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We present low-temperature magnetotransport measurements on selectively-grown Sb2Te3-based
topological insulator ring structures. These topological insulator ring geometries display clear
Aharonov-Bohm oscillations in the conductance originating from phase-coherent transport around
the ring. The temperature dependence of the oscillation amplitude indicates that the Aharonov-
Bohm oscillations originate from ballistic transport along the ring arms. The oscillations can there-
fore be attributed to topological surface states, which can maintain a quasi-ballistic transport regime
in the presence of disorder. Further insight on the phase coherence is gained by comparing with
similar Aharonov-Bohm-type oscillations in topological insulator nanoribbons exposed to an axial
magnetic field. Here, quasi-ballistic phase-coherent transport is confirmed for closed-loop topological
surface states in transverse direction enclosing the cross-section of the nanoribbon. In contrast, the
appearance of universal conductance fluctuations indicates phase-coherent transport in the diffuse
regime, which is attributed to bulk carrier transport. Thus, it appears that even in the presence
of diffusive p-type charge carriers in Aharonov-Bohm ring structures, phase-coherent quasi-ballistic
transport of topologically protected surface states is maintained over long distances.

Keywords: topological insulators, ring interferometer, Aharonov-Bohm effect, topological surface states,
ballistic transport, universal conductance fluctuations, phase-coherent transport

I. INTRODUCTION

Phase-coherence has a great impact on transport in
mesoscopic systems which leads to many interesting ef-
fects, visible through their quantum mechanical correc-
tion to the conduction as a function of magnetic field or
gate voltage [1, 2]. Typical phenomena associated with
phase-coherent transport are weak (anti-)localization,
universal conductance fluctuations (UCFs), or Aharonov-
Bohm (AB) oscillations [1]. Recently, phase-coherent
transport has also been studied in three-dimensional
topological insulators (TIs) such as Bi2Te3, Sb2Te3,
Bi2Se3, or their alloys, in which topologically protected
spin-momentum locked surface states are present [3, 4].
Interest in these materials stems from applications in
topoelectronic circuits and topological quantum com-
puter architectures [5–8].

In previous studies, various transport properties
of straight three-dimensional TI-based nanowires and
nanoribbons have been investigated theoretically and
studied experimentally in micrometer- and nanometer-
sized systems. The observed effects range from weak an-
tilocalization and conductance fluctuations to the man-
ifestation of quasi-ballistic transport of topologically
protected surface states, inducing Aharonov-Bohm-type
conductance oscillations when applying a magnetic field
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FIG. 1. Aharonov-Bohm interferometer: (a) Schematics of
the selectively-grown ring structure. (b) Scanning electron
micrograph of a selectively-grown Sb2Te3-based ring device
(sample A) with an inner and outer radius of 100 nm and
150 nm, respectively.

along the wire or ribbon [9, 10, 12–16].

Three-dimensional TIs often tend to be intrinsically
doped due to the formation of crystal defects during
growth, leading to an additional bulk transport chan-
nel as the Fermi level either crosses the conduction or
valence band [17, 18]. With respect to phase-coherent
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transport, it is a difficult task to disentangle the con-
tributions from bulk and topologically protected surface
states. On the one hand, the picture regarding UCFs is
not so clear. In nanoribbons of ternary materials with a
relatively small bulk contribution, the UCFs have been
attributed to surface states [14], while in Bi2Se3 nanorib-
bons they have been assigned to bulk carriers [19]. On the
other hand, the AB-type oscillations observed in nanorib-
bons are generally believed to be due to phase-coherent
loops formed by topologically protected surface states
in the transverse direction around the perimeter of the
cross section [9, 10, 12, 13, 15, 16, 20]. From the expo-
nential decrease of the oscillation amplitude with tem-
perature, it was deduced that the transport is quasi-
ballistic [13, 15, 16]. However, not much information
has been available on phase-coherent transport of topo-
logically protected surface states along the axial direc-
tion of the nanoribbon, i.e., the direction along which
the (surface-state) current flows. To address this issue,
we measure planar Sb2Te3 ring-shaped interferometers
and investigate the Aharonov-Bohm effect with an out-
of-plane magnetic field. Here, we identify a clear peak in
the Fourier spectrum of the magnetoconductance corre-
sponding to magnetic flux quantum-periodic oscillations.
From the decrease of that peak with temperature, the
corresponding transport regime is identified. The com-
parison of different ring sizes as well as a detailed analy-
sis of the spectrum of the UCFs and the Aharonov-Bohm
oscillations in straight nanoribbons allow a comprehen-
sive investigation of the phase-coherence in the different
transport channels. The interpretation of the transport
measurement data is supported by quantum transport
simulations.

II. EXPERIMENTAL

The Sb2Te3 layer was grown by molecular beam epi-
taxy employing a selective-area growth approach [21].
For the substrate preparation, first, 5 nm of a Si(111)
wafer was thermally converted into SiO2. Subsequently,
a 20-nm-thick Si3N4 layer was deposited by low-pressure
chemical vapor deposition. The ring and nanoribbon
structures were defined by electron beam lithography.
Using reactive ion etching (CHF3/O2) and hydrofluoric
acid wet etching, the Si3N4 and the SiO2 layers were
etched, respectively, to reveal the Si(111) surface locally.
The structured Si3N4/SiO2 layers formed the selective-
area growth mask. The standard parameters for selec-
tive growth of Sb2Te3, given a substrate temperature
of 300 ◦C, a Sb-cell temperature of 470◦C, and a Te-
cell temperature of 325 ◦C, resulted in a growth rate of
7 nm/h. The 20-nm-thick TI ring and nanoribbon struc-
tures were grown in the Te-overpressure regime. To pre-
vent oxidation the Sb2Te3 layer was capped by a 5-nm-
thick AlOx layer. From Hall measurements at 1.5 K we
determined a hole carrier concentration of 7.4×1013 cm−2

and a mobility of 152 cm2/Vs (see Supplementary Mate-

rial SI).
The Ohmic contacts composed of a 5-nm-thick Nb

layer and a 100-nm-thick Au layer were deposited on top
of the TI layer after removing the AlOx capping in the
contact areas by wet chemical etching and argon sput-
tering. Rings of two different sizes were investigated,
i.e., samples A and B with an outer radius of 150 nm
and 200 nm, respectively, both with an annulus width of
50 nm. Figure 1 shows a schematic of a selectively-grown
ring structure as well as a scanning electron micrograph
of sample A. To further characterize the properties of
the Sb2Te3 layers, a 100-nm-wide nanoribbon (sample C)
prepared in the same run as the ring structures was fab-
ricated. The basic transport properties were extracted
from a 500-nm-wide Hall bar structure (see Supplemen-
tary Material SI).

The measurement of the ring structures were con-
ducted in a 3He-cryostat with a base temperature of
400 mK. The magnetic field is applied perpendicularly
to the substrate plane using a superconducting magnet.
The magnetotransport of the nanoribbon and Hall bar
were measured in a variable temperature insert with a
base temperature of 1.4 K. The current was measured
using a standard two-probe voltage sensing lock-in setup
for all samples.

III. RESULTS AND DISCUSSION

A. Aharonov-Bohm effect in ring structures

Figure 2a shows the normalized magnetoconductance
G/G0 of a ring interferometer structure (sample A) with
G0 = 2e2/h. The measurement temperature is varied
from 0.4 K to 5.0 K. The magnetic field is oriented per-
pendicularly to the substrate plane so that a magnetic
flux is threading the ring aperture. The corresponding
data of the second ring structure (sample B) is presented
in the Supplementary Material SII.

The magnetoconductance exhibits several features.
The most striking one is a peak at zero magnetic
field, which is due to the weak antilocalization effect.
This peak structure has been observed previously in TI
nanoribbon structures of similar width and is due to elec-
tron interference combined with strong spin-orbit cou-
pling (see Supplementary Material SIII) [14, 15]. An-
other feature are pronounced conductance fluctuations
with larger amplitude over larger B-field intervals, in par-
ticular at low temperatures. These are caused by the in-
terference of a limited number of trajectories due to the
small dimensions of the sample [22], which will be dis-
cussed in more detail at a later stage to provide comple-
mentary information on phase-coherence. A closer look
at the magnetoconductance reveals that regular oscilla-
tions with a smaller amplitude are superimposed on the
conductance fluctuations. A magnification of a smaller
magnetic field region is shown in the inset of Fig. 2a. We
found that the oscillation period is about ∆B = 82.5 mT.
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FIG. 2. Magnetotransport of ring structures: (a) Normalized magnetoconductance of sample A at temperatures in the range of
0.4 K to 5.0 K, with G0 = 2e2/h. The inset shows a detail of the oscillations at 800 mK in a smaller magnetic field range. The
measured period ∆B of 82.5 mT, fits accurately to the peak observed in the FFT of the measured data. The legend for the
different temperatures is given in (b). (b) Fourier spectrum of the magnetoconductance shown in (a). The expected frequency
according to the minimum and maximum radius as well as the mean radius are indicated by dashed lines. (c) Integrated
amplitude A of the peak in the FFT at 12 T−1 as a function of temperature. The solid line represents an exponential fit.

We attribute these regular features to the Aharonov-
Bohm effect in the ring-shaped conductor [23]. Indeed,
the period ∆B fits very well to oscillations with a flux
period of φ0 = ∆B · A, with φ0 = h/e the magnetic flux
quantum and A = πr2mean the area of the disc with radius
equal to the mean radius of the ring, rmean of 125 nm.

The periodic features in the magnetoconductance are
analyzed using a fast Fourier transform (FFT), as shown
in Fig. 2b. Note that the Fourier transform was applied
to the original data without any filtering. The FFT shows
a distinct peak at a frequency fB of 12 T−1, which cor-
responds to the expected value for the mean radius of
the ring indicated by the vertical dashed green line in
Fig. 2b. In general, the peak lies within the frequency
limits given by the inner (rmin) and outer (rmax) ring
radii, indicating that the trajectories of the electron par-
tial waves cover the entire ring area. As the temperature
increases, the height of the peak decreases correspond-
ing to a reduction of the oscillation amplitude. At about
3.0 K, the peak has disappeared. In addition to the peak
at about 12 T−1, a weaker feature is observed at about
25 T−1, where the second harmonic is expected.

From the decrease of the integrated peak height A(T )
at 12 T−1 in the FFT with increasing temperature, we
estimate the phase-coherence length lϕ. The integra-
tion is performed within a window bounded by the
frequencies corresponding to flux quantum periodicity
when considering the inner and outer radius of the
ring (cf. Fig. 2b). We consider an exponential decay

A ∝ exp(−πrmean/lϕ(T )) [4], with πrmean = 393 nm the
length of one of the ring arms and A being a measure
of the oscillation amplitude. Indeed, the peak height de-
cay is very well fitted by an exponential decrease with
lϕ(T ) ∼ T−1, as shown in Fig. 2c. From the fit, we ob-
tain a phase-coherence length of lϕ = 722 nm at a tem-
perature of 0.4 K, which is considerably longer than the
length of the ring arm.

Aharonov-Bohm oscillations arise when the phase-
coherence length lϕ is of the order of the length of a
ring arm, which is the case for our ring, as shown above.
In principle, in our intrisically doped TI samples, the os-
cillations can originate from bulk carriers as well as from
charge carriers in topologically protected surface states.
However, the exponential decay of the FFT amplitude
with lϕ(T ) ∼ T−1 indicates that the transport is in the
quasi-ballistic mesoscopic regime [8]. Hence, we antic-
ipate that the observed AB oscillations are mainly due
to transport of topologically protected surface states. In-
deed, in TI nanoribbons it was deduced that these surface
states with spin-momentum locking have an enhanced
transport mean free path due to strong anisotropic scat-
tering [19, 26]. This is consistent with our previous
findings based on magnetotransport measurements on
Sb2Te3 layers, in which a high-mobility two-dimensional
channel was identified that corresponds to these surface
state [1]. Note that the oscillation ampitude in 2 is small
compared to the conductance quantum. This can be due
to many reasons, e.g. resistances in series from the legs
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and contacts as well as a suppressed amplitude due to
disorder interaction which can also be seen in the simu-
lations in 3.

Based on the Shubnikov-de Haas oscillation measure-
ments, it was found that the surface-state carrier con-
centration is about an order of magnitude lower than the
total one. Additional information on the relevant trans-
port regime can be found in the Supplementary Material
SI.

To better understand the impact of elastic scattering
due to disorder on the AB effect of the ring for bulk versus
topological surface states, we perform quantum trans-
port simulations. We make use of the quantum trans-
port simulation package Kwant [28], the efficient paral-
lel sparse direct solver MUMPS [29], and the Adaptive
package [30] to efficiently sample the parameter space,
i.e., energy and flux. We employ the same tight-binding
modeling approach as in Refs. [31, 32] and refer to these
works for more details. Disorder is considered by adding
a randomly fluctuating on-site energy with a character-
istic disorder strength Sdis in the scattering region of the
tight-binding model. In Fig. 3, the simulation results
are summarized. The assumed sample geometry for the
simulation is depicted in Fig. 3a. We compare the mag-
netoconductance of a bulk metallic ring with that of a
bulk-insulating TI, where the bulk metallic states are de-
scribed as a free electron gas with an effective mass that is
appropriate for the bulk states of Sb2Te3 near the Fermi
level. The energy window is chosen for both systems such
that they have a comparable magnetoconductance in the
clean limit without disorder (cf. Fig. 3b). As can be seen
in Fig. 3c, without any disorder, the metallic ring displays
the most pronounced AB effect, with the appearance of
many higher harmonics (cf. Fig. 3e). When disorder
is introduced, however, the magnetoconductance oscilla-
tions are quickly suppressed, as well as the conductance
itself. The bulk metallic states are easily driven into a
highly diffusive regime by disorder, which hinders the
transport along the ring and the corresponding AB sig-
nature. For the TI surface states, the behavior is quite
different (cf. Figs. 3d and f). While the AB peak and its
harmonics in the Fourier spectrum are not so pronounced
as for the metallic ring in the clean limit, disorder has
a much weaker impact on the conductance and its flux
quantum-periodic oscillations. This reflects the resilience
of TI against elastic backscattering in the presence of dis-
order, which is also observed in straight nanoribbons and
multi-terminal junctions [13–15, 32, 33]. Because of their
spin-momentum locking properties and being bound to
the surface, a robust (quasi-)ballistic transport regime
can be established for TI surface states even in the pres-
ence of relatively strong disorder throughout the ring ge-
ometry.

B. Conductance fluctuations

In order to gain more information on the phase-
coherent transport, the investigation of Aharonov-Bohm
oscillations is followed up by an analysis of the conduc-
tance fluctuations also present in the magnetoconduc-
tance shown in Fig. 2a. The temperature dependence of
lϕ relevant for this phenomena can be determined from
the correlation field Bc. This quantity is extracted from
the normalized fluctuation patterns in the magnetocon-
ductance δG/G0 depicted in Fig. 4a obtained after sub-
tracting the slowly varying background and filtering out
the Aharonov-Bohm oscillations.

It can clearly be seen that the fluctuation ampli-
tude substantially decreases with increasing temperature,
while the pattern itself is consistent over all tempera-
tures. The correlation field Bc is determined using the
autocorrelation function: F (∆B) = 〈δG(B+∆B)δG(B)〉
[22]. Here, the full-width half maximum F (Bc) = 1

2F (0)
defines Bc. In the diffusive regime, lϕ can be determined
using lϕ ≈ γφ0/Bcd [35], with d the width of the ring
arms and the width of leads to the ring, which is 50 nm
in our case. For the pre-factor γ we choose 0.42 [35]
for lϕ larger than the thermal length (see Supplemen-
tary Material SI). The resulting values of lϕ determined
from the correlation field are shown in Fig. 4b. As indi-
cated by the blue line the decrease of the phase-coherence
length lϕ with increasing temperature can be fitted by a
dependency of lϕ ∝ T−0.26. The temperature depen-
dence of the sample is slightly lower than the expected
dependence of T−1/3 for a quasi one-dimensional sys-
tem [36]. The maximum of lϕ = 330 nm is smaller than
the corresponding value determined from the Aharonov-
Bohm oscillations. We attribute this discrepancy to dif-
ferent contributions to the overall phase-coherent trans-
port. As outlined in the previous section, we con-
cluded that the Aharonov-Bohm oscillations originate
from (quasi-)ballistic transport of topologically protected
surface states. In contrast, conductance fluctuations by
nature only show up in the diffusive transport regime.
We can therefore attribute the appearance of conduc-
tance fluctuations to diffusive bulk transport.

C. Nanoribbon measurements

So far we could show that Aharonov-Bohm oscilla-
tions appear in planar ring structures. The transport
regime was identified to be in the ballistic regime. How-
ever, for the topological surface states of TI nanoribbons,
Aharonov-Bohm-type oscillations are also expected to
show up under the application of an axial magnetic field.
In this case, the oscillations originate from the interfer-
ence of topologically protected surface states enclosing
the magnetic flux penetrating the cross section of the
nanoribbon. We verify this effect as well by measuring a
100-nm-wide Sb2Te3 nanoribbon from the same growth
run as the planar ring under application of an in-plane
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respectively.
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the ring structure. (b) Phase-coherence length lϕ of the ring
structure extracted from the correlation field Bc as a func-
tion of temperature. The blue line indicates an exponential
decrease of the phase-coherence length following T−0.26.

field along the nanoribbon axis. Figure 5a shows the cor-
responding magnetoconductance measurements at tem-
peratures in the range of 1.7 K to 20 K under application
of a magnetic field up to ±13 T.

The data shows a peak at zero magnetic field, which
can be attributed to weak antilocalization [14, 15]. On
top of this feature, clear low-frequency magnetic field-

dependent oscillations are observed. To distinguish the
magnetic field-dependent oscillations from the weak an-
tilocalization behaviour of the nanoribbon, a smooth
background has been subtracted by applying a first-order
Savitzky–Golay filter. The corresponding curves are de-
picted in Fig. 5b. A clear peak at a frequency of around
0.45 T−1 can be seen in the Fourier spectrum in Fig. 5c.
The cross-sectional area determined from the frequency
is 1.86 × 10−15 m2, which is matching very well to the
cross-sectional area of 2× 10−15 m2, which is determined
from the film thickness of 20 nm at a nanoribbon width
of 100 nm. The temperature dependence of the peak sug-
gests a strong dependence on the phase-coherence of our
carriers. The peak amplitude should vanish with tem-
perature corresponding to a vanishing phase-coherence
length of a carrier as a function of temperature. Similarly
to the planar ring structures we determined the decay of
the Aharonov-Bohm integrated peak height in the FFT
spectrum shown in Fig. 5b with temperature. Once again
the decay follows an exponential dependence according to
A ∝ exp(−P/lϕ(T )), with P the nanoribbon perimeter.
The temperature dependence indicates that the trans-
port is quasi-ballistic [13, 15, 16]. From the fit we de-
duced a phase-coherence length of lϕ(T = 2K) = 600 nm
at 2 K. The observed oscillations can be attributed to
phase-coherent oscillations around the perimeter of the
nanoribbon. This effectively proves the existence of sur-
face states in the investigated material.
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IV. CONCLUSION

From the temperature dependence of the Aharonov-
Bohm oscillation amplitude Sb2Te3 ring interferometers
we found that the phase-coherent transport takes place
in the quasi-ballistic regime. Comparing the quantum
transport simulations of a metallic and topological insu-
lator ring structures, we conclude that the quasi-ballistic
transport is attributable to the topologically protected
surface states. The underlying reason is that these states
are resilient against elastic backscattering in the presence
of disorder, unlike the diffusive bulk states. In addition
to the periodic Aharonov-Bohm oscillations, the magne-
toconductance trace also contains irregular conductance
oscillations. Since the appearance of this phenomena re-
quires transport in the diffusive regime, we conclude that
transport in the bulk channel is responsible in this case.
Finally, on straight nanoribbons fabricated in the same
growth run, regular Aharonov-Bohm oscillations are ob-
served under the application of an axial magnetic field.
As for the planar ring structures a quasi-ballistic regime
was identified. Our investigation on planar ring struc-
tures as well as on straight nanowire thus leads us to the
conclusion, that the phase-coherent transport in lateral
as well as in transverse direction is quasi-ballistic. Fur-

thermore, it seems that the transport in the topological
surface states is decoupled from the phase-coherent dif-
fusive transport in the bulk channel. The present work is
an important milestone to the distinction between quan-
tum transport in topologically protected surface states
and in the bulk channel. Our results thus help to de-
sign future topological devices based on phase-coherent
transport with topological insulator surface states.
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status solidi (a) 115, 87 (1989).

[18] D. O. Scanlon, P. D. C. King, R. P. Singh, A. de la Torre,
S. M. Walker, G. Balakrishnan, F. Baumberger, and
C. R. A. Catlow, Advanced Materials 24, 2154 (2012).

[19] J. Dufouleur, L. Veyrat, B. Dassonneville, C. Nowka,
S. Hampel, P. Leksin, B. Eichler, O. G. Schmidt,
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T. Schäpers, and T. L. Schmidt, Phys. Rev. B 97, 245429
(2018).

[32] J. Kölzer, K. Moors, A. R. Jalil, E. Zimmermann,
D. Rosenbach, L. Kibkalo, P. Schüffelgen, G. Mussler,
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Supplementary Material: Aharonov-Bohm interference and phase-coherent surface-state transport in
topological insulator rings

SI. MEASUREMENTS ON HALL BAR STRUCTURES

Basic Hall measurements have been conducted on a 500-nm-wide Hall bar structure in order to obtain the electronic
material properties of the Sb2Te3 topological insulator thin film. The Hall bar was selectively grown in the same growth
run as the ring and nanoribbon structures. Supplementary Figure S1 shows an electron beam micrograph of the Hall
bar sample. The topological insulator material is grown with a thickness of about 15 nm, which is thinner than for

Supplementary Figure S1. Scanning electron micrograph of the 500-nm-wide Hall bar structure.

the ring and nanoribbon structures owing to the dependence of the growth rate on the window area in the growth
mask. A standard lock-in amplifier setup and a variable temperature insert with a base temperature of 1.5 K were
used for the measurements. In Supplementary Figure S2(a) and (b) the Hall resistance as well as the longitudinal
magnetoresistance are shown. The system shows p-type behaviour. This is visible from the slope of the Hall resistance.
The Hall resistance increases linearly indicating an effective single-channel transport. The sample exhibits a monotonic
positive magnetoresistance as well as a weak antilocalization feature manifesting itself as a cusp-like dip in resistance
around zero field [S1]. A hole concentration of n =7.4×1013 cm−2 and a mobility of µ =152 cm2/Vs were obtained
from the Hall and longitudinal resistance measurements.

Taking the relatively large carrier concentration into account, we assume that most of the carriers are located
in the bulk valence band. Indeed, we estimated the bulk carrier concentration to be a factor of more than ten
larger than the concentration in the surface states. The dominating bulk contribution also results in an effective
single-channel transport indicated by the linear increase of the Hall resistance shown in Supplementary Figure S2(a).
Thus, in order to determine the bulk transport parameters we neglect the contribution of the holes in the surface
states. The approximate effect hole mass m∗ = m0, with me the free electron mass, was extracted from the band
structure calculation of Zhang et al. [S2]. Assuming that measured mobility is mainly governed by the bulk carriers
we obtained an elastic scattering time of τe = (m∗µ)/e of 4.8 × 10−14 s which together with an estimated Fermi
velocity vF of 1.3 × 105 m/s results in a diffusion constant of D = 1

3v
2
Fτe ≈ 0.41 × 10−3 m2/s and an elastic mean

free path le = vFτe ≈ 11 nm. The bulk Fermi velocity was calculated from vF = (~/m∗)(3π2n3D)1/3, with n3D the

three-dimensional hole concentration. Having D available the thermal length defined by lT =
√

~D/kBT can be
calculated. At a temperature of 1 K the thermal length is approximately 56 nm. Since the thermal length is in any
case smaller than the phase-coherence length of bulk carriers determined from conductance fluctuations, we assumed
a scaling factor of γ = 0.42 for the relation between the correlation field with lϕ in the main manuscript.
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Supplementary Figure S2. (a) Hall resistance as a function of magnetic field for various temperatures of the Hall bar structure.
(b) Corresponding longitudinal resistance as a function of magnetic field. (c) Measured magnetoconductance in a magnetic
field range of 0 to 0.2 T and fit according to the Hikami-Larkin-Nagaoka theory.

Supplementary Figure S3. (a) Scanning electron micro-graph of ring sample A in comparison to sample B which is shown in
(b).

SII. AHARONOV–BOHM OSCILLATIONS

We also investigate the magnetotransport of the second Aharonov-Bohm ring (sample B). For comparison, in
Supplementary Figures S3(a) and (b) electron beam micrographs are shown for sample A and B, respectively. The
outer radius of sample B is 200 nm, thus 50 nm larger than the one of sample A.

In Supplementary Figure S4(a) the normalized magnetoconductance G/G0 of sample B is shown, with G0 = 2e2/h
and the temperatures varied between 0.4 K to 4.0 K. The magnetoconductance show the same kind of features as for
sample A, i.e., a peak at zero resistance due to the weak antilocalization effect as well as conductance fluctuations.
Superimposed, one also finds regular Aharonov-Bohm oscillations. This becomes clear by having a look on the
magnification of a smaller magnetic field region depicted in Supplementary Figure S4(a) (inset). From that we
extracted an oscillation period of ∆B = 47 mT. The period ∆B fits very well to oscillations with a flux period of
φ0 = ∆B · A, with φ0 = h/e the magnetic flux quantum and A = πr2mean the ring area for the mean radius rmean of
175 nm.

As for ring sample A, the periodic features in the magnetoconductance are analyzed by a fast Fourier transform
(FFT), as shown in Supplementary Figure S4(b). In the FFT spectrum we resolve a distinct peak at a frequency fB of
about 21.5 T−1, which fits to the expected value for the mean radius of the ring indicated by the vertical dashed green
line in Supplementary Figure S4(b). Increasing the temperature causes a decrease of the peak height. In contrast to
sample A no second harmonic feature is observed in the Fourier spectrum.

The phase-coherence length lϕ was determined from the decrease of the integrated peak height A(T ) at 21.5 T−1
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Supplementary Figure S4. Magnetotransport of ring structures: (a) Normalized magnetoconductance of sample B at temper-
atures in the range of 0.4 K to 4.0 K, with G0 = 2e2/h. The inset shows a detail of the oscillations at 400 mK in a smaller
magnetic field range. The measured period ∆B of 47 mT, fits well to the peak observed in the FFT of the measured data.
The legend for the curves belonging to different temperatures is given in (b). (b) Fourier spectrum of the magnetoconductance
shown in (a). The frequency spectrum was smoothed with a moving average. The expected frequency according to the minimum
and maximum radius as well as the mean radius are indicated by dashed lines. (c) Integrated amplitude A of the peak in the
FFT at 23 T−1 as a function of temperature. The solid violet line represents an exponential fit with exp(−aT ) corresponding

to ballistic transport without thermal broadening. Also shown are fits assuming diffusive transport, i.e. with exp(−aT 1/2), as

well as thermal broadening, i.e. with prefactor
√
T .

in the Fourier spectrum with temperature. The integration is performed between frequencies corresponding to the
minimum and maximum ring radii (cf. Supplementary Figure S4(b)). As for sample A, we assumed an exponential
decay A ∝ exp(−πrmean/lϕ(T )), with πrmean = 550 nm the length of one of the ring arms. The peak height decay is
very well fitted by an exponential decrease with lϕ(T ) ∼ T−1, as shown in Supplementary Figure S4(c). From the fit,
we obtain a phase coherence length of lϕ = 859 nm at a temperature of 0.4 K.

Supplementary Figure S4(c) also shows fits for the peak amplitude for different transport regimes. Generally the
temperature dependence of the Aharonov-Bohm oscillation amplitude can be described by [S3, S4]

δG ∝
(
ETh

kBT

)(1/2)

exp(−πr/lϕ) , (S1)

where ETh is the Thouless energy [S5], i.e., for diffusive conductors it is given by ETh = ~D/L2, with D the diffusion
constant and L the ring circumference. For the ballistic case the situation for the Thouless energy is more subtle [S6].
In case that the thermal energy kBT is larger than ETh thermal broadening occurs, leading to a pre-factor T−1/2 of the
oscillation amplitude. In case that ETh is larger than kBT this factor can be neglected. Furthermore, the temperature
dependence of lϕ differs for the diffusive and ballistic case. Ludwig and Mirlin theoretically found that for the diffusive

case the phase-coherence length is proportional to T−1/2 [S7], whereas in the ballistic case one expects lϕ ∼ T−1 [S8].
In diffusive metallic and semiconducting rings a temperature dependence of lϕ ∼ T−p with p in between 0.5 and 0.75
was observed [S3, S9]. Whereas in clean semiconductor heterostructure rings [S10, S11] as well as in clean graphene
ring structures [S12] a temperature dependence of lϕ ∼ T−1 was found, indicating a ballistic transport regime [S8].
In topological insulator nanoribbons exposed to a magnetic field along the ribbon axis, Aharonov-Bohm oscillations
are observed due to the presence of tubular topologically protected surface states. These systems were also found to
be in the ballistic regime [S13–S15]. In Supplementary Figure S4(c), fits assuming different scenarios are shown, i.e.,
thermal broadening vs. no thermal broadening and diffusive vs. ballistic transport. Obviously, a good fit was only
obtained for the ballistic case without thermal broadening implying a large Thouless energy and a long mean free
path. The latter can be explained by the reduced backscattering of carriers in topologically protected surface states.



4

SIII. WEAK ANTILOCALIZATION ANALYSIS

As mentioned in the previous section, the magnetoresistance shown in Supplementary Figures S2(b) exhibits a small
cusp-like dip at zero field which can be assigned to the weak antilocalization effect. The weak antilocalization effect
for two-dimensional systems can be described by the the Hikami–Larkin–Nagaoka (HLN) formula [S16]. A fitting to
the experimental magnetoconductance (cf. Supplementary Figure S2(c)) results in a phase-coherence length of 225 nm
with an α-factor of −0.37 at base temperature. The α factor is a measure of the number of transport channels and is
close to the value of −0.5 corresponding to a single channel. Our values of lϕ and α indicate a strong bulk conduction
of the system, which is typical for this type of samples as the charge carrier concentration is significantly higher and
the mobility is lower than expected for Dirac surface states. The phase-coherence length extracted here fits well to
the value obtained from the conductance fluctuations, indicating that both effects are governed by bulk carriers.
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[S13] J. Dufouleur, L. Veyrat, A. Teichgräber, S. Neuhaus, C. Nowka, S. Hampel, J. Cayssol, J. Schumann, B. Eichler, O. G.
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