√

(1 + λ cos(k))
(C1)

The band dispersion −2ε0 cos(k) is independent of λ,
permitting the independent tuning of the band width
(nearest-neighbor hopping between Wannier orbitals)
and the spatial extent of the Wannier orbitals using
parameters ε0 and λ, respectively. The usual gauge-
invariant lower bound bound for the Wannier spread〈
x2
〉

via the Fubini-Study metric g(k) averaged over
the Brillouin zone can be evaluated exactly and yields∫
g(k)dk/2π = 1/4

√
1− λ2. The extent becomes mini-

mal for λ = 0, and diverges as the system approaches
λ→ ±1. Fig. 4(c) in the main text shows the real-space
localization of the Wannier function in the trivial and
topological phase, for representative parameters. No-
tably, the Wannier function becomes perfectly localized
on a bond and with weight only on the two neighboring
sites if λ = 0.

2. Exact Bond Density Wave Ground State

Interestingly, the interacting half-filled flat band (cor-
responding to overall quarter filling) admits an exact
bond density wave (BDW) ground state. To see this,
note that the flat band Hamiltonian consists of a sum
of positive-semidefinite terms upon shifting the flat band
to zero energy. Upon closer inspection, this permits con-
structing an exact zero-energy ground state that is si-
multaneously annihilated by electronic hopping and the
Hubbard interaction. The former is immediately true for
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any wave function |Ψ〉 = d̂†k1 d̂
†
k2
· |0〉 where d̂†k creates an

electron in the zero-energy flat band.
To find simultaneous zero-energy eigenstates of the

Coulomb repulsion, we rewrite the interaction as

Ĥint = U
∑
q

P̂ †q P̂q (C2)

where

P̂q =
1

2
√
L

∑
k

(
ĉ−k+q,pĉk,s − ĉ−k+q,sĉk,p

)
(C3)

annihilates a pair of electrons in an s and a p orbital. Cru-
cially, P̂ †q P̂q is a positive semidefinite operator. There-
fore, a zero-energy ground state must be simultaneously
annihilated by each P̂q for all q. Since we already require
the ground state to carry only electrons in the flat band,

we can expand ĉk,s = uk,sd̂k + uk,pf̂k with Bloch states

uk defined in Eq. (C1), and drop the annihilation oper-
ator acting on the conduction band. We arrive at a set
of conditions∑

k

(u−k+q,puk,s − u−k+q,suk,p) d̂−k+qd̂k |Ψ〉 = 0 ∀ q

(C4)

At half filling of the flat band, a zero-energy ground
state that satisfies these constraints can be readily con-
structed and reads

|ΨBDW〉 =
∏

0≤k<π

1

Nk

(
αk d̂

†
k + αk+π d̂

†
k+π

)
|0〉 (C5)

where Nk =
√
|αk|2 + |αk+π|2 is a normalization factor,

and

αk =
√

1 + λ cos(k) (C6)

This exact many-body ground state describes a bond
density wave with spontaneously broken translation sym-
metry and ordering wave vector q = π. This ground state
is unique, up to its partner symmetry-breaking BDW
state that is shifted by a lattice translation.

Further insight can be gained for λ = 0, for which the
ground state becomes especially simple

|ΨBDW(λ = 0)〉 =
∏

R ∈ even
sites

d̂†R |0〉 (C7)

and forms a semiclassical bond ordering pattern, where

d̂†R is the creation operator for a bond-centered Wannier
orbital.

3. Domain Wall Excitations

Suppose that the lower band is half filled while the up-
per band is empty, and interactions U � M are much

weaker than the energy gap to the conduction band. In
this case, the low-energy physics should be dictated solely
via electronic dynamics in the valence band. These can
be determined straightforwardly via projection of the in-
teracting Hamiltonian into a basis of valence-band Wan-
nier orbitals.

Starting from a local Hubbard interaction between or-
bitals, interaction matrix elements in the Wannier basis
can now be computed as

VR1R2R3R4 =
U

2

∑
R

〈ϕR−R1 |ϕR−R4〉 〈ϕR−R2 |ϕR−R3〉

(C8)

For small λ, the Wannier function decays rapidly
with distance R. The short-ranged matrix ele-
ments can be evaluated exactly 〈ϕR=0|ϕR=0〉 =
4e0(λ2−1)k0−2e20(λ−1)+2(λ+1)k20

π2λ2 ≈ 1
2 + O(λ2) and

〈ϕR=0|ϕR=1〉 =
2(e20(λ−1)+(λ+1)k20)

π2λ ≈ −λ4 +O(λ3), where

k0 = K( 2λ
λ−1 ) and E0 = E( 2λ

λ−1 ) with K, E the elliptic
integrals of the first and second kind. Longer-ranged ma-
trix elements scale as a higher power of λ; the interacting
Hamiltonian in Wannier basis presented in Eq. (26) in
the main text now follows from expanding the sum over
R in Eq. (C8) using the matrix elements above, to linear
order in λ.

Appendix D: Numerical Simulation

The optical conductivity comparisons in Fig. 4(f)
in the main text between the full two-band model of
atomic orbitals and the single-band Wannier model are
performed using large-scale exact diagonalization for a
chain length L = 14 and Wannier spread λ = −0.1, with
spectroscopic response functions computed via Lanczos
iteration. The high-frequency response in Fig. 4(f) is
computed for free electrons; we have verified that an in-
teracting calculation yields comparable behavior up to
finite-size corrections. The calculation in Fig. 4(j) for
the single-band Wannier model is performed for chain
lengths L = 26. We change the band gap by scaling ∆
while keeping U constant. The high-frequency response
is calculated using exact Lehmann representation on the
non-interacting model. The low-frequency response plot
is calculated using exact diagonalization, which offers
better low-frequency resolution.

The time-evolution in Fig. 4(h-i) in the main text is
done for a chain length L = 8 with a sinusoidal pulse
A(t) = A0 sin(ωt), with A0 = 2.5U and ω = U/4. To
compare the validity of the theory of light-deformed Wan-
nier functions to usual velocity gauge calculations in a
truncated band basis, we furthermore simulate the latter
using the projection of the full time-dependent two-band
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Hamiltonian into the lower flat band, which yields

Ĥnaive(t) =
∑
k

u∗kαhαβ(k +A(t))ukβ d̂
†
kd̂k

+
U

L

∑
kpq

αβ=±1

u∗k+pαu
∗
p−qβupβukαd̂

†
k+qd̂

†
p−qd̂pd̂k

(D1)

and reveals drastic discrepancies as discussed in the main
text, which vanish only in the limit of perfectly-localized
Wannier functions in the trivial atomic limit.

Appendix E: Light-Dressed Wannier Functions in
Twisted Bilayer Graphene

The Wannier functions for twisted bilayer graphene in
the main text are computed starting an effective contin-
uum theory for Dirac fermions. Neglecting intervalley
scattering, the Hamiltonian per valley can be written as
[24, 46]

Hν(k) =

[
H1,ν U†ν
Uν H2,ν

]
(E1)

where Hl,ν = −~vDR̂(θ)
(
k−Kl

ν

)
· [νσ̂x, σ̂y] describes

the Dirac fermion with velocity vD for valley ν in layer l
with rotation matrix R̂ and Pauli matrices σ̂, and

Uν =

[
w0 w1

w1 w0

]
+ eiνb1·r

[
w0 w1e

−2πνi/3

w1e
2πνi/3 w0

]
+ eiν(b1+b2)·r

[
w0 w1e

2πνi/3

w1e
−2πνi/3 w0

]
(E2)

describes the effective interlayer coupling. Here, Kl
ν de-

notes the location of the Dirac points ν in layer l, and
b1, b2 are the moiré lattice vectors. Using ~vD/a =
2.1354eV, w0 = 0.0797eV and w1 = 0.0975eV, the Wan-
nier functions in equilibrium are calculated starting from
the gauge fixing procedure for Bloch wave functions pre-
sented in Ref. [24], followed by optimization of Wannier
spread functional, which yields a pair of Bloch-Wannier
functions ũmk(r) with a smooth phase choice.

As described in the main text, the light-induced
time-dependent deformation of the resulting fidget-
spinner Wannier functions is governed by a non-Abelian
quantum-geometric phase that parallel transports Bloch
states from k+A(t) to k. Starting from sampling ũmk(r)
on a 144 × 144 momentum point grid in the moiré Bril-
louin zone, we compute the non-Abelian phase factor
Q(k + A(t),k) via a finite-difference approximation of
the momentum space path ordered integral by defining

U(k + δk,k) = P̂e
i
k+δk∫
k

A(k′)·dk′
≈ e

M(k+δk,k)−M†(k+δk,k)
2

(E3)

where M(k + δk,k) = log D(k + δk,k) with
Dmm′(k,k

′) = 〈ũm,k|ũm,k′〉 the 2 × 2 overlap matrix of
Bloch states for a momentum shift δk on the sampled k
point grid. The non-Abelian phase can now be evaluated
as Q(k+A(t),k) = U(k+A(t),k+A(t)−δk) · · ·U(k+
2δk,k + δk) ·U(k + δk,k) with the magnetic vector po-
tential A(t). As discussed in the main text, the choice of
momentum space path to connect k and k+A(t) remains
a residual gauge freedom of the time-dependent Wannier
basis. A particularly simple choice is an L shaped path
that first parallel transports the Bloch states in the kx di-
rection with displacement Ax, followed by parallel trans-
port along the ky direction with displacement Ay; we
note that for the weak fields and Bloch-Wannier states
with smooth non-Abelian Berry connections considered
in this work, discrepancies between path choices are neg-
ligible. The resulting time-dependent Wannier function
now readily follows via a Fourier transform

ϕm,R,i(r, t) =
∑
km′

eik(r−R)Qmm′(k−A(t),k)ũm′k(r)

(E4)

1. Time-Dependent Hopping Amplitudes

The gauge-fixed Bloch-Wannier states ũmk(r) de-
fine the equilibrium Bloch Hamiltonian heq

mm′(k) =
〈ũmk|Hν(k) |ũmk〉 per valley ν. Armed with the ge-
ometric phases Q(k + A(t),k), the light-dressed Bloch
Hamiltonian readily follows as

h(k, t) = Q(k,k + A(t)) heq(k + A(t)) Q(k + A(t),k)
(E5)

with real-space hopping matrix elements computed via
Fourier transform.

2. Photon-Dressed Coulomb Interactions

Light-dressed time-dependent Coulomb interactions
and hopping matrix elements described in the main text
are readily evaluated using the time-dependent Wannier
basis described above. Coulomb interactions

V m1m2m3m4

R1R2R3R4
(t) =

x
drdr′

∑
ij

ϕ?m1R1,i(r, t)ϕ
?
m2R2,j(r

′, t)

× U(|r− r′|)ϕm3R3,j(r, t)ϕm4R4,i(r, t)

× ei(R1+R2−R3−R4)·A(t) (E6)

where U(r) is the Coulomb interaction, and ϕm,R,i(r, t)
is the time-dependent Wannier orbital m for unit cell
R with sublattice index i, which is a function of the
light field A(t). We adopt a screened interaction that
accounts for the proximal metallic gates, with U(r) =∑∞
n=−∞

(−1)n√
n2+(r/ξ)2

[60]. With gate distances typically

close to the moiré lattice spacing, the screening length
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ξ is chosen to be equal to the lattice constant without
loss of generality; the qualitative behavior of the light-

induced modulation of Coulomb interactions relative to
their equilibrium values remains largely independent of
ξ.


