
BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 1

Automated Machine Learning for
Deep Learning based Malware Detection

Austin Brown, Maanak Gupta, Senior Member, IEEE , and Mahmoud Abdelsalam

Abstract—Deep learning (DL) has proven to be effective in detecting sophisticated malware that is constantly evolving. Even though
deep learning has alleviated the feature engineering problem, finding the most optimal DL model’s architecture and set of
hyper-parameters, remains a challenge that requires domain expertise. In addition, many of the proposed state-of-the-art models are
very complex and may not be the best fit for different datasets. A promising approach, known as Automated Machine Learning
(AutoML), can reduce the domain expertise required to develop custom DL models by automating the ML pipeline key components,
namely hyperparameter optimization and neural architecture search (NAS). AutoML reduces the amount of human trial-and-error
involved in designing DL models, and in more recent implementations can find new model architectures with relatively low
computational overhead.
Research on the feasibility of using AutoML for malware detection is very limited. This work provides a comprehensive analysis and
insights on using AutoML for both static and online malware detection. For static, our analysis is performed on two widely used
malware datasets: SOREL-20M to demonstrate efficacy on large datasets; and EMBER-2018, a smaller dataset specifically curated to
hinder the performance of machine learning models. In addition, we show the effects of tuning the NAS process parameters on finding
a more optimal malware detection model on these static analysis datasets. Further, we also demonstrate that AutoML is performant in
online malware detection scenarios using Convolutional Neural Networks (CNNs) for cloud IaaS. We compare an AutoML technique to
six existing state-of-the-art CNNs using a newly generated online malware dataset with and without other applications running in the
background during malware execution. We show that the AutoML technique is more performant than the state-of-the-art CNNs with little
overhead in finding the architecture. In general, our experimental results show that the performance of AutoML based static and online
malware detection models are on par or even better than state-of-the-art models or hand-designed models presented in literature.

Index Terms—Malware Detection; Automated Machine Learning; Deep Learning; Cloud Security; Static Malware Analysis, Online
Malware Analysis

✦

1 INTRODUCTION

1.1 Overview and Motivation

Malware is becoming a more profitable domain for mali-
cious actors with the rise of digital connectivity and the
growing critical infrastructures reliance. These cyberattacks
have costed the industry billions [1] of dollars. The increase
and impact of such cyberattacks has called for novel and
sophisticated defense mechanisms in response to those that
wish to protect digital assets from malware attacks.

There are several existing approaches for malware anal-
ysis, including static [2], [3], dynamic [4]–[6], and online
analysis [7]–[10]. Each of these analysis methods collect
different features from the file or system in question, rang-
ing from details of the file header in static analysis, to
holistic operating system level performance metrics in the
case of online analysis. The reasons to use a specific analysis
approach depends on the use case and availability of data.
For simple file scanning, static analysis is the fastest method,
since there is no need to run the executable in question,
whereas, collecting data from a running executable in dy-
namic analysis may give more insight into the true behavior
and intent of a questionable executable. On the other hand,
unlike dynamic and online analysis, static analysis can be
crippled using well-known obfuscation techniques.

Machine learning (ML), especially DL, has become a
popular technique to develop malware detection solutions,
and has shown promising results [11] because of its ability

to learn generalized patterns to identify unseen malware.
As such, research works [5], [10], [12]–[20] have employed
different types of ML models to detect malware on a variety
of systems and data sources, depending on the use case.
These proposed solutions have utilized both traditional ML
algorithms and, more recently, deep learning algorithms.
Approaches [21], [22] that rely on traditional machine learn-
ing models require domain experts for feature engineering,
which, in most cases, is burdensome and laborious. On
the contrary, deep learning based approaches [9], [23]–[32]
eliminate the feature engineering step and are gaining more
traction. Some works [8], [33] have utilized state-of-the-art
DL models (e.g., ResNet [34], DenseNet [35], and VGG16
[36]) that perform well in general and train it on malware
data; however, these models are usually very complex and
require a rigorous tuning process to achieve the desired high
performance. In addition, such models are usually designed
for tasks like image, text, or voice recognition and can be
inadequate for malware detection. Consequentially, works
[25] have focused on manually crafting model architectures
that fit the malware detection domain. However, these
approaches not only require heavy tuning, but also high
technical skills in both the ML and the malware domains.

Automated Machine Learning (AutoML) [37] seeks to
automate the process of finding an optimal model architec-
ture for the given data and tuning this model to achieve
higher performance. In addition, it can also reduce the work
needed to redesign a malware detection model as malware

ar
X

iv
:2

30
3.

01
67

9v
2 

 [
cs

.C
R

] 
 3

 N
ov

 2
02

3



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 2

and data sources evolve overtime. Even though AutoML
pipelines require more computational time to produce a
model, they significantly reduce the work hours and exper-
tise needed to find a performant model.

AutoML holds significant promise for malware detec-
tion, automating the dual tasks of discovering the ideal
machine learning architecture tailored for this purpose and
subsequently refining this selected model. Despite its po-
tential, AutoML is still in its developmental phase, and
comprehensive exploration of its applicability, especially in
malware detection, remains limited.

Building on this, AutoML serves as a potent tool for do-
main experts, even those without the formal ”Data Scientist”
designation, enabling them to harness machine learning
more effectively. The efficacy of AutoML, like many machine
learning realms, often hinges on the volume of accessible
data and the intricacy of the given task. Domains rich in
data, such as our focus on malware detection, as well as
simulated environments that can generate vast amounts of
data, are well-poised to reap the benefits of AutoML. While
our discussion centers on its utility in static and online mal-
ware detection, AutoML’s potential can be extrapolated to
other cybersecurity areas like Network Intrusion Detection,
Security Log Analysis, and Threat Intelligence. Essentially,
any domain with ample high-quality data suited for deep
learning might find AutoML advantageous.

With the growth in malware sophistication and machine
learning complexity, especially in deep learning, finding
the most performant deep neural architecture without a
significant increase in human hours spent is critical. This
paper aims to study the feasibility of integrating AutoML
into the malware detection pipeline to remove the need to
hand design and tune ML models. In particular, we focus
on using deep learning, specifically Feed Forward Neural
Networks (FFNNs) and Convolutional Neural Networks
(CNNs). FFNNs have a high level of expressive power and
require much less feature engineering than traditional ma-
chine learning approaches. Convolutional Neural Networks
can model complex functions with image shaped data as
input with little to no feature engineering, only requiring
framing the data in a 2d vector. Further, we focus on both
data that is gathered through static analysis, specifically
focusing on portable executable (PE) files which are the
predominant executable format in the Windows operating
system, and online data captured from running, internet
connected, Linux servers in cloud IaaS with malware exe-
cuted on them. The main contributions of this work are:

• We study the feasibility of using AutoML for deep
learning based static malware detection and demon-
strate the effectiveness of the produced AutoML Deep
FFNN models by showing that they are comparable
to manually crafted models, even without significantly
tuning the AutoML pipeline.

• We provide insights and analysis of the automation
parameters of the AutoML process on static malware
data, and show how these parameters can affect the
performance of the found optimal model.

• We show that AutoML derived Convolutional Neural
Networks can preform better than state-of-the-art Con-
volutional Neural Networks on online malware data,
with little overhead in deriving the model architecture.

• We discuss ideas and future directions for improving
the efficiency and performance of AutoML models that
are designed for malware detection.

The rest of this work is organized as follows. Section
2 discusses background and related works in this domain.
Section 3 shows the application of AutoML in two popular
static malware datasets, with comparison to other works,
and discussion of the presented AutoML methodology. Sec-
tion 4 focuses on one-shot AutoML applied to CNNs to
detect malware in online cloud IaaS, with comparison to de-
tection results of state-of-the-art CNNs on the same dataset.
Section 5 presents ideas for future work and improvements,
as well as the conclusion to the findings in this work.

2 BACKGROUND AND RELATED WORKS

2.1 Malware Detection
2.1.1 Static Analysis
Static analysis involves analyzing features that can be ob-
served in a binary without running the binary executable.
Static analysis methods may include observations such as:
file entropy; n-gram analysis of byte sequences in a binary;
imports and API calls; strings found within the binary;
header information. The major benefit of static analysis is its
speed and low overhead, since the binary is not executed.

One of the most simple forms of static analysis for
malware detection is looking up the signature of a binary,
most often the file hash. This method is extremely efficient if
the binary’s hash is documented, but has no ability to detect
modified or new malware. A more popular method of static
analysis looks at n-grams of bytes in the binary. Authors
in [21] measured frequency of common n-gram bytes in
Windows binaries to determine if the binary is malicious.
The frequency of n-grams across both malicious and benign
binaries were used to train a K-nearest-neighbors classifier.
While this approach showed good results (at the time pub-
lished), it is unclear if it would show as good of results
in modern malware detection. This approach additionally
has proven to be computationally expensive and offers
diminishing returns as n increases [38]. Another work [22]
has taken it a step further from n-gram byte analysis to
analyzing instruction sequences in questionable binaries.

To reduce the overhead imposed by the essential feature
engineering in traditional ML, some researchers have fo-
cused on deep learning approaches. Authors in [39] used
recurrent neural networks to analyze the first 300 bytes
of the header of Windows PE files. Work in [25] utilizes
convolutional layers within a neural network to extract
information on Windows PE headers to determine binary
intent. Authors in [23] implemented what they call Windows-
Static-Brain-Droid, which implements multiple architectures
in a voting scheme. The features for the architecture are both
raw byte information and parsed features from the binary.
The raw byte features feed into various architectures based
on [25]. The parsed features feed into multiple traditional
classifiers and a FFNN. Section 3 will focus on developing
an optimized neural architecture similar to [23]’s FFNN.

2.1.2 Dynamic Analysis
Unlike static analysis, dynamic analysis executes a binary to
monitor its behavior. This is most often carried out in a sand-



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 3

boxed environment to restrict the binaries access to other
resources which a malware could attack. Data collected from
the execution behavior of malware allows for greater insight
into a questionable binary’s intent and nature. Authors in
[22], [32] utilized system calls captured during execution to
detect malware. Work in [22] utilizes traditional machine
learning approaches, while [32] uses neural networks for
classification. Authors in [5], look at API calls made in 5
minute intervals to classify binaries as benign or malicious.
These calls were passed to a CNN for classification. In [40],
authors use FFFNs to classify binaries based on extracted
API calls from dynamic execution.

Compared to static analysis, these methodologies require
extra computational overhead and time to detect malware.
However, dynamic analysis will not be able to detect sophis-
ticated malware that can detect the presence of an emulation
sandbox or the lack of network connectivity that is often
found with isolated emulation environments.

2.1.3 Online Analysis
Where dynamic analysis only analyzes the execution of a
single binary, online analysis collects data from an entire
system to monitor (in real time) for malware execution. This
allows for continuous monitoring of an open system (not in
a sandbox), with full access to all resources. Additionally,
this allows for collection of execution details that extend
beyond that of a single binary. This can include both knowl-
edge of normal execution of a given system as well has
effects to adjacent processes from live malware execution.

The authors in [41], [42] utilize performance counters
from an entire system to detect the presence of malware.
Guan et al. [43] proposed using system calls to detect
malware in online systems with ensembles of Bayesian
predictors and decision trees. Others have proposed using
memory features [44]. McDole et al. [7] and Abdelsalam
et al. [45] show that per-process performance metrics from
Ubuntu machines can provide high detection performance
when ingested with a CNN. The process data is structured
in the shape of an image, with the rows denoting different
processes and the columns denoting different performance
metrics for each process, collected from the target machine.
Abdelsalam et al. achieves 89.5% detection accuracy using
shallow CNNs, while McDole et al. achieves 92.9% detection
accuracy using state-of-the-art CNNs on the same dataset.
Jeffery et al. [9] uses recurrent neural networks (RNNs)
on the same dataset as McDole et al. and Abdelsalam et
al., but organizes the inputs to the RNN as sequences
of unique process features, all from the same time slice.
They achieve 99.61% detection accuracy with this technique.
Online malware detection can incur high overhead with
continuous monitoring of systems, but provides real-time
detection performance on evasive and low-lying malware
in a live environment without requiring the identification of
a suspicious executable.

2.2 Deep Learning for Malware Detection
Using deep learning for malware detection has been re-
searched extensively and spans approaches that utilize var-
ious types of deep learning algorithms including CNNs
[8], [27]–[29], [46], RNNs [9], [30], [31], feed forward neu-
ral networks (FFNNs) [23], [24], [26], etc. Deep learning

approaches presented in these works have the advantage
over traditional ML models as they do not require hand
designed features in order to be performant. Although these
approaches impose additional performance overhead as
compared to some traditional ML algorithms, many have
shown to be more performant under some conditions [47],
with high accuracy in malware detection [10].

Despite the fact that deep learning approaches have
shown tremendous results for malware detection, most of
these works fall short because either (1) they utilize state-of-
the-art models that are not tailored specifically for malware
detection and may not be optimal for the data available,
or (2) they have hand designed their models specifically
for malware detection, without AutoML, which requires
extensive domain experts’ knowledge and hand tuning.
Fortunately, AutoML can help overcome these obstacles
and attain higher optimal results; however, the feasibility of
utilizing AutoML for malware detection is hardly explored.

2.3 AutoML Overview
2.3.1 Neural Architecture Search
The performance of a model is highly dependent on the
design of its architecture. A neural architecture search aims
to find the architecture design that achieves the highest
performance on unseen validation data. We consider a
change in architecture design to constitute a change to the
number or configuration of trainable parameters, or the
layers’ activation function.

2.3.2 One-Shot Search Methodology
Many recent NAS methodologies focus on the computer
vision domain. This field is heavily dependent on convolu-
tional neural networks. Many types of layers within these
networks, given the same shape of input, will produce
the same shape of output. A network whose layers meet
this condition is, intuitively, easily mutable; layers can be
swapped out interchangeably, allowing the next layer to
accept any chosen layer type’s input since they share the
same output shape as shown in Figure 1. Many types of
layers can be substituted for Layer N and maintain the
same output shape of (1, 16, 16). This property allows for
an algorithm to test multiple layer choices at each layer
of a network to find the best architecture configuration.
The work presented in [48] can create a super-graph which
contains multiple sub-graphs representing all permutations
of networks given the choices of each layer. A similar work,
[49] relaxes the constraints of the categorical layer choice
to a softmax choice, such that the categorical choice is now
continuous, and a gradient can be used to find the best layer
choices through training by backpropagation.

These NAS methodologies are used to learn an entire
network architecture or learn the architecture of a cell that
is repeated throughout the network. As long as each of the
operations (layer) choices produce the same shape of output,
the specific operation choices within a cell can be anything.
This possibility allows for designing not only convolutional
cells, but also recurrent cells. This allows the algorithm to
find both CNNs and RNNs, or a combination of both.

These algorithms, known as One-Shot algorithms, find
the most performant network configuration in ”one-shot”,



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 4

Fig. 1. Example Convolutional Layer Output Shapes

without the need to train the network from scratch multiple
times, by leveraging theoutput shape property.

2.3.3 Multi-Trial Search Methodology
Multi-Trial NAS solutions, as opposed to one-shot, require
many trials of different network configurations to find a
performant architecture. In the past, before the invention
of clever one-shot methodologies, this was the only way to
test out different network architectures. Today, some types
of networks still rely on multi-trial NAS, such as networks
that can’t easily swap out layers because of layer output
shapes. There has been some work to improve the efficiency
of this process, such as [50], through weight sharing. This
allows each trial to run for a much shorter amount of time
by leveraging the learned parameters from previous trials,
and only optimizing for new parameters. However, these
algorithms, if not carefully controlled, can become unstable
in later trials. For this reason, our work with deep feed
forward neural networks in Section 3 utilizes the more
primitive multi-trial methodology in searching for the most
performant architecture.

2.3.4 NAS Search Space
The NAS search space is the total space containing the
values of all valid model configurations. During the NAS
process, architecture configurations are drawn from this
space and evaluated. The search space is arbitrarily large, so
reasonable constraints are placed in order to bound the cost
of time required to search and limit the complexity of the
chosen model. For example, a model depth of 1,000 layers
is a valid choice for an architecture, but it will produce a
very complex model with a considerably high training time.
For this reason, upper boundaries are usually provided.
For example, in our proposed approach in Section 3, we
set the number of layers’ upper bound to 14 to limit the
complexity of the model architectures available within the
search space. Beside bounding the range of the search space,
we also considered the sampling granularity and distribu-
tion of the search space. For example, in Section 3 we set
the granularity in selecting a layer’s width to 128 neurons
in order to limit the number of available selections while
still maintaining an appropriate level of expression of its
effect on model performance. In order to simplify the NAS
process, when a parameter value is selected from the search
space, we fix this value throughout the model, instead of on
a per-layer basis.

2.3.5 Automated ML for Malware Detection
Automated machine learning has recently been used in a
variety of fields. Several AutoML works have been designed

for specific domains, such as processes developed for the
computer vision domain [48], [49]. However, AutoML is
still at nascent stage which is yet to see wider adoption and
application in cybersecurity.

The field of malware detection has barely seen the pres-
ence of AutoML, and to the best of our knowledge has only
been presented in a few works. Research in [51] tested both
AutoGluon-Tabular1 and Microsoft NNI2 on the EMBER-
2018 dataset [52], a malware dataset based on static analysis.
These frameworks are used to tune hyper-parameters of a
LightGBM model to best classify binaries from the dataset.
Authors also used a proprietary dataset to evaluate the
AutoML frameworks. This approach yielded a 3.2% increase
of True Positive Rate above the EMBER-2018 baseline results
with the same classifier. AutoGluon-Tabular produced these
results vs a 2.2% increase with Microsoft NNI. Their ap-
proach largely used traditional machine learning methods
as well as a FFNN in the ensemble offered with AutoGluon-
Tabular. The authors of [53] use AutoML to detect malware
from encrypted network traffic. They used TLS fields as
parameters to form their AutoML process. This work used a
python package mljar-supervised3, utilizing many traditional
ML models as well as a deep neural network in an ensemble.

3 AUTOMATED MACHINE LEARNING FOR STATIC
MALWARE DETECTION

3.1 Deep Feed Forward Neural Networks

Deep Feed Forward Neural Networks (FFNNs) are an
extension of the simple perceptron network, except they
often contain one or more hidden layers. FFNNs without
convolutional or recurrent layers can also be referred to as
Multi-Layer Perceptrons (MLPs).

FFNNs pass input data through each layer in the model
sequentially, applying each layer’s function to the previous
layer’s output, forming what can be seen as an acyclic
graph from input to output with data flowing only one
way. Figure 2 shows an example FFNN. Each node within
a layer can apply an activation function to the sum of each
of its inputs, shown as the function lines within each node
in the figure. Each connection between nodes has a specific
weight applied to the output of a specific node into another
node. W1 and W2 represent the set of weights between each
layer, each weight in each set corresponding to a connection
between two unique nodes. The network can have any
number of hidden layers.

Deep FFNNs require backpropagation through gradient
descent to train weights of each layer of the network se-
quentially, backward through the network, from output to
input. Through the processes of backpropagation, activation
functions such as sigmoid and tanh can lead to a problem
called vanishing gradients. This occurs because repeatedly
taking the gradient of these functions, as backpropagation
occurs, results in a value that approaches zero. For this
reason, idempotent activation functions such as Rectified
Linear Unit (ReLU) are often used in hidden layers of
deep networks to solve the vanishing gradient problem.

1. https://auto.gluon.ai/stable/index.html
2. https://github.com/Microsoft/nni
3. https://supervised.mljar.com/



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 5

Fig. 2. Feed Forward Neural Network

Additionally, functions like ReLU and Exponential Linear
Unit (ELU) are cheaper to compute than sigmoid and tanh,
but still allow for the network to learn non-linear functions.
However, sigmoid like functions allow for an output to be
mapped to a probability, and are often used on the output
layer of a network to allow for each output neuron to
produce a binary decision. Figure 2 shows the input and
hidden layer activation functions as ReLU, and the output
layer’s activation function as sigmoid.

3.2 Search Methodology
During the neural architecture search, an architecture se-
lected from the search space is evaluated using an eval-
uation metric (F1-score our case), indicating the model
performance based on which a strategy is employed to
select the next architecture choice for subsequent evaluation.
The next architecture selection in this work is based on a
random selection strategy, where, regardless of the previous
result, each new architecture choice is randomly selected
without duplication. The NAS selects a number of random
architecture configurations from the search space. These are
referred to as trials. In each trial, a model is trained based on
the selected architecture for a predefined number of epochs.
Afterward, the model is evaluated at the end of every epoch
using the evaluation score of the validation set. The model
configuration that achieves the highest score will pass to the
next phase, that is hyper-parameter tuning.

3.2.1 Hyper-Parameter Tuning
Once an architecture is selected during the NAS phase, the
next phase, as shown in Figure 3, searches for the optimal
hyper-parameters of the chosen architecture. The hyper-
parameters of the model are tune-able values that affect
the model performance but do not alter the architecture of
the model itself. This can include the batch size, optimizer,
learning rate, dropout rate, etc. Just as in the NAS phase, the
hyper-parameter tuning phase also has a bounded search
space with a defined sampling granularity. With the hyper-
parameter search space, we also define the sampling dis-
tribution. The hyper-parameter search phase uses the Tree-
structured Parzen Estimator (TPE) strategy [54] in selecting
the next set of hyper-parameters to test.

3.2.2 Final Model Selection
After the hyper-parameter tuning phase is complete, the
results from the NAS phase and hyper-parameter tuning
phase are combined to be the final model configuration. The
model is then trained and evaluated after every epoch using
the evaluation score of the validation set, and the highest
performing epoch is saved as the final trained model to be
evaluated on the test set.

3.3 Static Malware Data Sources
We use two popular static malware datasets - EMBER-2018
[52] and SOREL-20M [55], extensively used in the literature.
We use these datasets with more primitive AutoML to
explore the results of this methodology on datasets that have
had high result benchmarks set.

3.3.1 EMBER-2018 Dataset [52]
EMBER is considered to be the first attempt to create an
appropriately large static malware dataset. The dataset con-
tains features extracted from benign and malicious portable
executable (PE) files using the ‘Library to Instrument Ex-
ecutable Formats’ (LIEF) [56]. The samples in the dataset
are labeled as either malicious, benign, or unknown. Only
the samples labeled malicious or benign are considered in
this work. There are approximately 600K samples in the
training set and 200K samples in the test set. Since there is no
validation set provided, we excluded and used the last 20%
of the training set (i.e. 120K samples) as the validation set.
There are two versions of the EMBER dataset: EMBER-2017
and EMBER-2018. EMBER-2018 was specifically curated so
that the training and testing sets would be harder to classify.
We used EMBER-2018 in our experiments. However, to
fairly compare our results to other works that used EMBER-
2017, we test and report our model’s (found with EMBER-
2018) performance against EMBER-2017 dataset.

3.3.2 SOREL-20M Dataset [55]
Sophos Labs4 released SOREL-20M dataset in 2020 to ad-
dress some shortcomings of EMBER dataset. This dataset
contains 12,699,013 training samples, 2,495,822 validation
samples, and 4,195,042 testing samples. SOREL-20M uses
the same features from the EMBER-2018 dataset. The sam-
ples in the SOREL-20M dataset contain the same binary
malicious label as EMBER-2018, but also contain extra
metadata, including the number of anti-virus vendors that
flagged a sample as malicious and the tags that anti-virus
vendors associated with a sample. Included in these tags
are labels such as dropper, adware, downloader, etc. Authors in
[26] have shown that the use of this metadata can help to im-
prove performance, and our work in this section will allow
the possibility of a model to use this auxiliary information
in the training process.

3.4 AutoML Tuning and Training
3.4.1 NAS Phase Configuration
The full architecture search space for both the EMBER-
2018 and SOREL-20M experiments is shown in Table 1. The

4. https://www.sophos.com/en-us/labs



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 6

Fig. 3. Automated Machine Learning Process

available options for Activation and Tag Head Activation are
not applicable since the choices are either Rectified Linear
Unit (ReLU) or Exponential Linear Unit (ELU). Similarly,
for Use Counts and Use Tags, the choices are either True or
False.

As mentioned previously, the SOREL-20M dataset has
readily available labels each containing a binary malicious
label, an encoding of the vendor tags, and a numerical
count of the vendors flagging the sample as malicious.
These additional labels were made available during the
architecture search process through the use of additional
output heads of the model to predict the count of the
vendors flagging the sample malicious and predict any tags
associated with the sample from anti-virus vendors. These
additional heads were made optional through the use of
two additional architecture search parameters: Use Counts
and Use Tags, as shown in Table 1. Design for additional
heads, their respective loss functions, and the network de-
sign is inspired by [26]. The architecture search selects 150
random architecture configurations from the search space.
The number of trials was chosen to cover both the search
space and minimize cost. However, further investigation is
required to analyze the effects of the number of trials on the
selected models’ performance as explained in subsection 3.6.
The SOREL-20 and EMBER-2018 NAS was run for 10 and 25
epochs, respectively.

The highest achieved F1-score of a model during any
point of its trial (instead of the F1-score of the final epoch)
is chosen as the fitness score so that a model configuration’s
ability is more accurately represented, as the model’s per-
formance may fluctuate during the training process. Even
though random search has been shown to give adequate
results with a sufficient amount of trials [57], [58], trial count
remains a parameter to be investigated in future work.

3.4.2 Hyper-Parameter Tuning Phase Configuration
The full hyper-parameter search space is shown in Table 2.
The quniform distribution behaves like the sampling gran-
ularity in the NAS phase. The loguniform samples from
a logarithmic distribution such that the logarithm of the
values returned will be uniformly distributed. Learning rate
is sampled from this distribution to allow smaller values to
be as likely sampled as larger values. We set the batch size

TABLE 1
Architecture Search Space

Parameter Minimum Maximum Granularity
Depth 1 14 1
Width 128 1920 128

Activation - - -
Tag Head Depth∗ 1 3 1
Tag Head Width∗ 16 112 16

Tag Head Activation∗ - - -
Use Counts∗ - - -

Use Tags∗ - - -
∗SOREL-20M Models Only

TABLE 2
Hyper Parameter Search Space

Parameter Minimum Maximum Granularity Distribution
Batch Size (SOREL-20M) 128 16384 1024 quniform

Batch Size (EMBER) 32 8192 32 quniform
Learning Rate 0.0001 1.0 - loguniform

Dropout 0.0 0.50 0.05 quniform
Tag Loss Weight∗ 0.0 1.0 .05 quniform

∗SOREL-20M Models Only

minimum, maximum, and sampling granularity larger for
the SOREL-20M experiments due to the size of the dataset
as compared to EMBER-2018. Similar to the NAS phase
parameters configuration, we believe that the minimum,
maximum, and sampling granularity values requires further
investigation.

In [26], using the SOREL-20M dataset, the authors use a
loss weight of 0.1 for the vendor count head and vendor tag
head, and a 1.0 loss weight for the malicious decision head.
These loss weights can be considered a hyper-parameter
available for tuning since altering the value does not change
the architecture of the model. In our work, the malicious
decision head loss weight is fixed to 1.0 while the auxiliary
loss head weights are variable between 0.0 and 1.0 each.
Note, only the tag head loss weight is included in Table
2 because the highest achieving model during the SOREL-
20M NAS phase did not have a vendor count head, and
therefore did not utilize that parameter. The models are
trained for 10 and 25 epochs in the case of SOREL-20M
and EMBER, respectively. F1-score is again used as the
evaluation metric in selecting the highest performing model.



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 7

TABLE 3
Found Optimal Parameters

Parameter SOREL-20M EMBER-2018
Depth 8 3
Width 1920 1664

Activation ReLU ReLU
Dropout 0.15 0.30

Learning Rate 0.000439 0.000269
Batch Size 3072 1440

Use Count Head False -
Use Tag Head True -

Tag Head Depth 1 -
Tag Head Width 112 -

Tag Head Activation ELU -
Tag Head Loss Weight 0.70 -

3.5 Experimental Results
3.5.1 Evaluation Metrics
We use four evaluation metrics along with receiver operat-
ing characteristic (ROC) and area under the curve (AUC).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1− score = 2× Precision×Recall

Precision+Recall
(4)

Positive refers to a malicious sample, whereas, negative
refers to a benign sample. TP, FP, TN and FN are true
positives, false positives, true negatives and false negatives,
respectively. Precision suffers when benign samples are
labeled as malicious (high FP), while recall suffers when
malicious samples are labeled as benign (high FN). F1-score
is the harmonic mean of precision and recall, so it signifies
models that have both high precision and recall. If a model
has high precision but low recall or vice versa, the F1-score
will be low.

3.5.2 Results
After the experiments, using F1-score as an evaluation met-
ric at each phase of the process, the found architectures and
hyper-parameters are shown in Table 3.

The detection results are listed in Table 4 and Table
5 for SOREL-20M and EMBER datasets, respectively. Also
included in this table is the AUC with a maximum false
positive rate (FPR) of 0.1%, the accuracy, F1-score, true pos-
itive rate (TPR) at 0.1% FPR, and TPR at 1% FPR. The table
also contains results using loss as a performance metric for
SOREL-20M and EMBER-2018; this is to show the difference
in F1-score and loss as a performance metric in the final
stage, this will be brought up in the discussion section of this
section. Some other works shown in the tables only report a
subset of the metrics, but are still shown for comparison.

In particular, for SOREL-20M, Table 4 shows our AUC
results are on par with the FFNN ensemble from [59] and
slightly exceeds [26], the work that presented the auxiliary
model heads for SOREL-20M. Our model significantly ex-
ceeds the AUC under 0.1% FPR of the only other work [59],

which reported this parameter. The accuracy of our model
is similar but higher than [59]. We reported TPR at 0.1% and
1% FPR for comparison to [26], where it can be seen our
model performed better in both.

With respect to EMBER-2018 in Table 5, [61] performs
slightly better in their reported metrics, AUC and accuracy,
whereas the rest of their metrics are not reported. Our model
chosen in the final training phase is similar to other results in
AUC and accuracy, surpassing [60] in AUC, and surpassing
both [59], [60] in accuracy. The AUC under 0.1% FPR of
our model far surpasses the results of [59]. The TPR at 0.1%
is the only reported metric of [51], which is significantly
higher than our results. Due to limited metrics provided by
other related works, it is difficult to compare the efficacy of
our AutoML method in a holistic sense. The results from
EMBER-2017 (with the optimal parameters from EMBER-
2018) are reported in the bottom of Table 5. The authors
in [23] and [25] only reported accuracy and F1-score of
their results. Our model’s accuracy and F1-score are slightly
higher than their results, but with metrics close to 100%, this
is significant.

The results show that models developed with our pro-
posed AutoML pipeline are similar to those found with
hand designed solutions, and sometimes even exceed the
performance. This shows the efficacy of integrating AutoML
into a malware detection pipeline, eliminating the need to
hand designed models, which is difficult, time consuming,
and requires high technical skills.

Figure 4 shows the ROC curve for both the EMBER-2018
and SOREL-20M experiments, note the logarithmic scale
on the x-axis denoting the FPR. An ROC curve shows the
TPR for each respective FPR. Given the magnitude increase
of training data in SOREL-20M over EMBER-2018, it is no
surprise the TPR of SOREL-20M is higher than EMBER-2018
at any FPR. SOREL-20M TPR falls off much slower than
EMBER-2018, and never goes below 0.8 TPR in the graph.

The training and evaluation were performed on a virtual
machine equipped with 92 vCPUs and 448 GB of memory.
Additionally, it incorporated 8 Tesla V100 GPUs, each with
16 GB of VRAM. While the number of cores and memory
might have been excessive for the task at hand, the presence
of 8 GPUs facilitated parallel training sessions for neural
network hyperparameter optimization.

3.6 Discussion and Analysis
3.6.1 Meta-Hyper-Parameter Selection
As mentioned earlier, many of the parameters governing
the NAS and Hyper-Parameter tuning phases are selected
based on our experience to simplify the process and provide
a balance between the cost of training and detection results.
We discuss below some of these parameters.

3.6.2 Epochs per Trial
The number of epochs per trial is an important parameter
that directly affect the NAS process. This was especially a
consideration for the SOREL-2OM trials, since the dataset is
an order of magnitude larger than the EMBER-2018 dataset
and therefore took much longer to train.

Initially, the number of epochs for the SOREL-20M NAS
trials was set to 3. This implies that the model configu-
rations with the highest performance after training for 3



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 8

TABLE 4
SOREL-20M Dataset Results

Work Perf. Metric AUC AUC ≤ 0.1% FPR Accuracy F1-Score TPR: 0.1% FPR TPR: 1% FPR
ALOHA [26] - 0.997 - - - 0.922 0.972

FFNN Ensemble [59] - 0.998 0.0927 0.988 - - -
LightGBM Ensemble [59] - 0.984 0.0446 0.861 - - -

Our Work F1-Score 0.998 0.966 0.990 0.984 0.965 0.993
Our Work Loss 0.998 0.969 0.990 0.984 0.963 0.995

TABLE 5
EMBER Dataset Results

EMBER 2018
Work Perf. Metric AUC AUC ≤ 0.1% FPR Accuracy F1-Score TPR: 0.1% FPR TPR: 1% FPR

AutoGluon Ensemble [51] - - - - - 0.900 -
Malconv w/ GCG [60] - 0.980 - 0.933 - - -

LightGBM Ensemble [59] - 0.986 0.0605 0.940 - - -
Detection Pipeline [61] - 0.995 - 0.969 - - -

Our Work F1-Score 0.984 0.614 0.958 0.958 0.417 0.969
Our Work Loss 0.981 0.573 0.918 0.921 0.188 0.951

EMBER 2017
Work Perf. Metric AUC AUC ≤ 0.1% FPR Accuracy F1-Score TPR: 0.1% FPR TPR: 1% FPR

DeepMalNet [23] - - - 0.989 0.989 - -
MalConv [25] - - - 0.988 0.988 - -

Our Work F1-Score 0.999 0.916 0.992 0.992 0.956 0.997

Fig. 4. ROC using F1-Score for Selection

epochs would perform the best overall. To test this, we
increased the number of epochs to 10 and 20 to help in
better understanding of the impact of epochs per trial on the
selected models’ performance during the NAS. The results
of these experiments are shown in Figure 5. The primary
consideration here is with the performance trend of SOREL-
20M, but EMBER-2018 is shown as well.

This graph shows the F1-score average of the top 30
selected models at any given epoch. The F1-score for each
model is calculated as the highest F1-score reached up to
and including a given epoch. At each epoch, the 30 models
with the highest F1-score, as described above, are averaged
together. At any epoch, the top 30 set of models may be
different if any model in the experiment achieves results that

Fig. 5. Top 30 Preforming Models Average F1 by Epoch

puts the model in the top 30 for that epoch. It can be seen
that there is a correlation between top model performance
and the number of epochs, in a seemingly logarithmic
relationship. As long as a model is not so complex that it
over-fits the training data, a more complex model should,
intuitively, preform as well as or better than a less complex
model. However, a good choice for the number of epochs
should be where the curve start to straighten so that the
model doesn’t become too complex and, in turn, require a
massive amount of training time. Figure 6 shows that as
the number of training epochs per trial increases so does
the average complexity of the top 30 performing models.
The model complexity in the figure represents the average
product of width and depth of the hidden layers of the top 30
model configurations during the NAS phase, which results
in the number of trainable parameters in a given model.



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 9

Fig. 6. Top 30 Preforming Models Average Complexity by Epoch

Fig. 7. ROC using Loss vs F1 for Selection

3.6.3 NAS and Tuning-parameters Phases Evaluation Met-
ric
We use F1-score as an evaluation metric to select the models
that have both high recall and precision. After getting the
final selected model during the NAS and hyper-tunning-
parameter phases, we train and evaluate the model using
both F1-score and binary cross-entropy loss. The results
shown in the ROC curves in Figure 7 shows that both
metrics can reach comparable results. This indicates that,
besides F1-score, other metrics could also be explored, in-
cluding accuracy, AOC, binary cross-entropy loss, etc. and
are left to future work.

3.6.4 Search Space Bounding and Strategy
The search space values are one of the most important
factors in the AutoML process. As shown in Table 3, the
width parameter (i.e. 1664) of selected model for EMBER-
2018 dataset is found to be less than the maximum value (i.e.
1920). However, the width of the SOREL-20M model was the
maximum available value in the bounded search space. This
indicates that an even wider model might preform better
than the found model had the search space been bigger. Se-
lecting optimal search space values is still an open question.

The choice of the search strategy for the NAS and tuning-
parameter phases are random search and TPE, respectively.
In this section, these strategies were chosen because of their
simplicity. However, a more adequate strategy tailored to
malware detection could potentially result in better selected
AutoML models.

3.6.5 Cost of Current Implementation
The SOREL-20M experiments took ≈30 minutes per epoch
to run, with 16 experiments running simultaneously. The
EMBER-2018 experiments took ≈5 minutes per epoch, with
24 experiments running simultaneously. Overall, the exper-
iments took ≈5600 minutes and ≈1560 minutes to run both
SOREL-20M and EMBER-2018 experiments, respectively.
This is the time to run the NAS and hyper-parameter phases
of the process, excluding the final model training. The time
to train the final model is not reported, as the computational
cost is insignificant compared to the previous two phases.

The current implementation of the proposed methodol-
ogy uses a multi-trial NAS, where each set of model param-
eters selected from the NAS search space are trained to the
specified epoch limit. Other implementations of multi-trial
NAS try to optimize this process through early stopping
and weight sharing [62]. Even though these methods may
introduce instability into the process, they can reduce the
computational cost.

It can be concluded that it is more expensive to use Au-
toML than to train hand-designed models. This cost trade-
off should be taken into account as the proposed method-
ology becomes more refined. Future implementations may
significantly reduce the time to complete the AutoML pro-
cess. This can be achieved through more sophisticated NAS
implementations and intelligent search strategies that can
reduce the number of trials required or the number of
epochs required per trial.

4 AUTOMATED MACHINE LEARNING FOR ONLINE
MALWARE DETECTION

This section will focus on using one-shot AutoML for mal-
ware detection in online cloud environments using Convo-
lutional Neural Networks (CNNs).

4.1 Convolutional Neural Networks

CNNs are a widely used type of deep learning model
designed for image type data. CNNs work differently than
regular deep FFNNs, where the output of every node is
passed into every node of the next layer. CNNs receive a
3 dimensional input (channels,height,width). CNNs have
filters, whose values are learned, that convolve across in-
put channels to detect edges. The primitive edges detected
in earlier layers can be combined in later layers to learn
more complex shapes. The core of CNN layers fall into
two categories: normal and reduction convolutional layers.
Normal convolutional layers use filters to convolve across
the input to produce data with more channels, keeping
the same height and width. Reduction cells to reduce the
width and height of its input data to reduce the number of
trainable parameters in the next layer or cell. The output of
the convolutional layers is passed through a pooling layer to



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 10

Fig. 8. Cloud Testbed Setup

Fig. 9. Experiment Phases

Fig. 10. Data Collection Phases

reduce the input dimension to 1 for dense layers to produce
the network output (prediction).

CNNs are used in this section because process perfor-
mance metric data can be grouped together in the form of an
image, with rows denoting unique processes and columns
denoting performance features of these processes.

4.2 Online Cloud Testbed

Figure 8 illustrate the testbed utilized to generate the online
malware dataset in an OpenStack5 instance hosted by the
University of Texas at San Antonio. All virtual machines
used to create this dataset had open and unrestricted in-
ternet access, as well as a public IP address. Each virtual
machine is running a fully up-to-date Ubuntu 18.04 in-
stance. The experiments are controlled and data gathered
by a controller node within the OpenStack testbed. Each
VM contains programs to collect data from their respective
sources, which at the end of the experiment is collected by
the controller node. Before each experiment, each target VM
is reset to a clean state. Each virtual machine has 2 CPU
cores, 4 gigabytes of RAM, and 40 gigabytes of disk space.

5. https://www.openstack.org/

4.3 Application and Baseline Sets

To best understand the behavior of malware on a full, online
system, it may help to include malware data when the
machine is idle and fully operational. For the purposes of
this dataset, the fully operational server will be an Apache
web server hosting a WordPress application, with a MySQL
database on the backend. To model real world end users
of the server, an on ON/OFF Pareto distribution following
NS26 parameters is utilized to mimic the distribution of
client requests to the webserver. All malware was run with
only user level privileges.

4.3.1 Malware Source and Selection

The malware selected for this data came from a variety
of sources, including VirusTotal7, MalShare8, VirusShare9,
Linux-Malware-Samples10, and MalwareBazarr11. The gath-
ered samples were tested for ability to execute on the target
hardware in case the mutable header field of the malware
had been altered, in which case the malware may not run on
the target hardware. Also, samples that lead to corruption
of the collected data during the experimentation process
were removed from consideration after the fact. In total 4077
malware samples were considered.

4.3.2 Data Collection

The experiment length for this dataset is 10 minutes -
meaning data is collected for the entirety of 10 minutes.
Halfway through a given experiment, the malware being
tested is executed. Therefore, every experiment contains an
equal amount of benign and malicious activity. This can
be seen in Figure 9. There are multiple random benign
SSH connections made to each target box throughout the
experiment to mask the SSH connection used to spawn the
malware execution.

The methods by which different sources of data are
collected contain both continuous and discrete collection.

6. http://www.isi.edu/nsnam/ns/doc/node509.html
7. https://www.virustotal.com/
8. https://www.malshare.com/
9. https://virusshare.com/
10. https://github.com/MalwareSamples/Linux-Malware-Samples
11. https://bazaar.abuse.ch/



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 11

Fig. 11. Input Data Shape

Fig. 12. General Architecture

Network data is collected continuously throughout the ex-
periment, and starts 10 seconds early to allow for a delta to
be taken, since the collection is a running total of network
activity per process. Per-process data is collected at an
interval of every 10 seconds, taking the instantaneous value
of the monitored metrics. The collection over time for each
data source as shown in Figure 10. Specifics of each type of
data collected will be discussed in the following subsections.

4.3.3 Per-Processes Performance Data
Performance metrics are collected on a per-process basis.
This data is collected every 10 seconds for the duration
of the experiment. The python library psutil is used to
collect this data.

Process IDs (PIDs) would, at first, seem like an easy
way to identify a unique process thought the experiment,
but this doesn’t hold true. A Linux kernel by default has a
maximum PID of 32768, at which point PIDs begin getting
re-used. Therefore, it is feasible that in a highly active system
that creates many new processes and closes old ones, that a
single PID may identify more than one process during the
experiment run-time. Instead, a tuple of the entire command
line (including arguments) of the process and a hash of the
executable (if applicable) is collected. This is much less likely
to collide with the identifier of another process.

4.3.4 Per-Process Network Data
Many data collection tools do not allow for the collection
of network traffic statistics in a per-process basis. However,

the tool Nethogs12 allows for the grouping of bandwidth by
process, and is used to collect network bandwidth data in
the experiments. A python wrapper is used to interact with
the Nethogs library for data collection.

The network bandwidth data (bytes in/out) per process
is recorded as a running total, therefore network data collec-
tion is started 10 seconds early, and the delta between each
record is used in post-processing. In order to match network
data to process data, the PID at a given timestamp in the
network data can be compared to the records in the process
data, which ultimately holds the primary key to denote a
unique process.

4.3.5 Combined Data and Representation
In order to include network data with per-process perfor-
mance metrics, the data is combined. First, any record of
the data collection agents is removed from the per-process
performance data. The data that is left in process data will
be the basis by which network usage is searched in network
data. The discrete process data is grouped by collection time
(every 10 seconds), and any matching network data between
collection times is added to the latter process data collection
record. That is for a given unique process record p taken
at collection time N, any matching network data records
for p between the previous collection time N-1 and current
collection time N, will be added to the process record of p
at collection time N. A sample feature table for a unique
process is shown here in Table 6.

To feed the data to models, the data is represented as
a single channel (grayscale) image. The columns of this
image are the collected performance metrics and the rows
are unique processes. As shown in Figure 11, the image
dimensions are represented as (channels, rows, columns)
and are selected to be (1, 64, 64). The first 26 columns
and second 26 columns each contain performance metrics
for the rows of processes. That is, the 56 used columns
of the input are divided into two sections of 26 features,
each of these meta-columns representing a unique processes
features. The first 32 rows of the first meta-column are
reserved for commonly occurring processes found in the
training set, so that in every input sample, a process that
is commonly occurring will be in the same spot in the data
in every input sample.

There are 12 blank columns, padded with 0, on the
right side of the image that are used as padding so the
image can maintain a square shape. The image shape is
selected to be square and a power of 2 to ensure there are
no dimensionality problems when feeding the data into a
variety of CNN models. A total of 128 unique processes can
be included in an image, and the top 32 processes that occur
very frequently throughout the data will always be placed
in the same row and column throughout all samples.

4.4 Methodology
We used one-shot learning to find a performant CNN to
detect malware from the performance metric data. The
Darts [49] AutoML methodology is applied to search for an
optimal CNN architecture from the training data. The code
for this is adapted from the Microsoft NNI implementation

12. https://github.com/raboof/nethogs



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 12

TABLE 6
Features Sample

Metric Value Metric Value Metric Value
num fds 78 cpu percent 0.0 cpu time user 0.15

cpu time system 1.7 cpu time children user 7.64 cpu time children system 3.1
context switches voluntary 1390 context switches involuntary 430 num threads 1

memory info rss 9113600 memory info vms 163598336 memory info shared 6795264
memory info text 1376256 memory info lib 0 memory info data 18956288

memory info dirty 0 memory info pss 2922496 memory info swap 0
io read count 53242 io write count 18782 io read bytes 320275456
io write bytes 113713152 io read chars 248760749 io write chars 152977520

sent bytes 0.0 recv bytes 0.0

of Darts. Darts works to find normal and reduction convolu-
tional cells by figuring out layer connections between nodes
in the repeated cells. The found architecture will be a normal
and reduction convolutional layer in a CNN with a specified
number of layers (cells), nodes per cell, and channels per
node. Increasing the number of nodes, and even more so
increasing the number channels per node, can create large
memory overhead in the neural architecture search. Darts
finds the connections between nodes in a cell by posing the
probability of a connection being the best as a softmax, so
the best connections can be found using gradient descent.
For further explanation on the DARTS AutoML process,
refer to the original paper [49].

The choices for connections between nodes in a cell
are skip connect (identity for normal cells and factorized
reduction for reduction cells), dilated convolution (5x5 or 3x3),
separable convolution (3x3 or 5x5), average pooling (3x3), or
max pooling (3x3). These were the choices in the original
Darts paper and are also used here. Stochastic Gradient
Descent (SGD) optimizer and a learning rate scheduler are
both used, with the same parameters as described in [49].

The general architecture for the entire network is shown
in Figure 12. The CNN part of the model is either be found
by with the Darts methodology or is a state-of-the art CNN
for comparison.

4.5 Training and Results
4.5.1 Data Splits
Given 4077 total malware experiments per set (base-
line/application), running for 10 minutes each, with data
points at every 10 seconds, 246,620 total samples are avail-
able in the baseline and application dataset. 80% of the ex-
periments are used for training, 10% for validation, and 10%
for testing. No experiment (malware sample) is contained
in more than one set (training/validation/testing). Also, the
baseline training set consists of the same malware as the
application training set, and the same is true for validation
and test sets. A mean and standard deviation are calculated
using the training set in the baseline and application set, and
is used to normalize each of the respective datasets.

4.5.2 Neural Architecture Search
The Darts network for the baseline data is found, with the
meta network parameters set at 5 layers, 5 nodes per cell,
and 5 channels per node. Due to a performance decrease
when the same Darts parameters are applied to the applica-
tion dataset, the Darts model for the application set is fixed

Fig. 13. Found Normal Cell

at 7 layers, 5 nodes per cell, and 9 channels per node. These
choices are somewhat arbitrary, but have direct impact on
memory usage during the NAS and the complexity and pre-
dictive performance of the found architecture. The selections
made are to allow the model to fit on a single GPU while
achieving good predictive performance. The impact of these
choices are discussed [49].

A dropout rate of 0.30 is used in the neural architecture
search, the same as used in all the rest of the model training.
The Darts architecture search is run for 30 epochs (approx-
imately 13 hours), using the training data. A batch size of
96 is used, the same as the original Darts paper. The found
architecture is then trained using the same hyper parameters
as the models it is compared to, described next.

4.5.3 Training Parameters

In order to compare the performance of Darts to state-of-
the-art CNNs, these models will be trained the same way
as the found Darts models: Resnet18, Resnet50, Resnet101,
Densenet121, Densenet169, and Densenet201. All the consid-
ered models share the same hyper parameters. The models
are each trained for 100 epochs, use the Adam optimizer
with a learning rate of 0.0005, learn on a batch size of 512,
and have a dropout rate of 0.30. For each model, the epoch



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 13

Fig. 14. Found Reduction Cell

TABLE 7
Online Detection Results

Baseline
Model Accuracy Precision Recall F1-Score AUC Delay @ Low FPR TPR @ Low FPR FPR @ Low FPR

Resnet18 0.97463 0.99387 0.95511 0.97411 0.99877 10.56373 s 0.96321 0.00735
Resnet50 0.97913 0.96266 0.99689 0.97948 0.99892 9.60784 s 0.96681 0.00759
Resnet101 0.98897 0.98856 0.98937 0.98897 0.99927 3.60294 s 0.98814 0.01045

Densenet121 0.98358 0.99079 0.97621 0.98344 0.99896 7.81863 s 0.97367 0.00816
Densenet169 0.98346 0.97972 0.98733 0.98351 0.99838 6.66667 s 0.97490 0.01086
Densenet201 0.98570 0.99148 0.97981 0.98561 0.99907 5.90686 s 0.98005 0.00898

Darts AutoML 0.98917 0.98674 0.99166 0.98919 0.99954 3.03922 s 0.98986 0.01094
Application

Model Accuracy Precision Recall F1-Score AUC Delay @ Low FPR TPR @ Low FPR FPR @ Low FPR
Resnet18 0.96246 0.94401 0.98709 0.96507 0.99417 21.33995 s 0.92964 0.01945
Resnet50 0.96667 0.96196 0.97512 0.96850 0.99480 14.54094 s 0.94084 0.01541
Resnet101 0.97953 0.97627 0.98500 0.98061 0.99728 10.19851 s 0.96470 0.01446

Densenet121 0.97239 0.97116 0.97644 0.97379 0.99414 13.44913 s 0.95592 0.01937
Densenet169 0.96164 0.94393 0.98554 0.96429 0.99248 28.31266 s 0.90368 0.01386
Densenet201 0.96078 0.94631 0.98103 0.96336 0.99276 27.89082 s 0.90671 0.01558

Darts AutoML (5 Layer) 0.97672 0.97755 0.97815 0.97785 0.99659 13.15136 s 0.95623 0.01171
Darts AutoML (7 Layer) 0.98611 0.98520 0.98842 0.98681 0.99907 4.01985 s 0.98694 0.01532

with the lowest validation loss is used on the test set to
produce the final results for that model.

4.5.4 Results
The best found normal and reduction convolutional cells
structures in the baseline darts model are shown in Figures
13 and 14, respectively. The two input nodes in each cell are
the outputs of the previous two cells, or in the case of the
first cell the duplicated output of the first layer of Darts. All
the node outputs are concatenated to be the cell output.

The training and evaluation was conducted on a VM
with 14 vCPUs, 100 GB of memory, and an RTX A6000 GPU
with 48 GB of VRAM.

The predictive results of the test set are shown in Table 7.
This table shows the accuracy, precision, recall, F1-score, and
Area Under the Curve (AUC) for each model. Additionally,
to model a real world scenario, a threshold is calculated
from the validation set, such that the the validation false
positive rate is 1.00%. This models a scenario where many
false positives can become overwhelming for analysts to
deal with, so an effort is made to minimize them by in-
creasing the detection threshold of the malware detection
model. When the threshold is increased, this can create a
delay in a positive malware detection, in real time, through
false negatives at the beginning of malware execution. This

is shown in the table as Delay @ Low FPR, and is the average
number of seconds elapsed before a successful detection
after the malware injection point. Also shown in this section
of the table is True Positive Rate TPR and False Positive Rate
FPR at the high detection threshold (low FPR) on the test set.

Both of the Darts models that were tried are shown
in the Application section of Table 7. The first model has
5 layers, 5 nodes per cell, and 7 channels per node. The
second Darts model has 7 layers, 5 nodes per cell, and 9
channels per node. The Darts models in both baseline and
application datasets perform better in almost every area
than state-of-the-art models. In the baseline set, Resnet18
and Resnet50 show better precision and recall than the Darts
model, respectively. It can, however, be seen that the Darts
model has a higher F1-score signifying that the Darts model
better balances precision and recall on the test set better
than either of the other models. The Darts model also has
the lowest delay, and is under 10 seconds, meaning that
most of the malware in each execution experiment was
detected in the first time slice after injection. Additionally,
many of the state-of-the-art models are shown to impose
a significant delay in the detection of the malware, with
some averaging over 2 time slices, or over 20 seconds for
a successful detection. The Darts models don’t always have
the lowest FPR at the high detection threshold, but all results



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 14

in this column are shown to be close to the 1% target to
validate the delay and TPR results.

Accuracy, Precision, Recall, and F1-Score are shown for
each model in both sets in Figures 15 and 16. The average
malicious prediction delay is also shown in Figures 17 and
18. The higher performance difference between the Darts
models and state-of-the-art models in the application set
vs the baseline set, suggests the need for AutoML derived
models as data becomes more complex. Data from a server
during real world use is more noisy and allows for malware
execution to better hide within this noise. The neural ar-
chitectures that are specifically derived based on this more
complex data for this use case are more performant at
identifying malware execution than generic architectures.

5 FUTURE WORK AND CONCLUSION

5.1 Future Work
This work describes the usefulness of AutoML for malware
detection. Future works can expand on the ideas of this
work with different search algorithms and malware data
sources, as well as create tools to even further automate the
process to make layman use of these methodologies easier.

5.1.1 Recurrent Neural Networks
Recurrent Neural Networks have shown near perfect results
with online per-process performance metric data [9]. The
Darts methodology can also be used to derive recurrent
cells, and this methodology should be examined on the
dataset from Section 4 in the future.

5.1.2 Per-Layer Granularity
In our work in Section 3, once the width of the hidden layer
is selected from the search space, it is fixed throughout the
hidden layers of a model leading to a rectangular shape of
the hidden layers in the model. However, an equivalent or
a more optimal model may contain variable size layers with
potentially fewer trainable parameters. A NAS process that
allowed this level of granularity without an explosion of the
NAS search space would prove valuable.

5.1.3 Refinement of Meta-Hyper-Parameters
The set values of the meta-hyper-parameters have a sig-
nificant effect on the efficacy of the AutoML process.
Works such as [63] have developed methods to optimize a
search strategy within the given confines of the meta-hyper-
parameters in a data driven way. Finding the appropriate
bounds of these parameters, specifically tailored to the
malware detection domain, is yet to be explored.

Addition of auxiliary output heads to the NAS search
space can also be considered meta-hyper-parameters. One
of the potential labels that can be given to this data may
not be of use in a strictly detection setting, but may help
derive a more performant model for the required objective
with auxiliary loss, just as discussed in [26]. Automatic
inclusion of these in the search space based on label data
would be valuable in automatic model searching. If hyper-
parameter tuning is also performed as part of the AutoML
process, the tuning algorithm can also be considered a meta-
hyper-parameter. Depending on the evaluation metric, or
rather intended performance (low false positive rate, high

Fig. 15. Baseline Results

Fig. 16. Application Results

Fig. 17. Baseline Delay

Fig. 18. Application Delay

accuracy, etc), the found optimal parameters may differ.
Algorithms such as differentiable evolution can also allow



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 15

for optimization for multiple objectives (evaluation metrics).

5.1.4 Deep Learning Types and Ensemble Learning
In Section 3, we only used FFNNs for the SOREL-20M and
EMBER-2018 datasets. An analysis of using various deep
learning models can be very useful. Further, malware data
can be extracted in many forms and types of data (e.g.,
time series and image data). Training a machine learning
model on combined dynamic time series data and statically
extracted tabular data can enhance the model’s detection
ability. However, designing such a model can be very diffi-
cult and, as such, AutoML is the perfect candidate for this
task. An AutoML system that can intelligently conform to
other sources of heterogeneous data is an area for future
work.

In addition, AutoML can be utilized for ensemble learn-
ing. For instance, an AutoML system that can train multiple
sub-models of different types and ensemble the sentiment
of the sub-models would allow for more robust application
in practice. Works such as [64] ensemble many types of ma-
chine learning models, including FFNNS, to achieve better
results. Extending this to other deep learning model types
could prove beneficial for malware detection.

5.1.5 User Friendly AutoML
Designing AutoML models can be easier than designing a
deep learning model from scratch, but an even more auto-
mated deep learning approach would be helpful for those
with knowledge of their own data, but not necessarily deep
learning. An AutoML system that could be instantiated with
only training data inputs, type of data (vector, image, time-
series), and primary and auxiliary labels would allow even
broader access to malware detection solutions using deep
learning. This framework would be able to automatically
select a model type of deep learning architectures and use
AutoML techniques to find a performant architecture to suit
the data, making maximal use of any provided auxiliary
information. Ideally, this would combine the methodologies
and discussions from both Sections 3 and 4. It would perfom
all phases of the AutoML process efficiently, and be able
to set applicable meta-hyper-parameters from details of the
provided training data.

5.2 Conclusion
In conclusion, we conjecture that Automated Machine
Learning offers an effective solution for detecting malware
in both static and online cloud IaaS environments. We found
that AutoML generated models can perform just as well or
even better than state-of-the-art models or models that have
been handcrafted by experts with domain knowledge in ma-
chine learning and malware. We explored the performance
of AutoML on two popular datasets static malware datasets
in Section 3, SOREL-20M used to demonstrate efficacy on
large datasets; and EMBER-2018, a dataset that was specifi-
cally curated to hinder the performance of machine learning
models; with results in Tables 4 and 5. Our work on static
malware datasets showed the feasibility of using AutoML
as a tool for malware detection while reducing the external
complexity and expertise required to train DL models.

We further explored one-shot AutoML on a new online
cloud IaaS malware dataset using CNNs. Our results show

that AutoML approaches can be utilized by cloud service
providers and malware detection vendors to find custom
deep learning models for malware detection utilizing any
of a variety of data sources. The online approach we have
shown can derive a custom CNN that is more capable
than state-of-the-art models and contains cells that are more
complex than what can feasibly be derived by hand. Im-
portantly, we demonstrated that the difference in detection
ability between AutoML models and state-of-the-art mod-
els becomes more pronounced as the noise in the input
data increases, approaching the noise levels seen in real-
world applications. We also elaborate on future directions to
mature the use of AutoML research towards cybersecurity
domains.

ACKNOWLEDGEMENTS

This work is partially funded by the National Science Foun-
dation grants 2230609, 2043324 at Tennessee Tech University,
and 2230610 at North Carolina A&T State University.

REFERENCES

[1] R. Anderson, C. Barton, R. Böhme, R. Clayton, C. Ganán, T. Grasso,
M. Levi, T. Moore, and M. Vasek, “Measuring the Changing Cost
of Cybercrime,” 2019.

[2] H. V. Nath and B. M. Mehtre, “Static Malware Analysis Using
Machine Learning Methods,” in International Conference on Security
in Computer Networks and Distributed Systems. Springer, 2014.

[3] A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, “Ma-
chine learning aided static malware analysis: A survey and tuto-
rial,” in Cyber Threat Intelligence. Springer, 2018, pp. 7–45.

[4] C. Willems et al., “Toward Automated Dynamic Malware Analysis
Using Cwsandbox,” IEEE Security & Privacy, vol. 5, no. 2, 2007.

[5] S. Tobiyama et al., “Malware Detection With Deep Neural Network
Using Process Behavior,” in IEEE computer software and applications
conference, vol. 2, 2016.

[6] A. Alotaibi, “Identifying malicious software using deep residual
long-short term memory,” IEEE Access, vol. 7, 2019.

[7] A. McDole et al., “Deep Learning Techniques for Behavioral Mal-
ware Analysis in Cloud IaaS,” in Malware Analysis using Artificial
Intelligence and Deep Learning. Springer, 2021.

[8] A. McDole, M. Abdelsalam, M. Gupta et al., “Analyzing CNN
Based Behavioural Malware Detection Techniques on Cloud IaaS,”
in International Conference on Cloud Computing. Springer, 2020.

[9] J. C. Kimmel, A. D. Mcdole, M. Abdelsalam, M. Gupta, and
R. Sandhu, “Recurrent Neural Networks Based Online Be-
havioural Malware Detection Techniques for Cloud Infrastruc-
ture,” IEEE Access, vol. 9, 2021.

[10] J. C. Kimmell, M. Abdelsalam, and M. Gupta, “Analyzing Machine
Learning Approaches for Online Malware Detection in Cloud,” in
IEEE International Conference on Smart Computing, 2021.

[11] M. Sahin and S. Bahtiyar, “A Survey on Malware Detection with
Deep Learning,” in Int. Conf. on Security of Information and Net-
works, 2020.

[12] W. Xie, S. Xu, S. Zou, and J. Xi, “A system-call behavior lan-
guage system for malware detection using a sensitivity-based lstm
model,” in Proceedings of the 2020 3rd International Conference on
Computer Science and Software Engineering, 2020, pp. 112–118.

[13] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj, “From
chatgpt to threatgpt: Impact of generative ai in cybersecurity and
privacy,” IEEE Access, 2023.

[14] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah,
“Android malware detection based on system call sequences and
lstm,” Multimedia Tools and Applications, 2019.

[15] P. Mishra, K. Khurana, S. Gupta, and M. K. Sharma, “Vmanalyzer:
Malware semantic analysis using integrated cnn and bi-directional
lstm for detecting vm-level attacks in cloud,” in International
Conference on Contemporary Computing (IC3), 2019.

[16] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learn-
ing for classification of malware system call sequences,” in Aus-
tralasian Joint Conference on Artificial Intelligence. Springer, 2016.



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 16

[17] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and
A. Thomas, “Malware classification with recurrent networks,” in
IEEE Conference on Acoustics, Speech and Signal Processing, 2015.

[18] K. Aryal, M. Gupta, and M. Abdelsalam, “A survey on adversarial
attacks for malware analysis,” arXiv preprint arXiv:2111.08223,
2021.

[19] P. Brown, A. Brown, M. Gupta, and M. Abdelsalam, “Online
malware classification with system-wide system calls in cloud
iaas,” in 2022 IEEE 23rd International Conference on Information
Reuse and Integration for Data Science (IRI). IEEE, 2022, pp. 146–151.

[20] K. Aryal, M. Gupta, and M. Abdelsalam, “Analysis of label-flip
poisoning attack on machine learning based malware detector,” in
IEEE International Conference on Big Data, 2022.

[21] T. Abou-Assaleh, N. Cercone, V. Kešelj, and R. Sweidan, “N-Gram-
Based Detection of New Malicious Code,” International Computer
Software and Applications Conference, vol. 2, 2004.

[22] Y. Fan et al., “Malicious Sequential Pattern Mining for Automatic
Malware Detection,” Expert Systems with Applications, vol. 52, 2016.

[23] R. Vinayakumar et al., “Robust intelligent malware detection using
deep learning,” IEEE Access, vol. 7, pp. 46 717–46 738, 2019.

[24] M. Sewak, S. K. Sahay, and H. Rathore, “An Investigation of a
Deep Learning Based Malware Detection System,” in PInterna-
tional Conference on Availability, Reliability and Security, 2018.

[25] E. Raff et al., “Malware Detection by Eating a Whole Exe,” in
Workshops at AAAI Conference on Artificial Intelligence, 2018.

[26] E. M. Rudd, F. N. Ducau, C. Wild, K. Berlin, and R. Harang,
“ALOHA: Auxiliary Loss Optimization for Hypothesis Augmen-
tation,” in USENIX Security Symposium, 2019.

[27] M. Ganesh, P. Pednekar, P. Prabhuswamy, D. S. Nair, Y. Park,
and H. Jeon, “CNN-Based Android Malware Detection,” in IEEE
International Conference on Software Security and Assurance, 2017.

[28] W. Wang, M. Zhao, and J. Wang, “Effective Android Malware
Detection With a Hybrid Model Based on Deep Autoencoder and
Convolutional Neural Network,” Journal of Ambient Intelligence and
Humanized Computing, vol. 10, no. 8, 2019.

[29] M. Yeo, Y. Koo, Y. Yoon, T. Hwang, J. Ryu, J. Song, and C. Park,
“Flow-Based Malware Detection Using Convolutional Neural Net-
work,” in IEEE Conference on Information Networking, 2018.

[30] R. Agrawal, J. W. Stokes, K. Selvaraj, and M. Marinescu, “Attention
in Recurrent Neural Networks for Ransomware Detection,” in
IEEE Conference on Acoustics, Speech and Signal Processing, 2019.

[31] S. Jha et al., “Recurrent Neural Network for Detecting Malware,”
Computers & Security, vol. 99, 2020.

[32] P. Luckett, J. T. McDonald, and J. Dawson, “Neural Network
Analysis of System Call Timing for Rootkit Detection,” in IEEE
Cybersecurity Symposium, 2016.

[33] E. Rezende, G. Ruppert, T. Carvalho, A. Theophilo, F. Ramos, and
P. d. Geus, “Malicious Software Classification Using vgg16 Deep
Neural Network’s Bottleneck Features,” in Information Technology-
New Generations. Springer, 2018.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016.

[35] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “Densenet: Implementing Efficient Convnet Descriptor
Pyramids,” arXiv preprint arXiv:1404.1869, 2014.

[36] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[37] X. He, K. Zhao, and X. Chu, “AutoML: A Survey of the State-Of-
The-Art,” Knowledge-Based Systems, vol. 212, 2021.

[38] E. Raff et al., “An Investigation of Byte N-Gram Features for
Malware Classification,” Journal of Computer Virology and Hacking
Techniques, vol. 14, no. 1, 2018.

[39] E. Raff, J. Sylvester, and C. Nicholas, “Learning the PE Header,
Malware Detection With Minimal Domain Knowledge,” in ACM
Workshop on Artificial Intelligence and Security, 2017.

[40] W. Huang and J. W. Stokes, “MtNet: A Multi-Task Neural Network
for Dynamic Malware Classification,” in Int. conf. on detection of
intrusions and malware, and vulnerability assessment. Springer, 2016.

[41] J. Demme et al., “On the feasibility of online malware detection
with performance counters,” ACM SIGARCH Computer Architec-
ture News, vol. 41, no. 3, 2013.

[42] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Pono-
marev, “Malware-aware processors: A framework for efficient on-
line malware detection,” in 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA), 2015.

[43] Q. Guan, Z. Zhang, and S. Fu, “Ensemble of bayesian predictors
and decision trees for proactive failure management in cloud
computing systems,” Journal of Communications, 2012.

[44] Z. Xu et al., “Malware detection using machine learning based
analysis of virtual memory access patterns,” in IEEE Design,
Automation & Test in Europe Conference & Exhibition, 2017.

[45] M. Abdelsalam, R. Krishnan, and R. Sandhu, “Online malware
detection in cloud auto-scaling systems using shallow convolu-
tional neural networks,” in IFIP Annual Conference on Data and
Applications Security and Privacy. Springer, 2019, pp. 381–397.

[46] M. Abdelsalam, R. Krishnan, Y. Huang, and R. Sandhu, “Malware
detection in cloud infrastructures using convolutional neural net-
works,” in IEEE Conference on Cloud Computing, 2018, pp. 162–169.

[47] C. N. Kamath et al., “Comparative Study Between Traditional
Machine Learning and Deep Learning Approaches for Text Clas-
sification,” in ACM Symposium on Document Engineering, 2018.

[48] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient Neu-
ral Architecture Search via Parameters Sharing,” in International
conference on machine learning. PMLR, 2018.

[49] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable Architec-
ture Search,” arXiv preprint arXiv:1806.09055, 2018.

[50] T. Wei, C. Wang, Y. Rui, and C. W. Chen, “Network morphism,” in
International Conference on Machine Learning, 2016.

[51] P. P. Kundu et al., “An Empirical Evaluation of Automated Ma-
chine Learning Techniques for Malware Detection,” in ACM Work-
shop on Security and Privacy Analytics, 2021.

[52] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for
Training Static PE Malware Machine Learning Models,” ArXiv e-
prints, Apr. 2018.

[53] D. F. Isingizwe et al., “Analyzing Learning-based Encrypted Mal-
ware Traffic Classification with AutoML,” in IEEE Conference on
Communication Technology, 2021.

[54] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
Hyper-Parameter Optimization,” Advances in neural information
processing systems, vol. 24, 2011.

[55] R. Harang and E. M. Rudd, “Sorel-20m: A large scale
benchmark dataset for malicious pe detection,” arXiv preprint
arXiv:2012.07634, 2020.

[56] R. Thomas, “Lief - library to instrument executable formats,”
https://lief.quarkslab.com/, apr 2017.

[57] R. Cheng, “Random Search in High Dimensional Stochastic Op-
timization,” in Proceedings of the Winter Simulation Conference, ser.
WSC ’10. Winter Simulation Conference, 2010.

[58] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter
Optimization,” J. Mach. Learn. Res., vol. 13, no. 1, feb 2012.

[59] A. T. Nguyen et al., “Leveraging Uncertainty for Improved Static
Malware Detection Under Extreme False Positive Constraints.”

[60] E. Raff et al., “Classifying Sequences of Extreme Length With
Constant Memory Applied to Malware Detection,” arXiv preprint
arXiv:2012.09390, 2020.

[61] N. Loi, C. Borile, and D. Ucci, “Towards an Automated Pipeline for
Detecting and Classifying Malware through Machine Learning,”
arXiv preprint arXiv:2106.05625, 2021.

[62] L. Li and A. Talwalkar, “Random Search and Reproducibility for
Neural Architecture Search,” in Uncertainty in artificial intelligence.
PMLR, 2020.

[63] M. Feurer and F. Hutter, “Towards Further Automation in Au-
toml,” in ICML AutoML workshop, 2018.

[64] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and
A. Smola, “Autogluon-Tabular: Robust and Accurate Automl for
Structured Data,” arXiv preprint arXiv:2003.06505, 2020.

Austin Brown Received his B.S. in Computer
Science from Tennessee Tech University in
2020. He received his M.S in Computer Sci-
ence from Tennessee Tech University in 2022.
His interests include deep learning, malware re-
search, and cloud computing.



BROWN ET AL.: AUTOMATED MACHINE LEARNING FOR DEEP LEARNING BASED MALWARE DETECTION 17

Maanak Gupta is an Assistant Professor in
Computer Science at Tennessee Tech Univer-
sity, Cookeville, USA. He received M.S. and
Ph.D. in Computer Science from the University
of Texas at San Antonio (UTSA) and has also
worked as a postdoctoral fellow at the Institute
for Cyber Security (ICS) at UTSA. His primary
area of research includes security and privacy
in cyber space focused in studying foundational
aspects of access control, malware analysis, AI
and machine learning assisted cyber security,

adversarial AI and their applications in technologies including cyber
physical systems, cloud computing, IoT and Big Data. He holds a
B.Tech degree in Computer Science and Engineering from Kuruskhetra
University, India, and an M.S. in Information Systems from Northeastern
University, Boston. He is senior member of IEEE.

Mahmoud Abdelsalam received the B.Sc. de-
gree from the Arab Academy for Science
and Technology and Maritime Transportation
(AASTMT), in 2013, and the M.Sc. and Ph.D.
degrees from the University of Texas at San
Antonio (UTSA), in 2017 and 2018, respectively.
He was working as a Postdoctoral Research Fel-
low with the Institute for Cyber Security (ICS),
UTSA, and as an Assistant Professor with the
Department of Computer Science, Manhattan
College. He is currently working as an Assistant

Professor with the Department of Computer Science, North Carolina
A&T State University. His research interests include computer systems
security, anomaly and malware detection, cloud computing security and
monitoring, CPS security, and applied machine learning.


	Introduction
	Overview and Motivation

	Background and Related Works
	Malware Detection
	Static Analysis
	Dynamic Analysis
	Online Analysis

	Deep Learning for Malware Detection
	AutoML Overview
	Neural Architecture Search
	One-Shot Search Methodology
	Multi-Trial Search Methodology
	NAS Search Space
	Automated ML for Malware Detection


	Automated Machine Learning for Static Malware Detection
	Deep Feed Forward Neural Networks
	Search Methodology
	Hyper-Parameter Tuning
	Final Model Selection

	Static Malware Data Sources
	EMBER-2018 Dataset 2018arXiv180404637A
	SOREL-20M Dataset harang2020sorel

	AutoML Tuning and Training
	NAS Phase Configuration
	Hyper-Parameter Tuning Phase Configuration

	Experimental Results
	Evaluation Metrics
	Results

	Discussion and Analysis
	Meta-Hyper-Parameter Selection
	Epochs per Trial
	NAS and Tuning-parameters Phases Evaluation Metric
	Search Space Bounding and Strategy
	Cost of Current Implementation


	Automated Machine Learning for Online Malware Detection
	Convolutional Neural Networks
	Online Cloud Testbed
	Application and Baseline Sets
	Malware Source and Selection
	Data Collection
	Per-Processes Performance Data
	Per-Process Network Data
	Combined Data and Representation

	Methodology
	Training and Results
	Data Splits
	Neural Architecture Search
	Training Parameters
	Results


	Future Work and Conclusion 
	Future Work
	Recurrent Neural Networks
	Per-Layer Granularity
	Refinement of Meta-Hyper-Parameters
	Deep Learning Types and Ensemble Learning
	User Friendly AutoML

	Conclusion

	References
	Biographies
	Austin Brown
	Maanak Gupta
	Mahmoud Abdelsalam


