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A buckled sheet offers a reservoir of material that can be unfurled at a later time. For sufficiently
thin yet stiff materials, this geometric process has a striking mechanical feature: when the slack
runs out, the material locks to further extension. Here we establish a simple route to a tunable
locking material – a system with an interval where it is freely deformable under a given deformation
mode, and where the endpoints of this interval can be changed continuously over a wide range. We
demonstrate this type of mechanical response in a thin cylindrical shell subjected to axial twist and
compression, and we rationalize our results with a simple geometric model.

When a thin material is compressed, small-scale wrin-
kles and folds may form to collect excess length. Looking
at this process in reverse, buckled microstructures can be
thought of as a reservoir of material that can be deployed
at a later time. This strategy is exploited in designed
structures ranging from the common umbrella to inflat-
able satellites [1, 2]. It is also harnessed in nature, for
instance in the capture thread of the orb-weaving spider
[3, 4] and in rabbit mesentery [5]. The process of buck-
ling and deploying material length is rich in its geometric
aspects [6], and it also has a striking mechanical feature:
a wrinkled sheet has approximately no resistance to ex-
tension until it becomes taut, at which point the force
to stretch the system further rapidly increases (Fig. 1c).
This mechanical response has been idealized in a theory
of so-called “locking materials” [7, 8].

Here we establish a simple route to a tunable locking
material – a system with an interval where it is freely
deformable, and where the endpoints of this interval can
be changed continuously over a wide range. We demon-
strate this type of mechanical response in a thin cylindri-
cal shell subjected to axial twist and compression. Our
measurements show that this system is soft to twisting up
to a threshold “locking angle” ϕ`. By adapting the basic
physical picture of tension field theory [9–12] into sim-
ple length-preserving arguments, we predict the locking
angle as a function of a small set of geometric param-
eters. We predict a universal phase boundary between
the soft deformations facilitated by buckling and the stiff
response where the system becomes taut, in agreement
with our experiments. These results provide a prototyp-
ical example of a locking position that can be tuned in
situ, which could find use in applications where a repro-
grammable mechanical response is desired.

The phenomenon we study is shown in Fig. 1. Here,
a rectangular mylar film (thickness t = 6 µm, Young’s
modulus E = 3.4 GPa) has been curved into a cylin-
drical shape by gluing two of its edges to rigid rings of
radius R = 9.5 mm, which are mounted in a rheometer
(Anton Paar MCR 302) for mechanical testing. Unde-
formed, the cylinder strongly resists extension, but will
readily buckle and wrinkle under compression. Starting

FIG. 1. Morphology and mechanics of a twisted cylin-
drical shell. (a) A 6 µm thick shell of height H = 26.9 mm
and radius R = 9.5 mm is mounted between parallel plates,
compressed axially and then twisted. At a threshold twist
angle, the shell transitions from a disordered buckled state to
an ordered wrinkled state. Left: ϕ = 0. Right: ϕ = 90◦.
(b,c) Torque and vertical force on the top plate, as this cylin-
der is twisted cyclically between ±90◦ at constant separation
(h = 22.2 mm). The curves are reproducible over multiple
cycles. Coinciding with the transition to ordered wrinkles,
the data rapidly increase in magnitude at the “locking angle”
ϕ`. Our model predicts ϕ` = 81◦ for this shell (see Eq. 1).

from an initial height of H = 26.9 mm, the cylinder is
axially compressed to a height h = 22.2 mm so that it
buckles into a loosely crumpled configuration (Fig. 1a).
Then, we slowly rotate the top ring. When the magni-
tude of the rotation angle ϕ reaches approximately 81◦,
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we witness two striking events at once: (i) the complex
crumpled state gives way to regular wrinkles, and (ii)
the magnitude of the torque on the top ring begins to
increase dramatically (Fig. 1b). Performing this defor-
mation cyclically reveals that these mechanical measure-
ments and morphological transitions are repeatable.

The normal force on the top ring during the experiment
also shows a dramatic increase in magnitude at the same
angle ϕ`, as we show in Fig 1c. The wrinkled morphology
of Fig. 1a shows why the two signals are linked: stresses
are transmitted between the bottom and top rings along
the wrinkle crests and troughs, which are tilted with re-
spect to the vertical axis. Thus, we may use the normal
force as a secondary signal to measure ϕ`.
Geometric model. — To understand the emergence of

ordered wrinkles at a qualitative level, we imagine that
the cylinder of initial height H is constructed of many
vertical “ropes”, which are inextensible yet have zero re-
sistance to bending. When the cylinder is compressed
to a smaller height h, these ropes buckle to collect the
extra slack along their length. This buckling of the ropes
serves as a reservoir of material that allows the cylinder
to then be twisted by ϕ, until at some crucial angle ϕ`
the slack runs out and the ropes become taut. The same
picture holds if the initial direction of the ropes is skew,
forming a set of geodesics that can be characterized by an
offset angle θ at the cylindrical surface (see the segment
>
AB in Fig. 2a). As we will now show, there is a precise
θ of the tilted ropes that forms the strongest constraint
to the rotation. It is the geometric selection of θ that
determines the locking angle ϕ` and the final orientation
α of the wrinkles for the buckled configuration.

The key geometric observation is that the initial length

of the rope
>
AB =

√
H2 +R2θ2, must match the final

length of the rope A′B =
√
h2 + 2R2 − 2R2 cos(θ + ϕ) at

the point the system becomes taut. Equating these two
and introducing a dimensionless compression parameter
and a dimensionless aspect ratio,

C ≡ (H2 − h2)/(2R)2

ρ ≡ H/(2R),

we obtain 1 − θ2/2 − cos(θ + ϕ) = 2C. To see which θ
poses the strongest constraint to rotation, we seek the
value of θ for which ϕ is minimized; physically this cor-
responds to finding the set of lines in the undeformed
cylindrical shell that become taut first, as the compressed
shell is gradually twisted. The amount of twist ϕ` that
locks the system is thus:

ϕ` ≡ min
θ
{ϕ(θ)}

= −2

√√
C − C + cos−1(1− 2

√
C). (1)

This minimum ϕ occurs at θm = 2
√√

C − C, which iden-
tifies the material lines in the undeformed cylinder that
lock the system.

FIG. 2. Geometric idealization for compressing and
twisting an inextensible cylindrical shell. (a) A cylin-
drical shell with an initial height H is compressed to a fi-
nal height h and then twisted by ϕ. In this process, a
geodesic AB, represented by the offset angle θ, is mapped
onto a straight line A′B. Finding the largest allowed twist
ϕ` that does not stretch the material between any two points
amounts to identifying the most constraining θ that gives the
least amount of twist while preserving the length AB = A′B.
(b) An undeformed cylindrical shell and its idealized gross
shape after compression and twist, showing the correspond-
ing geodesics preserving the length. (c) Shape of a locked
cylinder (ϕ = ϕ`) with C = 0.64 and ρ = 1.42. Green curves:
Hyperbola given by Eq. 3 in the marked x-z coordinate sys-
tem. Red line: Asymptote of the hyperbola, which matches
the wrinkle angle α.

To help visualize this picture, Fig. 2b is an illustra-
tion of these material lines (black helices wrapping the
cylinder), and their taut counterparts in the compressed,
twisted shell at ϕ`. Each taut line makes an angle α with
the horizontal. To obtain an expression for α, we use the
geometry in Fig. 2a to express α in terms of ϕ` + θm,
h, and R. Applying the definitions of the compression
parameter C and the aspect ratio ρ, we find:

α = tan−1

√
ρ2 − C√

C
. (2)

We may also use these geometric arguments to obtain
the overall shape of the shell at ϕ` (neglecting the wrinkly
undulations). Because each point on the locked shell be-
longs to one taut line, the overall shape is given by sweep-
ing the straight line A′B in Fig. 2a about the axis of the
cylinder. This surface thus generated is a hyperboloid of
revolution [13, 14], and its side-profile is the hyperbola:

x2/a2 − z2/c2 = R2. (3)

Remarkably, the angle α of the line A′B is equal to the
angle of the asymptote of the side-view profile [15], z =
(c/a) · x = tanα · x. This allows us to express the ratio
c/a in terms of ρ and C, through Eq. 2. To obtain c
and a, we combine this result with Eq. 3 applied to the
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top boundary of the cylinder, R2/a2 − h2/(4c2) = R2.
Solving these two equations gives: a2 = 1 −

√
C and

c2 = (ρ2 − C)(1−
√
C)/
√
C.

As a first test of our model, we compare these predic-
tions with the cylinder from Figs. 1 and 2c with C = 0.64
and ρ = 1.42. Figure 2c shows the predicted hyperbolic
shape, which is in reasonable agreement with the ob-
served side-view profile, allowing for the finite-amplitude
wrinkles that protrude from the hyperboloid shape, and
that we neglect in the model. We also show the asymp-
tote, which agrees with the orientation of the wrinkles
passing through the center of the shell in the plane nor-
mal to the line of sight. Finally, the locking angle pre-
dicted by Eq. 1, ϕ` = 81◦, is in reasonable agreement
with the location of the rapid increase in magnitude of
the force and torque curves in Fig. 1b,c.

Tunability. — A more comprehensive test of the pre-
dicted locking angle involves probing it as a function of
the axial compression. Indeed, our geometric model pre-
dicts the phase boundary between relaxed and stretched
states, and we may plot Eq. 1 on a phase diagram as in
Fig. 3. At a given axial compression, C, the shell is soft
to rotation within the interval |ϕ| < ϕ`. Figure 3 shows
that the width of this interval can be tuned on demand
between 0 and 360◦.

To test this picture, we designed a protocol to trace
out the phase boundary in a single experiment. We twist
the cylinder back and forth between ±360◦ at a constant
rate, keeping a small separation force −0.5 N between
the top and bottom plates of the cylinder. The exact
value of this force is not important, but it must be small
enough to avoid tearing the sheet, and large enough to
activate relaxations of the wrinkle pattern toward the
lowest-energy ordered state (see SM). This force causes
the cylinder to gradually decrease or increase its height in
response to the continuous twisting, maintaining a taut
configuration. In this process we track the twist angle
ϕ and the resulting compression C, calculated from the
initial height H and the adapted height h. Figure 3 shows
an excellent match between the curve traced out by the
test cycle and the relation from Eq. 1, within the working
regime |ϕ| < 180◦ of our geometric model. This is notable
given that our model does not include the bending or
stretching moduli of the sheet, and it does not take into
account the finite size of the wrinkles or the boundary
layer where the wrinkle amplitude decays to zero at the
clamped boundaries.

There is another striking simplicity of the behavior:
Eq. 1 predicts that the phase diagram is independent of
the initial shape of the cylinder—ρ is absent from Eq. 1
and the phase diagram axes (Fig. 3). To further demon-
strate this universality, we perform a new experiment
with a cylinder of aspect ratio ρ = 0.79 and compare it
to the earlier test with ρ = 1.42. Figure 4a shows that
the curves followed by the slender and squat cylinders
both fall along our model prediction (Eq. 1).

FIG. 3. Phase diagram of a cylindrical shell subjected
to axial compression C and twist ϕ. Modeling the system
as a material that can compress but not stretch makes every
point in the “relaxed” phase accessible (up to the horizontal
line C = ρ2 that corresponds to full compression with h = 0).
Our geometric model predicts the phase boundary where the
system locks and becomes taut (Eq. 1: black line). Red curve:
Experiment with a 1.5 µm thick shell with R = 9.5 mm and
H = 26.9 mm, cycling between ϕ = ±180◦ at a constant rate
while applying a small lifting force F = −0.5 N at the top
boundary. The data are in good agreement with our model
that has no free parameters. The small discrepancy around
ϕ = 0 is due to the finite stretching of the sheet; see SM.

The fates of the two cylinders at their limits of rotation,
however, are different. When the slender cylinder (ρ =
1.42) is twisted toward 180◦, a tight waist appears that
contracts to a small size to form a double-cone structure
(Fig. 4b-e). Indeed, at ϕ` = 180◦ (C = 1), our geometric
argument predicts that all lines of tension (represented by
A′B in Fig. 2a) simultaneously pass through the center of
the cylinder. A simple way for our model to handle this
self-contact is for the lines of tension to curl around one
another at the apex of the double-cone, leaving h fixed
even as the twist exceeds 180◦. This idealized behavior
is represented by the horizontal line C = 1 for ϕ` >
180◦ in Fig. 4a. The torque is zero along this line as the
lines of tension have lost their azimuthal component. In
the experiment, the finite thickness of the shell causes
a finite-sized waist to form, so that the dimensionless
compression C rises slowly for ϕ` > 180◦, and a small
torque is observed.

On the other hand, a squat cylinder with ρ =
H/(2R) < 1 cannot be twisted up to ϕ = 180◦. At

ϕ` = −2
√
ρ− ρ2 + cos−1(1 − 2ρ) < 180◦, h = 0 and

the top and bottom come into contact as shown in the
sequence of images in Fig. 4f-h for an experimental re-
alization with ρ = 0.79. This deformation results in a



4

FIG. 4. Effects of the aspect ratio ρ of the cylinder. (a) Locking curves for two 1.5 µm-thick cylindrical shells with the
same radius R = 9.52 mm but different heights, twisted from 0◦ to 360◦ at a constant rate while applying a small lifting force
F = −0.5 N at the top boundary. Green: H = 26.9 mm, ρ = 1.42. Magenta: H = 15.0 mm, ρ = 0.79. (b–e) Side-view images
of the slender shell (ρ = 1.42) at ϕ = 0◦, 120◦, 180◦, 360◦. (f–h) Side-view images of the squat shell (ρ = 0.79) at ϕ = 0◦, 52◦,
87◦. (i) Bottom-view image of the configuration of (h). (j) Markers: observed angle of wrinkles with respect to the vertical
direction, versus the locking angle ϕ`, for the two cylinders. Curves: Eq. 2 for the angle of the lines of tension.

finite throat size, seen in the bottom view of Fig. 4i. As
a consequence of this evolution, a squat cylinder never
loses its locking ability.

The orientation of the lines of stress also depends on
the aspect ratio ρ. Figure 4j shows the measured wrin-
kle tilt α for the same two cylinders but different aspect
ratios (ρ = 1.42 and 0.79) at a series of locked config-
urations. For the slender cylinder (ρ > 1), the wrinkle
direction plateaus to the double-cone limit at large twist.
For the squat cylinder (ρ < 1), the wrinkles become more
and more skew until they lay down completely as the
shell flattens into a wrinkled annulus. Both trends are
captured accurately by our geometric prediction, Eq. 2.

Discussion. — We have shown how a thin cylindri-
cal shell can be manipulated to give rise to a tunable
locking behavior, where the torque and force dramati-
cally increase beyond the locking angles ±ϕ`. Beyond
the locking point the material stretches, so that in the
blue shaded region of Fig. 3 the system acts as an ex-
tensional or torsional spring [16]. Our geometric argu-
ments show how ϕ` can be set on demand over a wide
range—anywhere from 0 to 180◦—and our results apply
to sufficiently thin cylindrical shells of any aspect ratio.
This behavior is amenable to applications, as the system
is lightweight and relies on a low-cost film that can be
sourced from roll-to-roll processing.

At a twist angle of 180◦, our purely geometric argu-
ments show that the sheet must make contact with it-
self. As we approach this angle from below, the waist of
the sheet approaches zero radius, wrinkles become more
prevalent, and the sheet’s finite bending modulus and
thickness play a role, so that the experimental data be-
gin to deviate from our model. Eventually a tight bundle
forms where the material twists around itself in a neck
that joins two wrinkled cones—reminiscent of a twisted

candy wrapper, sausage casing, party balloon [17] or
towel. An understanding of this bundle must take into
account the finite thickness of the film, the friction of
self-contact, and the geometric problem of packing the
sheet into a small cross-section [18].

Our results suggest a fascinating landscape of configu-
rations for the sheet. In our idealized model, each point
on the phase boundary corresponds to a unique configu-
ration of the sheet, where uniform wrinkles orient at an
angle α around a hyperbolic profile. This is reflected in
our experiments as a robust and repeatable ordered re-
sponse at the phase boundary, although the precise place-
ment of wrinkles can differ in each realization. Slightly
away from the phase boundary, the number of possible
states expands dramatically: even though the wrinkles
still have a dominant orientation, some are buckled and
some have other directions. Finally, deep into the “re-
laxed” phase (the gray shaded region in Fig. 3), the sheet
can be in a vast number of metastable states (Fig. 1a, left
image), in contrast to the relatively small set of “bottle-
neck” states along the boundary. We note that this evolu-
tion from smooth wrinkles to sharp crumpled morpholo-
gies evades an existing empirical framework for such a
transition [19, 20], as here the crumples arise when there
are no tensional loads on the boundaries of the shell.

Equally striking is the difference among the possi-
ble paths from an arbitrary ϕ` with one set of or-
dered wrinkles, to −ϕ` with a mutually incompatible set.
Uniquely, when one travels along the phase boundary
the wrinkles deform smoothly as α changes, and they
vanish momentarily at ϕ` = 0. All other paths tra-
verse the bulk, compressing and buckling the initial wrin-
kles, and then straightening out the resulting network via
many snap-through events—a noisy, messy, and highly
path-dependent [21] journey that showcases the essential



5

glassiness of a crumpled sheet.
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