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Abstract

A harmonically trapped active Brownian particle exhibits two types of positional
distributions—one has a single peak, the other has a single well—that signify steady-state
dynamics with low and high activity, respectively. Adding inertia to the translational
motion preserves this strict single peak/well classification of the densities but shifts the
dividing boundary between the states in the parameter space. We characterize this shift
for the dynamics in one spatial dimension using the static Fokker–Planck equation for
the full joint distribution of the state space. We derive local results analytically with
a perturbation method for a small rotational velocity and then extend them globally
with a numerical approach.

1. Introduction

An intriguing feature of confined but non-interacting active Brownian particles (ABPs) is
their ability to accumulate into high-density groups in locations away from those typically
occupied by standard Brownian particles [7, 15, 32, 33]. For instance, ABPs do not spread
equally throughout a domain enclosed by rigid walls [6, 17] but, instead, congregate near the
boundary, regardless of the perimeter shape [8, 9, 34]. These dense regions form because each
particle has a directional persistence induced by its active velocity that creates recurring
collisions at the walls—analogous to a bouncing ball—causing them to stick near the edges
of the enclosure until reorienting.

In convex single-well potentials, high-density regions also appear in non-standard config-
urations, but their formation is not guaranteed [23]. Two types of positional distributions
are possible [27, 28], depending on the balance of the strength of the trap, the speed of the
self-propulsion, and the characteristic rotation of the anterior direction [1, 2, 21]. If the
particle’s internal rotation is sufficiently rapid or if its self-propulsive speed is sufficiently
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small, then the equilibrium distribution is unimodal. Away from these regimes the active
force becomes significant enough, when pointing outward, to balance with the inward-pointing
potential force and create a distribution with a depression at the minimum of the external
potential.

Adding inertia to dynamics of ABPs further complicates the resulting behavior. Numerous
studies [10, 18, 19, 25, 26, 29] elucidate features, such as a noise-induced drift [30] or an
additional steady-state [4], that are not present in (or are at least significantly repressed
from) the dynamics of the fully overdamped system. Simulations in [12] suggest that a
non-negligible mass amplifies the effects of the trap and causes the positional density of the
particle to smooth, which notability reduces the bias toward the border of the trap in the
high-activity the case. We explore this conjecture using analytic and numerical methods.

In this article, we characterize the stationary positional dynamics of inertial ABPs, or
active Langevin particles [20], in a harmonic potential. For simplicity, we restrict the dynamics
to one spatial dimension and assume that the internal axis of the particle rotates diffusively.
The corresponding dimensionless model is

Ẋ = V/
√
ε,
√
ε V̇ + V/

√
ε+X = α cos Φ +

√
2 Ẇ , Φ̇ =

√
2β Ω̇, (1)

where X(t), V (t) and Φ(t) are the position, the (rescaled) velocity, and the internal orientation
angle of the isolated particle, respectively; also, Ω̇(t) and Ẇ (t) are independent, standard
Gaussian white noises. System (1) arises from rescaling time and space in the active Langevin
particle model [20] by the characteristic values τ = γ/k and ` =

√
Dτ for a given drag

coefficient γ, potential stiffness k, and translational diffusion coefficent D. Such a rescaling
produces the dimensionless numbers

α = u0τ

`
, β = DR τ, ε = m/γ

τ
,

where m is the mass of the particle, u0 is the mean speed of the self-propulsive velocity,
and DR is the rotational diffusion coefficient of the angular activity. Quantities α and β

directly control the translation and rotational components of the activity, while ε defines a
damping/quality factor that determines the importance of inertia. Without noise or activity,
the dynamics of (1) are overdamped for 0 ≤ ε < 1/4, critically damped for ε = 1/4, and
underdamped for ε > 1/4.

Classifying the stationary dynamics ofX(t) involves ascertaining the shape of its stationary
density p(x) for every value of (α, β, ε) in the first octant of R3. Since the position is non-
Markovian, p is inextricably linked to the invariant joint density ρ(x, v, φ) of the full process
(X, V,Φ) via marginalization. That is,

p(x) =
∫ ∞
−∞

∫ 2π

0
ρ(x, v, φ) dφ dv, (2)

where ρ, as dictated by (1), satisfies the equilibrium Fokker–Planck equation
1
ε

(
∂2ρ

∂v2 + ∂(vρ)
∂v

)
− v√

ε

∂ρ

∂x
+ (x− α cosφ)√

ε

∂ρ

∂v
+ β

∂2ρ

∂φ2 = 0, (3)
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over (x, v, φ) ∈ R2 × [0, 2π). Solutions of (3) are 2π-periodic in φ and exponentially decay
at infinity in both x and v [22]. While the resulting problem is linear, its corresponding
differential operator is not separable (when α > 0), which means that ρ is inherently entangled
and Fourier methods will not reduce (3) to an easily solvable system of decoupled, linear
algebraic equations [24]. Finding ρ and, hence, p requires an alternate approach.

In the next section, we analyze the shape of p(x) by solving (3) with an asymptotic
expansion for β → 0+, which connotes that direction of self-propulsion undergoes minimal
rotation. In addition to being physically relevant for many active systems, this limit facilitates
the calculation of a leading order solution—and further corrections—by conveniently pushing
the angular derivatives of the unknown into the nonhomogeneous portion of the higher-order
problems. The ensuing density p(x) recovers two equilibrium states. One distribution is
unimodal and signifies that the equilibrium dynamics are qualitatively similar to those of a
passive particle in a trap. The other is bimodal, which means that activity is a dominant
feature of the dynamics. In the parameter space (α, β, ε), these distributions appear in two
distinct regions separated by a smooth surface. When β � 1, this dividing surface has a
non-parametric representation α = α∗(β; ε), and our perturbation method produces a local
expression for the function α∗.

In section 3, we expand these results globally, away from limiting asymptotic regime, with
numerical spectral methods. Since the limit ε → 0+ is singular, we construction separate
methods for the ε = 0 problem, which has two independent variables since the velocity gets
marginalized out of dynamic equations, and the ε > 0 problem, which retains the original
three independent variables. In the last section, we contextualize the results, discuss the
limitations of the model and propose new avenues of research.

2. Perturbation theory

In model (1), let’s assume that β � 1. This restriction implies that the rotational component
of the particle’s self-propulsion is exceedingly slow. Accordingly, we expand the joint density
as

ρ = ρ0 + βρ1 + β2ρ2 + · · · , (4)

and insert it into (3), which generates a sequence of problems for the functions ρi(x, v, φ)
that are 2π-periodic in φ and that decay exponentially in x and v:

1
ε

(
∂2ρ0

∂v2 + ∂(vρ0)
∂v

)
− v√

ε

∂ρ0

∂x
+ (x− α cosφ)√

ε

∂ρ0

∂v
= 0 (5)

and
1
ε

(
∂2ρi
∂v2 + ∂(vρi)

∂v

)
− v√

ε

∂ρi
∂x

+ (x− α cosφ)√
ε

∂ρi
∂v

= −∂
2ρi−1

∂φ2 (6)

for i ∈ N+.
Equation (5) governs the invariant joint density, ρ0, in the total absence of rotational

self-propulsion, i.e., when β = 0. In this regime, Φ reduces to a random parameter in the

3



dynamics, and the corresponding active force α cos Φ is equivalent to a randomly-directed
external force of constant magnitude. The translation motion then contains two applied
forces, one from this activity and one from the trap, that conveniently combine into an single
effective force that is the gradient of the potential (X − α cos Φ)2/2. These new dynamics
are analogous to those induced a passive particle in a harmonic trap and, consequently, have
a unique invariant density (cf. [22, §6.1])

ρ0(x, v, φ) = 1
Z0(φ)e

−H0(x,v,φ). (7)

In other words, ρ0 is a Gibbs distribution with partition function Z0 and rescaled Hamiltonian
function

H0(x, v, φ) = v2

2 + 1
2(x− α cosφ)2. (8)

Expression (7) gives the general solution of (5). In it, the function Z0(Φ) is arbitrary
and remains unresolved, due to the singular nature of the perturbation, without information
about the dynamics for β 6= 0. We introduce necessary information by requiring continuity
between (7) and the solution of full problem (3) in the limit β → 0+. If β = 0, then the
angular dynamics reduce to Φ̇ = 0, and the long-time marginal distribution of Φ in (1) is
equivalent to the posited initial distribution. However, if β > 0, then Φ diffuses to a uniform
distribution over [0, 2π), regardless of its initial condition. These two cases match only if the
initial angle Φ(0) is uniformly distributed over [0, 2π]. And making such a choice allows us to
calculate Z0 from the solution of (5) with β = 0. By integrating (1), we have that

X(t) = α a1(t) cosU +N1(t), V (t) = α a2(t) cosU +N2(t), Φ(t) = U,

where U , N1 and N2 are random variables and a1 and a2 are deterministic functions satisfying
a1(∞) = 1 and a2(∞) = 0. Further, U is uniformly distribution in [−π, π] and independent
of the random vector (N1, N2), which more specifically is a multivariate normal whose
components become independent, standard Gaussians themselves when t→∞. A standard
change of variables implies that the stationary joint density of (X, V,Φ) equals fU (φ)fN1(x−
α cosφ)fN2(v). Comparing this expression with equation (7) shows that the partition function

Z0 = 4π2. (9)

Next, to find the first order correction ρ1, we introduce the substitution

ρ1 = ρ0η1. (10)

The original function, ρ1, is in the weighted Hilbert space L2(R2; eH0(x,v,φ) dx dv)—a restriction
enforced by its governing differential operator. Hence, the new function η1 must be an element
of the re-weighted Hilbert space L2(R2, e−H0(x,v,φ) dx dv), which contains a standard basis
built from products of Hermite polynomials Hen:

{Hen(v)Hek(x− α cosφ)}(n,k)∈N2 . (11)
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In this basis,
η1(x, v, φ) =

∑
(n,k)∈N2

cn,k(φ)Hen(v)Hek(x− α cosφ) (12)

where cn,k(φ) is a double sequence of unknown coefficients.
With (10) and (12), computing ρ1 becomes a straightforward task. First, (10) cancels out

the exponential factor in (6) (for i = 1) induced by ρ0 and transforms the non-homogeneous
term of the new partial differential equation for η1 to a polynomial in x and v. Then (12)
reduces this equation to an identity between bivariate power series, which upon equating
coefficients produces a finite sum for η1:

η1 = −α cosφHe1(x− α cosφ) + α
√
ε cosφHe1(v) + α2ε

2 sin2 φHe2(v)

− α2√ε sin2 φHe1(v)He1(x− α cosφ) + α2(1 + ε)
2 sin2 φHe2(x− α cosφ).

(13)

While c0,0(φ) is untouched in the matching process, its value is set to zero in (13). We
justify this choice with a standard Fredholm solvability condition for ρ2 at the next order:
problem (6), for i = 2, has a solution only if∫∫

R2
ζ
∂2ρ1

∂φ2 e
H0(x,v,φ) dx dv = 0 (14)

for any function ζ ∈ L2(R2; eH0(x,v,φ) dx dv) satisfying

1
ε

(
∂2ζ

∂v2 + ∂(vζ)
∂v

)
+ v√

ε

∂ζ

∂x
− (x− α cosφ)√

ε

∂ζ

∂v
= 0.

Solutions of this homogenenous, linear partial differential equation (which may be constructed
in the same manner as ρ1) are of the form ζ = a(φ)e−H0(x,v,φ). Thus, (14) reduces to

0 =
∫∫

R2

∂2ρ1

∂φ2 dx dv. (15)

Direct integration reduces (15) to c0,0
′′(φ) = 0, i.e., c0,0(φ) = C0 + C1 φ. By requiring 2π-

periodicity and by making
∫ 2π

0

∫∫
R2 ρ1 dx dv dφ = 0, which ensures that the total probability

of ρ is 1, we deduce that C0 = C1 = 0; hence, c0,0(φ) ≡ 0. Plugging (13) into (10) produces
the full first-order correction ρ1.

A similar process for obtaining ρ1 also generates an exact expression for the second-order
correction ρ2. In other words, we set

ρ2 = ρ0η2, (16)

then expand η2 in the Hermite basis in (11), and finally fix the coefficients with matching and
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with the Fredholm solvability condition for the order O(β3) problem. These steps imply that

η2 = α(1− ε) cosφHe1(x− α cosφ)− α2(1− (4ε2 + 5) cos 2φ)
4 He2(x− α cosφ)

− α3(23ε2 + 21ε+ 14) sin2 φ cosφ
6(2 + ε) He3(x− α cosφ)

+ (1 + ε)2α4 sin4 φ

8 He4(x− α cosφ) + ξ2(x, v, φ),

(17)

The function ξ2(x, v, φ), which is known but not explicitly written, contains the additive
terms with Hermite polynomials of v and, notably, vanishes when integrated with respect to
v over R with the exponential weight e−v2/2.

Accordingly, the three-term expansion of the joint distribution for β � 1 becomes

ρ(x, v, φ) =
√
ε

4π2 e
−H0(x,v,φ) (1 + β η1(x, v, φ) + β2 η2(x, v, φ) + · · ·

)
, (18)

with η1 and η2 defined in (13) and (17).
Computing the stationary positional density p(x) from (18) entails marginalizing out the

v and φ variables. Integrating (18) with respect to v is straightforward. All the functions of v
multiplicatively separate from those involving x and φ, and the explicit computation reduces
to evaluating integrals of Hermite polynomials with exponential weights e−v2/2. Since these
polynomials are orthogonal in L2(R, e−v2/2 dv), each expression with a Hermite polynomial
in v of positive degree becomes zero. Accordingly,∫ ∞

−∞
ρ(x, v, φ) dv = e−(x−α cosφ)2/2

2
√

2π3/2

(
1− βg1(x, φ) + β2g2(x, φ) +O(β2)

)
, (19)

where g1 and g2 are the functions

g1(x, φ) = α cosφ (x− α cosφ)− 1 + ε

2 α2 sin2 φ ((x− α cosφ)2 − 1),

g2(x, φ) = α(1− ε) cosφHe1(x− α cosφ)− α2(1− (4ε2 + 5) cos 2φ)
4 He2(x− α cosφ)

− α3(23ε2 + 21ε+ 14) sin2 φ cosφ
6(2 + ε) He3(x− α cosφ)

+ (1 + ε)2α4 sin4 φ

8 He4(x− α cosφ).

Integrating (19) with respect to φ is difficult. No explicit antiderivative of the integrand
exists; however, the unevaluated result simplifies appreciably with the observation that

gi(x, φ) = hi(x, φ) + e(x−α cosφ)2/2 ∂

∂φ

(
sinφGi(x, φ)e−(x−α cosφ)2/2

)
,

for i = 1, 2 and the two functions

h1(x, φ) = 1− ε
2 α cosφ (x− α cosφ) (20)

6



h2(x, φ) = −α(1 + 2ε)2

4 cosφ (x− α cosφ)− α2

4 (1− (5 + 4ε2) cos2 φ)He2(x− α cosφ)

+ α3(9ε3 − 56ε2 − 39ε− 38) sin2 φ cosφ
24(2 + ε) He3(x− α cosφ).

(21)

In these identities, G1 and G2 are specific bivariate polynomials of x and of sines and cosines
of φ. Also, the expressions inside the derivatives vanish at φ = 0 and φ = 2π. Only the
terms involving h1 and h2 remain after dividing through by the exponential e(x−α cosφ)2/2 and
integrating.

As a result, the expansion of the positional density p(x) in the limit β → 0+ is

p(x) =
∫ 2π

0

e−(x−α cosφ)2/2

2
√

2π3/2

(
1− β h1(x, φ) + β2h2(x, φ) +O(β3)

)
dφ (22)

for h1 and h2 given in (20) and (21). Figure 1 displays graphs of p for two different sets of
parameters values. These values highlight that the distribution is either unimodal or bimodal.
Because p(x) is even (which is expected since the equations of motion have no left-right bias
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Figure 1: Graphs of p(x) from (22) for (α, β, ε) = (1, 0.1, 0.5) (left) and (α, β, ε) = (3, 0.1, 0.5)
(right).

in the direction of movement), the concavity of the p at the origin is a distinguishing property
of these modal states. The transition between them is set by the values of (α, β, ε) where the
concavity of p changes sign, i.e., where p′′(0;α, β, ε) = 0. This condition defines an implicit
surface that splits the parameter space. We first calculate this surface for β = 0.

When β = 0, (22) contracts to a leading-order contribution depending only on α:

p0(x;α) =
∫ 2π

0

e−(x−α cosφ)2/2

2
√

2π3/2
dφ. (23)

Without β and ε, the splitting surface is the hyperplane α = α∗0, where α∗0 is a zero of p′′0(0;α).
Differentiating (23) twice, evaluating the result at x = 0, and then computing the analytic
expression of the integral with respect to φ implies that

p′′0(0;α) = e−α
2/4

2
√

2π
(
(α2 − 2)I0(α2/4)− α2I1(α2/4)

)
,
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where I0(·) and I1(·) are modified Bessel functions of the first kind. From this expression, we
deduce that p′′0(0;α) has one positive zero,

α∗0 = 1.7776 . . . . (24)

This value marks the separation between the two qualitative shapes of (23). That is,
if α ≤ α∗0, p0 is unimodal (and limits to a standard Gaussian distribution when α → 0+).
Otherwise, p0 is bimodal. Further, as α → ∞, p0(x) is asymptotic to an arcsine density
supported on [−α, α]. (Even symmetry in φ and the substitution u = cosφ transform the
formula for p0 to

p0(x) = 1
πα

∫ 1

−1

e−α
2(u−x/α)2/2
√

2πα−1

1√
1− u2

du.

The first portion of the integrand is a normal distribution with mean −x/α and variance
α−1 and is asymptotic to the delta function δ(u− x/α) for α� 1. Making this asymptotic
replacement yields that p0(x) = 1/(π

√
α2 − x2) for |x| < α and zero otherwise.)

To calculate the higher order corrections to α = α∗0 in the limit β → 0+, we assume that
the threshold is a hypersurface, α = α∗(β, ε), and expand it in a regular perturbation:

α∗(β, ε) = α∗0 + βα∗1 + β2α∗2 + · · · . (25)

Inserting this power series into the zero-concavity condition p′′(0;α∗, β, ε) = 0 generates two
algebraic problems for α∗1 and α∗2 at orders O(β) and O(β2), respectively. These problems
reduce to linear equations after dividing out the nonzero terms and simplifying the resulting
expressions with the identity (α2 − 2)I0(α2/4) = α2I1(α2/4) for α = α∗0. Their solutions are

α∗1 = α∗0
(1− ε)

2 , α∗2 = α∗0
3(10α∗02 + 23)ε3 + 8(1− α∗02)ε2 + (1 + 2α∗02)(2− 3ε)

24(2 + ε) . (26)

Unfortunately, as ε→∞, diverging terms appear in these expressions for α∗1 and α∗2, and
ruin the asymptotic hierarchy of (25) when ε = O(β−1) for β � 1. Correcting the divergence
requires renormalization [3, 16]. First, we isolate the singular sum α∗S of (25), i.e., all the
additive terms that grow without bound as ε increases and induce asymptotic disordering.
By factoring out the common components, we deduce that

α∗S = −α
∗
0

2 εβ
(

1− 3(10α∗02 + 23)ε+ 8(1− α∗02)
12(2 + ε) εβ + · · ·

)
.

The parenthetical expression is asymptotic to the two-term Taylor expansion of the rational
function z/(1 + c(ε)z) at z = 0 with z = εβ; hence,

α∗S ∼ −
α∗0
2

εβ

1 + c(ε)εβ + · · · , c(ε) = 3(23 + 10α∗02)ε+ 8(1− α∗02)
12(2 + ε) , (27)

where c(ε) is finite for all ε ≥ 0. This new expression remains bounded as ε→∞, removing
the divergence induced by the original form of α∗S.
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The renormalized expression in (27) of the divergent sum then transforms the threshold
expansion in (25) to

α = α∗(β, ε) = α∗0

(
1 + β

2 + (1 + 2α∗02)(2− 3ε)
24(2 + ε) β2 + · · ·

)
− α∗0

2
εβ

1 + c(ε)εβ + · · · , (28)

for β � 1. This local expression produces a surface (α∗(β, ε), β, ε) that splits parameter space
into points that yield either bimodal or unimodal distributions. In particular, if α > α∗(β, ε),
the equilibrium positional distribution is bimodal. Otherwise, the positional distribution
has a single mode at the center of the trap, and the limiting dynamics induced by (1) are
qualitatively similar to those exhibited by a passive Brownian particle. In both cases, β must
be sufficiently small so that (28) remains valid.

Figure 2(left) gives a local plot of (28). A natural way to described its structure is to take
horizontal slices for fixed values of ε and investigate how the resulting curves (α∗(β, ε), β)
vary as ε increases, i.e. as inertia becomes more important in the translational dynamics.
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Figure 2: Left: Plot of the surface (28) in the parameter space (α, β, ε). Right: Horizontal
slices of the surface α = α∗(β, ε) for ε = 0.5, 1 and 5 (bottom to top).
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Figure 2(right) gives a sequence of such plots. In each slice, the curves emanate from the
same point, (α∗0, 0), on the α-axis, however, how they enter the space changes. For ε ∈ [0, 1),
α∗ initially increases; for ε ∈ [1,∞), α∗ decreases; and at ε = 1, α∗ initially remains fixed (to
first order). Consequently, the bimodal-distribution region near the line β = 0 expands as ε
becomes larger.

3. Numerical results

Given that (28) is only a local view of the unimodal–bimodal boundary, we next extend
the dividing surface into the full parameter space using numerical methods. The approach
reverses the steps used to created Figure 2. First, we fix ε and compute the curve that
partitions the parameter space (α, β) into regions that generate either unimodal or bimodal
positional distributions. Afterwards, we alter ε and recompute the curve to study the changes.

For simplicity, we start at ε = 0. Although this limit is singular, standard perturbation
techniques for averaging over the velocity variable in (3) (see [5]) reduce the unknown joint
density ρ to a function r(x, φ) that solves

∂2r

∂x2 + ∂((x− α cosφ)r)
∂x

+ β
∂2r

∂φ2 = 0 (29)

over the domain R× [0, 2π). In this infinite strip, r has periodic boundary conditions in φ
and an exponentially decaying far field behavior in x. Also, r satisfies the conservation of
probability equation ∫ ∞

−∞

∫ 2π

0
r(x, φ) dφ dx = 1. (30)

As before, we identify the values of α and β at the unimodal–bimodal boundary with the
requirement that the marginalized positional distribution has zero-concavity at x = 0:∫ 2π

0

∂2r

∂x2 (0, φ) dφ = 0, (31)

System (29)–(31) has three equations and three unknowns (r, α, β); however, (30) fixes a
scaling symmetry of r present in the partial differential equation. So there is essentially
one less equation than unknown and, thus, a one-parameter family of solutions to (29)–(31).
Appendix A.1 outlines how to numerically trace this family of solutions.

Figure 3 shows the computed dividing curve in the (α, β)-parameter space for ε = 0.
Points in the upper region produce positional distributions that have one mode, while those
in the lower region produce positional distributions that have two modes. The insets display
representative marginal densities p(x) =

∫ 2π
0 r(x, φ) dφ for each region. Although we display

only a finite interval of α, numerical evidence suggests that the boundary curve remains
bounded below the line β = 2 for all values of α. In other words, a significant portion of the
parameter space produces unimodal distributions. The parameter β gives a ratio of rates
controlling the importance of rotational diffusion. So if the characteristic angular movement
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Figure 3: For ε = 0, division of the parameter space (α, β) into regions whose values generate
unimodal and bimodal equilibrium densities. The insets show representative positional
densities p(x) in each region.

of the particle’s internal axis is rapid enough (i.e., β is sufficiently large), then its long-time
behavior appears qualitative similar to those exhibited by a passive particles, regardless of
the value of α.

At nonzero values of ε, finding the threshold becomes more computationally intensive.
There is no limiting procedure for reducing (3) to a single partial differential equation for a
function of two independent variables. Instead, we use a spectral method to transform the
full problem into an infinite system of coupled partial differential equations [11] with two
independent variables. By setting

ρ(x, v, φ) =
∞∑

k=−∞

uk(x, v) e
ikφ

√
2π
, (32)

the coefficients uk satisfy a sequence of problems indexed by k ∈ Z:

1
ε

(
∂2uk
∂v2 + ∂(vuk)

∂v

)
− v√

ε

∂uk
∂x

+ x√
ε

∂uk
∂v
− α

2
√
ε

∂(uk−1 + uk+1)
∂v

− βk2uk = 0. (33)

Also, given (32), the conservation of probability and threshold conditions become constraints
on u0:

√
2π
∫∫

R2
u0(x, v) dx dv − 1 = 0,

∫
R

∂2u0

∂x2 (0, v) dv = 0. (34)

System (33)–(34) is similar in form to (29)–(31) but with a countable number of unknown
functions—the uk’s—and two free parameters, α and β. Analogously, for each fixed ε, it
has a one-parameter family of solutions. We trace that family by truncating (32) for some
sufficiently large integer K (e.g., K ≈ 20) and then deploying a numerical method on the
resulting finite system via steps mirroring those of ε = 0 case; see in Appendix A.2.

Figure 4(right) displays the threshold curves in (α, β)-space for ε = 1/2, 1 and 5. Overall,
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Figure 4: Left: Surface splitting the parameter space (α, β, ε) into regions where the har-
monically trapped inertial ABP model exhibits of unimodal (left region) and bimodal (right
right) equilibrium positional distributions. The inset enlarges a portion of the surface that
bulges in the α-direction. The bulge appears for ε > 1 and juts out further as ε increases.
Right: Horizontal slices of the surface ε = 1/2, 1 and 5 (bottom to top). The active (bimodal)
domain compresses as ε grows, which in essence makes the boundary curve fold on itself for
ε > 1, as seen in the inset for ε = 5.

these diagrams are vertically compressed versions of Figure 3 with the point (α∗0, 0) remaining
pinned. Increasing ε acts as a downward press that displaces the area in Figure 3 corresponding
to bimodal distributions, like squashing a piece of dough with a flat board. Only a small
horizontal displacement occurs for ε in (0, 1]; however, when ε becomes greater than 1, the
region bulges over the point (α∗0, 0), causing the dividing curve to fold back on itself. As ε
continues to increase, the bulge juts out farther horizontally, while also thinning vertically.
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Patching the curves together for all values of ε gives the full threshold surface that divides
parameter space (α, β, ε) into points that generate a unimodal positions distributions and
points that generate bimodal positional distributions. Figure 4(left) gives a plot of the surface,
which is an updated, global version of the asymptotic surface in Figure 2(left). The global
surface, as illustrated in Figure 4(right) by the curves in its cross sections of constant ε, is
more compressed toward zero along the β-axis than the local surface. For small values of ε,
the compression is nominal. But it becomes is especially pronounced for large values of ε.

Figure 5 supplies a comparison of the numerically computed and the asymptotically
reconstructed threshold curves from the surfaces’s transverse slices for ε = 0, 1/2, 1 and 5.
All the expansions perform reasonably well away from the regime β � 1, especially the ones
for ε = 0 and 1/2. These values yield asymptotic curves that give a very good classification
out to β = 1.
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Figure 5: Comparison between the asymptotic and numeric calculations (dotted and solid,
respectively) of the threshold curve α = α∗(β; ε) between the unimodal and bimodal states
for ε = 0, 1/2, 1, and 5. Their is good local agreement between the results, even for β = O(1)
in cases, which is outside the region of validity of the asymptotic expansions. For instance,
the threshold expansion for ε = 1 remains appropriate out to β = 0.5.
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4. Discussion

The derived results demonstrate that translation inertia substantially influences the behavior
of noisy self-propulsive particles. And the changes further obfuscate the non-Gaussian features
that clearly distinguish the particles’ activity; specifically, adding translational inertia to
the overdamped dynamics squashes the parameter space of situations that clearly exhibit
activity.

Without inertia (i.e., ε = 0 in (1)), the characteristic rotational speed, β, of the self-
propulsive axis delineates the dynamics into high and low activity states. If the speed is large
(i.e., β � 1), the particle rapidly reorients, meaning there is minimal directional persistence
induced by self propulsion, regardless of its speed α. So the translational active force becomes
analogous in form to thermal noise, which competes with the trap to induce dynamics that
are equivalent a Brownian-like particle moving in a harmonic potential. As β decreases,
the reorientation time extends and eventually creates a non-negligible asymmetry in the
movement to and from the center of the trap. When the active force and the trap force
align, the particle darts through the center of the potential to a position where they act
in opposition (i.e. the other side of the trap). It remains stuck there while slowly turning
around. The process then repeats and, in aggregate, yields a bias toward the boundary where
the forces balance and away from the potential’s center. But this boundary only appears if
the self-propulsive speed α is adequately large. If it isn’t, then the active force is too small
and the trap dominates. In totality, the parameter regime of strong activity appears to the
right of α = α∗0 = 1.77761 . . . and remains bounded below β = β∗0 ≈ 2.

Adding inertia (i.e., having ε > 0) extends the persistence time of the translational motion
and, in turn, amplifies the impacts of the trap on the dynamics. Self-propulsive effects are
also boosted but less significantly so since the active force randomly changes direction. To
generate an asymmetry that skews the positional bias away from the center of the trap, the
characteristic reorientation time must slow down, which implies that the values of β needed
to generate high activity decrease from the previous β = β∗0 threshold. But the necessary
values of characteristic self-propulsive speed α also decrease since inertia, when coupled with
nominal rotation, magnifies active force more than the trap. In totality, as ε grows, the
percentage of the parameter space (α, β) exhibiting high activity (biomodal distribution)
contracts—by shifting down in β and slightly expanding α; see Figure (4)(right).

While our model involves only one spatial dimension, we expect these qualitative changes
to generalize to other situations, including ones with more spatial dimensions, or ellip-
tical/ellipsoidal confining potentials, or both. The physical explanation of the previous
paragraph does not depend on the specific geometry, so we anticipate only minor quantitative
differences in the dynamics appearing in the varied setups.

For β � 1, the outlined asymptotic approach remains a powerful exploratory tool for
many of these alternate scenarios. While it may seem restrictive to assume that β is small,
active systems typically operate in the this regime, where self-propulsion contains a dominant
anterior direction that has a slight, irregular rotation induced by a small defect in the
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drive mechanism. A leading order solution is again an invariant Gibbs distribution of the
non-rotational dynamics, whose potential energy contains an extra term accounting for a
random initial orientation. Subsequent corrections are power series expansions of Hermite
functions, which reduce to finite sums if the trapping force is a polynomial.

Investigating the totality of changes in higher dimensions for all values of β, how-
ever, is difficult. Including inertia in the translation dynamics expands the number of
stochastic variables (barring possible symmetry arguments) from three to five in two-space
(i.e., (x, v, φ) to (x, y, v1, v2, φ)) and from five to eight in three-space (i.e., (x, y, v1, v2, φ) to
(x, y, z, v1, v2, v3, φ, ψ)). The ensuing static Fokker–Planck equation increases in dimension,
meaning standard numerical algorithms for approximating its solutions become much more
computationally intensive. Monte Carlo methods based on path simulations circumvent
this curse of dimensionality, although accurately determining the activity threshold is likely
harder. There is no straightforward procedure for plugging these methods into a curve tracing
algorithm.

Along with inquiries into the effects of inertia in higher dimensional systems, there are
many more problems worth considering. Perhaps the most pressing, regarding the derived
results, is determining the scaling law for the unimodal/bimodal threshold as α → ∞.
Simulations suggest that β ∼ c0 + c1 e

−c2α, which corroborates the work in [23], but a formal
perturbative approach is not immediately obvious.

Also, many natural extensions of our basic model exist. For one, our assumed angular
dynamics exclude inertia, which implies that particle’s internal orientation has no memory of
its previous states. Adding angular inertia our model will most likely enhance the percentage
of bimodal distributions since it enhances the directional persistence of the translational
self-propulsion without affecting the trap. Two, our model uses a simple harmonic potential.
Such a choice is common [4, 13, 14], however it may be too reductive for exploring the high-low
activity threshold. For instance, certain non-harmonic potentials—such as U(x) = x4/4
and U(x, y) = (x2 + y2)2/4 in one and two dimensions, respectively—yield strong activity
for arbitrarily small values of α; namely, the anchor point of the threshold curve on the
β-axis is located at α = 0 [23], not at α = α∗0 > 0. How the threshold enters the parameter
space is unknown, with and without inertia. Also, due to the location of anchor point, the
highly active regime can not longer bulge in negative α-direction for sufficiently large ε. Will
the base point remain fixed, or will it slide along the vertical β-axis at some finite ε? The
perturbation method yields a promising approach for answering this question.

A. Appendix: Numerical Methods

A.1. ε = 0

Since the solution of (29)–(31) decays rapidly decays as |x| → ∞, we pragmatically truncate
the infinite spatial domain to a finite interval [−l, l] for a sufficiently large l and apply
homogeneous Dirchlet conditions at x = ±l. A coarse restriction is that l � max{α, 1},
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which implies that trapping force is large at x = l and also dominates the self-propulsions
(i.e., if x� α cosφ).

Over this finite domain, we use a pseudospectral method to discretize the problem [31].
That is, we construct a tensor product grid of [−l, l]× [0, 2π], with N + 1 Chebyshev points
xn = −l cos(nπ/N) (for n = 0, 1, . . . , N) over [−l, l] and M uniformly spaced points φm =
2π(m− 1)/M (for m = 1, 2, · · · ,M) extending across [0, 2π). On the grid we approximate
the function r(x, φ) with a matrix R of unknown values. For our setup, x and φ vary along
the columns and rows, respectively. Also, given that r is a zero at x = ±l, we drop the first
and last rows, reducing R to an M × (N − 1) matrix. For the assumed grids and boundary
conditions, let D(k)

x ∈ R(N−1)×(N−1) and D
(k)
φ ∈ RM×M be the k-th order pseudospectral

differentiation matrices for x and φ. Also, define wx ∈ RN−1 and wφ ∈ RM to be column
vectors of the Clenshaw–Curtis and trapezodial weights in x and φ. Differentiating and
integrating then amounts to right and left matrix multiplication:

∂r

∂x
≈ R(D(1)

x )T , ∂r

∂φ
≈ D

(1)
φ R,

∂2r

∂x2 r ≈ R(D(2)
x )T , · · ·∫ l

−l
r dx ≈ Rwx,

∫ 2π

0
r dφ ≈ wT

φR.

Lastly, we require N to be odd so that zero is a grid point of x and approximating ∂xx(·)|x=0

only involves to extracting the middle row, D̂(2)
x , of D(2)

x .
The system resulting from discretizing equations (29)–(31) is

R(D(2)
x )T + (X − αCφ) ◦R(D(1)

x )T +R + βD
(2)
φ R = 0,

wT
φRwx = 1, wT

φR(D̂(2)
x )T = 0,

where X and Cφ are matrices containing the values of x and cosφ on the tensor grid, and
◦ indicates the pointwise multiplication between the surrounding matrices. Vectorizing each
equation (i.e., applying the operator vec(·)) transforms the system to the standard matrix
form for r = vec(R) ∈ RM(N−1):

(A1 − αA2 + βA3)r = 0,
W1r = 1, W2r = 0.

(35)

In this concise representation, the matrices A1, A2 and A3 and row vectors W1 and W2 are

A1 = (D(2)
x ⊗ IM) + diag(vec(X))(D(1)

x ⊗ IM) + IN ⊗ IM
A2 = diag(vec(Cφ))(D(1)

x ⊗ IM), A3 = IN ⊗D(2)
φ ,

W1 = wT
x ⊗wT

φ , W2 = D̂(2)
x ⊗wT

φ ,

where IN and IM are identities matrices of size N − 1 and M , and ⊗ denotes the standard
Kronecker product of two matrices.
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We compute the family of solutions for (35) in the unknowns (r, α, β) with a continuation
method. The initial solution for the algorithm is the threshold solution on the α-axis, i.e.,
the function (19) at (α, β) = (1.7776 . . . , 0), discretized over the tensor grid. To find the next
solution, we increment β and then solve (35) for (r, α) with Newton’s method, starting from
the initial (r, α)-pair at the previous β. Note that Newton’s method is necessary since the
equations are nonlinear when α is free. After finding the solution, this process is repeated.
From one iteration to the next, we control the step size of β to ensure that Newton’s method
converges and the value of l, which must change as α increases to preserve the validity of the
trimmed domain. The left panel in Figure 3 displays the results of the this algorithm. The
distributions in the right panel are found from directly computing the solution r of (35) for
the stated (α, β).

A.2. ε > 0

We also discretize (33) and (34) with pseudospectral method. The main difference is that
now both independent variables sweep out unbounded intervals, meaning that for practical
computational purposes the full domain R2 must be pruned to a rectangle ΩR = [−lx, lx]×
[−lv, lv], for adequately large lx and lv. At its boundary, each uk has homogeneous Dirichlet
conditions, given that original differential operator in (3) implies that the solution undergoes
rapid exponential decay as |(x, v)| → ∞. Accordingly, we use Chebyshev points in both
directions of the tensor grid, since there is no periodicity in v, and exclude the boundary
points from the computations. Also, to make system (32) finite, we introduce a cutoff integer
K that removes all the frequencies k such that |k| ≥ K.

The discrete vectorized system takes a form similar to (35). Specifically, it is

(A1 − αA2 − βA2)u = 0,
W1u = 1, W2u = 0,

(36)

where

u =



u−K
...

u−1

u0

u1
...

uK


, A1 =



Aε1 0
. . .

Aε1
Aε1

Aε1
. . .

0 Aε1
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A2 =



0 Aε2 0
Aε2 0 . . .

. . . . . . Aε2
Aε2 0 Aε2

Aε2
. . . . . .
. . . 0 Aε2

0 Aε2 0


, A3 =



K2I 0
. . .

12I

0
12I

. . .
0 K2I


and

W1 =
[
0 · · · 0 W ε

1 0 · · · 0
]
, W2 =

[
0 · · · 0 W ε

2 0 · · · 0
]
.

In these expressions, each uk is the discrete and vectorized version of the coefficient function
uk(x, v) on the grid, and Aε1, Aε2, W ε

1 and W ε
2 are matrix representations of operators that

act on those functions; see Table 1.
Given the equivalent form, we solve (36) with the same algorithm as (35). The only

distinctions are a new starting starting point, although (α, β) remain the same, and that
both lx and lv may be modified. Figure (4) displays the threshold surface computed from
this continuation method.

Operator Matrix

1
ε

(
∂2

∂v2 + ∂

∂v
v

)
− v√

ε

∂

∂x
+ x√

ε

∂

∂v
Aε1

1
2
√
ε

∂

∂v
Aε2

√
2π
∫∫

R2
(·) dx dv W ε

1

∂2

∂x2

∫
R
(·) dv

∣∣
x=0 W ε

2

Table 1: Operators and the matrices notating their discrete, vectorized versions.
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