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With first-principles theoretical analysis of the local structure using Bond Orientational Order
parameters and Voronoi partitioning, we establish (a) HCP→BCC structural transformation in
high-entropy alloys (HEAs) Nbx(HfZrTi)y at 16% Nb-concentration, and (b) that the internal lattice
distortions (ILDs) peak at the transition. We demonstrate that the relative stability of HCP and
BCC structures is driven by energetics, while the overall stability is achieved with contribution from
the vibrational entropy that exceeds the configurational entropy of mixing. We show that along with
atomic size mismatch, low average number (< 5) of valence electrons and disparity in the crystal
structures of constituent elements are responsible for larger ILDs in Nbx(HfZrTi)y than in HEAs
like NbaMobWcTad.

I. INTRODUCTION

Alloying has been central to the progress of human
civilization since the Bronze age. In conventional alloys,
small amounts of secondary elements are mixed with
primary ones. The resulting alloy is named based on
the primary element like ferrous, aluminum, copper, and
nickel alloys. The last two decades1–7 have witnessed an
unconventional method of alloy design with equiatomic
mixing of four or more elements. Stability of such alloy
is assumed to be dominated by configurational entropic
contributions, and hence they are named high-entropy
alloys (HEAs). Beginning with the work of Yeh et
al.1 and Cantor et al.2, HEAs have stimulated intense
research to develop understanding of their phase stability
and superb mechanical behavior3–6,8.

Four core effects9 govern the stability and behavior
of HEAs: 1) high configurational entropy of mixing
attributed to stabilizing solid solution phase, 2) severe
lattice distortions due to mismatch in the chemistry of
alloying elements, 3) sluggish diffusion kinetics, and 4)
the cocktail effect resulting in extraordinary properties.
While the enhanced configurational entropy lowers the
Gibbs free energy, it is not the sole factor responsible
for forming a single-phase (if at all) solid-solution10–12

in preference to competing phases such as intermetallics,
precipitates, multiphase, and amorphous structures13–15.
It is implicitly evident from the existence of limited
single-phase solid-solution HEAs.

According to Hume-Rothery rules16, a substitutional
solid-solution forms if the constituent mixing elements
have similar atomic sizes (radii difference ≤ 15%),
electronegativities, valencies, and the same crystal
structure. Generally, HEAs do not satisfy all of these
rules17, and therefore, deviations from the ideal lattice
structure are seen. These structural deviations, termed
internal lattice distortions (ILDs), are the combined
effect of the size mismatch, differences in constituent
elemental crystal structures and their valencies, and
bond-heterogeneities among mixing elements.

In this work, we demonstrate that the BCC
structure of Nbx(HfZrTi)y gets stabilized with increasing
Nb-concentration, marking an HCP→BCC transition.
We show that the associated structural changes and
variation in average number of valence electrons with
the addition of Nb result in large fluctuations in ILDs.
Through comparative analysis of Gibbs free energy of
quaternary HEAs Nbx(HfZrTi)y and NbaMobWcTad, we
find that the entropy stabilizes the former while the
enthalpy of formation ensures the stability of the latter.

II. COMPUTATIONAL DETAILS

We use special quasirandom structures (SQS)18–20 of
HEAs to approximately model their chemical disorder.
For each alloy, we generate SQS with 3×3×2 periodic
supercell (36 atoms) of the conventional unit cells of BCC
or HCP structures (see SI section I. for SQS details). We
considered BCC and HCP host lattices of Nbx(HfZrTi)y
alloys and only the BCC lattice of NbaMobWcTad. As
the reference ideal solid solution for comparison, we chose
SQS of completely miscible BCC MopWq alloys for which
the heat of mixing at any composition vanishes21,22.
Lattice parameters of SQS configurations were estimated
using Vegard’s law23, which were optimized through
structural relaxation to an energy minimum.

We perform full structural relaxation of these model
SQS within the density functional theory (DFT) methods
incorporated in the Quantum ESPRESSO package24.
We used a generalized gradient approximation (GGA)25

and Perdew-Burke-Ernzerhof26 functional of electronic
exchange-correlation energy. We employ projector
augmented wave potentials27 and represent the electronic
wave functions and charge density with plane wave
basis sets truncated at energy cutoffs of 60 Ry and
500 Ry respectively. Uniform meshes of 3 × 3 ×
4 and 3 × 3 × 3 k-points were used in sampling
integrations over Brillouin zones of BCC and HCP-based
supercells respectively. Using Hellman-Feynman forces
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and Broyden Fletcher Goldfarb Shanno (BFGS) scheme,
each alloy SQS is relaxed till the force components

on each atom ~F becomes less than 10−3 Ry/Bohr.
Total energy was converged within 10−8 Ry to achieve
electronic self-consistency. Fermi-Dirac distribution with
a width of kBT = 0.002 Ry is used for smoothening the
discontinuity in occupation numbers of electronic states.

We use the Debye model to estimate vibrational
entropy. The Debye temperature (θD) of each alloy
SQS was extracted from their elastic moduli matrix
obtained from the thermo pw package28. θD is used as
a single parameter within Debye model to estimate the
vibrational entropy of each alloy.

To analyze the local structure of relaxed SQS lattices
of HEAs, we investigate (a) the nearest-neighbor bond
alignments of each atom through bond-orientational
order parameters using a recently developed python
library pyscal29, and (b) geometric features of the
Voronoi cell constructed around each atom using Voro++
library30 for Voronoi analysis.

III. RESULTS AND DISCUSSION

Our motivation for analysis of the relative stability
of BCC and HCP structures of Nbx(HfZrTi)y comes
from the distinct crystal structures taken by its
constituent elements at ambient conditions: Nb occurs
in BCC structure, and Hf, Zr, and Ti occur in HCP
structure. Secondly, Hf, Zr, and Ti undergo structural
transformation to BCC structure at high temperature
from their stable low-temperature HCP structure31.
Experimentally, the equiatomic NbHfZrTi alloy occurs
in the BCC structure32–34. Our calculations (Fig. 1(a))
also support this as we find that at equiatomic and higher
Nb-concentrations, SQS of Nbx(HfZrTi)y of BCC lattice
is more stable than that of HCP lattice. We find this
structural preference in randomized structural models
as well. With increasing Nb-concentration, Zhang et
al.35 report ω (P6/mmm)→ BCC transformation rather
than HCP (P63/mmc)→ BCC, which poses the question
of the structure of low Nb-concentration Nbx(HfZrTi)y
alloys. To address this, we simulated a few SQS models
of (HfZrTi)12 considering HCP and ω lattices, and found
that SQS on the HCP lattices were more stable than
those on the ω ones (see SI Table I. and SI Fig. 3) by
more than 15 meV/atom. Thus, we analyze here HCP
to BCC transformation.

In Fig. 1(a), we report a structural transformation
equiatomic composition of Nbx(HfZrTi)y based on
the relative DFT energies of SQS corresponding to
HCP and BCC lattices. We find significant changes
in the atomic positions of relaxed SQS from their
ideal lattice structure; thus, ILDs help lower the
energy. As these atomic displacements developed
during relaxation severely distort the ideal lattice, we
require local structural descriptors to ascertain the true
phase of relaxed HEAs. At nonzero temperature,

any crystalline material exhibits dynamic ILDs due to
thermal vibrations. However, static ILDs are present
in HEAs even at T = 0 K due to differences among
their atomic constituents. In a recent study36, root
mean squared displacement of atoms in BCC structure
of NbHfZrTi at T = 0 K was estimated at 9% of its
lattice parameter. Such large ILDs make identification of
the lattice structure challenging. Experimentally, XRD
gives the average crystalline structure with Bragg peaks
broadened due to ILDs.

A. Local structure and identification of the
underlying lattice

a. (a) Voronoi analysis To examine the local
structure at the atomic scale, we first use Voronoi
decomposition involving the construction of a polyhedron
around each lattice point (atomic site) known as Voronoi
cell (or Wigner-Seitz cell in crystallography). Since the
atomic radii of constituent atoms in HEAs are similar,
we treated each atom as a point particle in Voronoi
decomposition. The Voronoi cell of a BCC lattice point
is a truncated octahedron (see Fig. 1(d)) that has 6 square
and 8 hexagonal faces. The Voronoi cell of an HCP lattice
point is a trapezo-rhombic dodecahedron (see Fig. 1(e))
that has 6 trapezium- and 6 rhombus-shaped faces. The
order of a vertex in a graph is the number of edges
incident into it. Each Voronoi vertex of a BCC lattice
is of order 3, which is topologically stable (type-A). In
contrast, some Voronoi vertices of the HCP lattice are of
order 4, which are topologically unstable (type-B). With
a slight perturbation, topologically unstable vertices
modify the Voronoi cell characteristics by creating new
faces37. We demonstrate this for supercell of BCC and
HCP lattices by adding random displacements to the
positions of their lattice points. While the Voronoi cells
of the BCC lattice does not evolve to have any new
polygonal faces, pentagonal and hexagonal faces appear
in the Voronoi polyhedra of randomly perturbed HCP
lattice originating at the unstable vertices of order 4 (see
SI Fig. 2(b)).

We use this feature of geometric instability of Voronoi
vertices to identify BCC and HCP lattices of minimum
energy SQS of Nbx(HfZrTi)y alloys (see Table contained
in Fig. 1), which exhibit significant ILDs. Voronoi’s
with only quadrilaterals and hexagonal faces reveal that
alloys with significant Nb-concentration (x ≥ 6) optimize
to a BCC lattice structure. We claim that at low
Nb-concentration (x = 0 and 3), SQS optimize to
HCP-based structures where pentagonal and hexagonal
Voronoi faces originate at type-B Voronoi vertices due to
ILDs.

b. (b) Bond-orientational order parameters We
chose another class of structural descriptors called
bond-orientational order parameters to confirm our claim
of structural transition. The local bond-orientational
order parameters (ql) proposed by Steinhardt38 capture



3

0 3 6 9 12 15x 

-10

0

10

20

30
E

B
C

C
 -

 E
H

C
P
 (

m
e
V

/a
to

m
)

SQS

Random

0 3 6 9 12 15
-75

0

75
(with ILDs) Ideal lattice

(a)

BCC SQS HCP SQS Voro+q̄l
(n3, n4, n5, n6) (n3, n4, n5, n6) low energy

x phase

0 (3, 212, 9, 279) (3, 234, 161, 63)

close to HCP on q̄l -plane HCP

3 (2, 214, 4, 284) (2, 176, 144, 162)

close to HCP on q̄l -plane HCP

6 (2, 214, 4, 284) (0, 216, 0, 288) BCC

9 (0, 216, 0, 288) (2, 214, 4, 284) BCC

12 (0, 216, 0, 288) (0, 216, 0, 288) BCC

15 (0, 216, 0, 288) (0, 216, 0, 288) BCC

0.3 0.35 0.4
q

8

0.3

0.4

0.5

q
1
2

HCP (x = 0)

HCP (x = 3)

HCP (x = 6)

0.3 0.35 0.4
q

8

0.3

0.4

0.5

q
1
2

BCC (x = 0)

BCC (x = 3)

BCC (x = 6)

BCC and HCP of x ≥ 9

Nb
a
Mo

b
W

c
Ta

d

Mo
p
W

q
 (total 10)

and

BCC

HCP(c)

(d)

(b)

(e)

FIG. 1: Structural transition in Nbx(HfZrTi)y with x+ 3y = 36 and analysis with Voronoi tesselation (b) and bond
orientational order parameters (c). In (a), relative energies of relaxed special quasirandom and randomized HCP
and BCC structures of Nbx(HfZrTi)y reveal stabilization of the BCC phase beyond 25% Nb concentration (i.e;
x ≥ 9), corresponding to equiatomic composition. Unrelaxed SQS with ideal lattice (inset) also reveals the same. In
(b), nk is the the number of k-sided Voronoi faces. Voronoi cell of an ideal BCC lattice point has squares and
hexagons (d), while that of an HCP lattice point has only quadrilaterals (e). Voronoi vertex of order 3 (type-A) is
stable and robust against internal lattice distortions (ILDs), while of the higher order (type-B) is unstable as new
polygons appear there under distortion (see SI Fig. 1). From the Voronoi faces analysis (b) of energetically favorable
SQS configurations as seen in (a), we find that a distorted BCC structure of Nbx(HfZrTi)y is stabilized for x ≥ 6,
corresponding to 16% Nb-concentration rather than equiatomic concentration. (c) The plane of bond orientational
parameters (q̄8, q̄12) facilitates identification of the lattice structure having low ILDs. It is clear that structures of
NbaMobWcTad and MopWq optimize to perfect BCC lattice with not much ILDs while Nbx(HfZrTi)y exhibit severe
ILDs as evident in a wide spread in their q̄l values. The HCP SQS of low Nb-concentration (x = 0 and 3) alloys
optimize to points rather close to that of perfect HCP lattice on (q̄8, q̄12) plane. Thus we identify HCP→BCC
transition in Nbx(HfZrTi)y at 16% Nb-concentration.

the signatures of local structure. For each atom, ql is
written in terms of spherical harmonics of θij and φij of
orientational unit bond vectors joining neighboring sites
i and j:

qlm(i) =
1

n(i)

n(i)∑
j=1

Ylm(θij , φij)

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2, (1)

where n(i) is the number of neighbor atoms around ith

atom.
These local bond-orientational parameters are

ultra-sensitive to the symmetry of the crystal and help

identify simple phases such as BCC, FCC, and HCP. For
different ideal crystals, ql values are distinct except for ql
of odd l (see SI Table II). ILDs or thermal noise disturb
the crystal’s local structure symmetry, and result in
changes in ql values and complicate the identification
of the average lattice structure. Lechner and Dellago39

showed that locally averaged q̄ls:

q̄lm(i) =
1

n(i)

n(i)∑
k=0

qlm(k)

q̄l(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|q̄lm(i)|2, (2)
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FIG. 2: Factors of ILDs: (a) In binary MopWq (four different compositions), quaternary NbaMobWcTad (six
different compositions), and Nbx(HfZrTi)y (x is written near the symbols) alloys, internal lattice distortions (ILDs)
are of the order of 10−4, 10−3, and 10−2 respectively. The z-axis view of relaxed SQS of MoW (c) and NbHfZrTi (d)
show significant presence of ILDs in the latter. Although atomic size mismatch (δ) is a primary factor of ILDs, the
significant variation in ILDs across different compositions of Nbx(HfZrTi)y without any remarkable change in their δ
values asks for another possible factor. In contrast to HEAs NbaMobWcTad, the structural differences among the
constituent elements of Nbx(HfZrTi)y and associated HCP→BCC transition at x = 6 where ILDs also peak (b)
explains for the variation in their ILDs. For BCC lattice SQS, ILDs decrease with increase in average valency
(< Z >) and that occurs when Nb-concentration (x) increases.

work better in identifying the Bravais lattice of
distorted crystals (see SI Fig. 4). For an ideal lattice,
q̄l coincides with ql, and the separation between the two
measures the loss of structural order. In resolution of
the lattice structure, here, we use (q̄8, q̄12) plane in which
ideal BCC and HCP lattices are well separated at points
(0.429, 0.405) and (0.317, 0.565), respectively.

In (q̄8, q̄12) plane (Fig. 1(c)), relaxed SQS of
NbaMobWcTad and MopWq alloys always fall on to
the point representing BCC lattice structure. In
Nbx(HfZrTi)y alloys, SQS of HCP lattices with low
Nb-concentration (x = 0 and 3) optimize to a structure
that is close to the perfect HCP structure (here c/a
= 1.60) with moderate distribution in q̄l, confirming
that their relaxed lattices are distorted HCP structures.
On the other hand, alloys with high Nb-concentration
(x ≥ 9) represented with SQS of BCC or HCP lattices
converge upon relaxation to the same domain in (q̄8, q̄12)
plane (see also SI Fig. 5), and exhibit distorted BCC
structures as revealed earlier here in the Voronoi analysis
in Fig. 1(b).

Thus, we have explicitly shown with local structural
analysis that Nbx(HfZrTi)y alloys undergo a structural
change from distorted HCP lattices (for x = 0, and
3) to distorted BCC lattices (for x ≥ 6) at 16%
Nb-concentration (since 100 × 6/36 ' 16). It is
interesting that HCP lattice spontaneously transforms to
BCC lattice through structural relaxation without having
to cross any energy barrier. Secondly, this transformation
has a signature in the electronic structures (see SI Fig.
8). At high Nb-concentration (x ≥ 9), d-orbitals of Nb

dominate the electronic states near the Fermi energy,
explaining how Nb is a BCC-stabilizer.

B. ILDs peak at the HCP to BCC transition

Wide distribution of q̄l (Fig. 1(c)) reflects on the
presence of significant ILDs in HEAs Nbx(HfZrTi)y. For
a quantitative measure of ILDs, we use40

ILD =
1

N

N∑
i=1

√
(xi − x′i)2 + (yi − y′i)2 + (zi − z′i)2 (3)

where (xi, yi, zi) and (x′i, y
′
i, z
′
i) are reduced coordinates

of unrelaxed sites (ideal, reference lattice points) and
relaxed atomic positions of the ith atom, respectively
and N is the total number of atoms. We note that
ILDs in binary MopWq, quaternary NbaMobWcTad, and
Nbx(HfZrTi)y alloys are of order of 10−4, 10−3, and 10−2,
respectively (see Fig. 2(a) and SI Table IV). In contrast to
BCC (MoW)18 (Fig. 2(c)), a sideview of the relaxed SQS
lattice of BCC (NbHfZrTi)9 (Fig. 2(d)) shows significant
atomic perturbations from their ideal lattice sites. On
increasing x in Nbx(HfZrTi)y, ILDs of their energetically
favorable SQS first increase, reach a maximum at x = 6
where HCP→BCC transformation is marked, and then
decrease subsequently (see Fig. 2(b)).

ILDs in HEAs originate from various factors such
as atomic size mismatch, dissimilar crystal structures,
and difference in valence electrons of their constituent
elements. Multi-elemental mixing always suffer from
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atomic size mismatch (δ) which is quantified as10

δ2 =

n∑
i=1

ci(1− ri/r̄)2 with r̄ =

n∑
i=1

ciri, (4)

where n is the number of types of elements being mixed,
ci and ri are the atomic concentration and radius of ith

element, and r̄ is the average radius. δ is considered
the primary factor relevant to ILDs40,41. Fig. 2(a)
depicts this for BCC MopWq, NbaMobWcTad, and HCP
(HfZrTi)12 alloys as their ILDs linearly increase with δ.
However, taking Nbx(HfZrTi)y alloys as an example, we
demonstrate that rather than δ, the elemental structural
differences among their constituents and their average
valence electrons (Fig. 2(b)) strongly influence ILDs.
An increase in the number of average valence electrons
< Z > within BCC Nbx(HfZrTi)y — achieved by the
gradual rise of Nb-concentration — lowers ILDs. This
mechanism of control over ILDs by tuning < Z > is
consistent with a recent work reported only for BCC
HEAs36. Therefore, ILDs of Nbx(HfZrTi)y alloys peak at
the HCP→BCC transition (see Fig. 2(b)), and thus, ILDs
in these alloys exhibit a dual effect of valency and crystal
structures of constituent elements. The role of crystal
structures of constituents on ILDs is further highlighted
by another set of quaternary HEAs, NbaMobWcTad
(composed of only BCC structural elements), which does
not show noticeable variation in ILDs with compositions.

C. ILDs and configurational entropy

For a qualitative measure of ILDs, we generated
and relaxed 50 distinct SQS configurations for each
equiatomic BCC NbHfZrTi, NbMoWTa, and MoW alloys
and analyzed them with histograms of their q̄8 values
and Voronoi volumes (see Fig. 3(a)). For NbHfZrTi,
the distribution exhibits a very broad peak, while it is
quite narrow for NbMoWTa, and MoW has a single sharp
peak. The width of these peaks in distributions, similar
to Bragg peak width in XRD, serves as a measure of
ILDs. Thus, ILDs are negligible in MoW and notably
significant in NbHfZrTi. Here, q̄8 of MoW corresponds
to that of an ideal BCC structure (q̄8 = q8 = 0.429).

To analyze the effects of ILDs on configurational
energy of HEAs, we consider these equiatomic
SQS configurations, each with a different chemical
arrangement. We find that SQS configurations of HEAs
span a range of energy while the configurations of
a solid-solution (MoW) have almost the same energy
(Fig. 3(b) inset). Lower energy SQS configurations
of HEAs are more favorable, and hence this energy
fluctuation signifies a departure from the ideal mixing
condition that requires each configuration to have the
same energy11. Clearly, HEAs with higher ILDs display
large fluctuations in their configurational energies.

From the distribution of energy of these SQS
configurations, we estimate configurational entropy. If

energy of ith configuration be Ei among chosen Ωconfig

configurations, then at temperature T its probability will
be

pi =
exp(−βEi)∑Ωconfig

1 exp(−βEi)
(5)

where β = 1/(kBT ). Configurational entropy is deduced
as

Sconfig = −kB
Ωconfig∑
i=1

pi ln pi. (6)

We note that Sconfig of NbMoWTa and NbHfZrTi
rises with temperature (see Fig. 3(b)) and saturates to
the Boltzmann entropy kB ln Ωconfig (here, kB ln 50 =
3.912kB which corresponds to MoW). In the ideal mixing
of n types of elements,

Sconfig = Smix
ideal = −NatomkB

n∑
i=1

ci ln ci, (7)

where ci is the atomic concentration of ith element, and
it becomes Sconfig = NatomkB lnn for the equiatomic
case. The computed configurational entropy for a
finite number of SQS configurations will be lower than
their ideal mixing entropy (for equiatomic quaternary
systems, NatomkB lnn = 36kB ln 4 = 49.90kB >>
kB ln 50), but it captures the thermal effect that
the configurational entropy approaches the Boltzmann
entropy as the temperature rises. It is noteworthy
that before saturation, the increase in Sconfig with
temperature is slower in HEAs exhibiting stronger
ILDs (see Fig. 3(b)). Thus, we demonstrate that
it is reasonable to approximate the configurational
entropy of HEAs as the ideal mixing entropy since each
configuration becomes equiprobable even at a fairly low
T (such as 300 K).

D. Entropic stabilization

The postulate that high configurational entropy
stabilizes the solid-solution phase of HEAs1 has been
a topic of controversy12,42. Other kinds such as
vibrational, electronic, and magnetic entropies can also
be important to the stability of HEAs, while major
contributions come from vibrational and configurational
ones42. In HEAs Nbx(HfZrTi)y, we find that vibrational
entropy contributes more than the configurational one
(see SI Table V) to the total entropy. We take the
total entropy comprised of vibrational entropy estimated
within Debye approximation and configurational entropy
approximated as the entropy of ideal solid-solution
mixing. In Fig. 4(top), we show that the total entropy
of non equiatomic Nb6(HfZrTi)10 is greater than that
of equiatomic (NbHfZrTi)9 peaking at x = 6. It is
interesting to note that x = 6 marks the structural
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FIG. 3: Internal Lattice Distortions, energetics and configurational entropy. Histograms (a) of bond orientational
parameter q̄8 and Voronoi cell volumes (inset) obtained from the relaxed structures of 50 SQS configurations of each
of the equiatomic BCC alloys. A sharp peak in q̄8 of MoW marks the ideal BCC structure, a slight deviation in
NbMoWTa reveals relatively weak ILDs. In contrast, notably broad and shifted peak in q̄8 of NbHfZrTi reveals its
severe ILDs, and distributions of Voronoi volumes confirms this trend in ILDs and the local structure. (b)
Configurational entropy approaches the entropy of ideal mixing, (Boltzmann entropy kB ln 50) at fairly low
temperatures, though slower in NbHfZrTi due to larger fluctuations in the energy of their distinct SQS
configurations (shown in inset) than of NbMoWTa and MoW.

transformation from HCP to BCC, where ILDs and total
entropy reach their maxima.

We estimate Gibbs free energy to assess the
competition between formation energy (i.e., the
heat of mixing) and entropy. For the formation
energy (Hf ) of alloys Nbx(HfZrTi)y, we subtract its
concentration-weighted elemental energies in their most
stable bulk crystalline phase from the energy of the alloy.
The formation energy of Nbx(HfZrTi)y is positive (sign of
instability) while for NbaMobWcTad it is negative (see SI
Table IV and V). It means that the former is unfavorable,
and the latter is favorable energetically. However,
inclusion of entropy makes Gibbs free energy of formation
(Hf − TStot) negative and stabilizes Nbx(HfZrTi)y (see
Fig. 4(bottom)). For instance, Hf of (NbHfZrTi)9 is
0.074 eV/atom and at T = 300 K, alone TSconfig =
kBT ln 4 = 0.036 eV/atom is insufficient to stabilize
and needed a major contribution from vibration as
TStot is 0.158 eV/atom to achieve the overall stability
(see SI Table V). Hence, with precise quantification,
we reinforce the fundamental assumption that entropy
stabilizes HEAs.

IV. CONCLUSIONS

In conclusion, we have shown that Nbx(HfZrTi)y
undergoes a structural transformation from HCP to

BCC at 16% Nb-concentration. Voronoi analysis and
bond-orientational order parameters are tools to help
identify the average lattice structure of HEAs exhibiting
large ILDs and mark this transformation. The structural
differences across constituent elements and their numbers
of valence electrons are dominant factors that cause ILDs
in addition to atomic size mismatch in BCC HEAs.
At an HCP→BCC transition, ILDs peak and maximize
the total entropy. We showed that entropy stabilizes
Nbx(HfZrTi)y, but with a larger share of the vibrational
entropy than of the configurational entropy.
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D. Raabe, Ab initio thermodynamics of the CoCrFeMnNi
high entropy alloy: Importance of entropy contributions
beyond the configurational one, Acta Mater. 100 (2015)
90–97. doi:10.1016/j.actamat.2015.08.050.

http://dx.doi.org/10.1016/j.actamat.2013.01.042
http://dx.doi.org/10.1016/S1002-0071(12)60080-X
http://dx.doi.org/10.1016/S1002-0071(12)60080-X
http://dx.doi.org/10.1016/j.scriptamat.2015.03.023
http://dx.doi.org/10.1016/j.scriptamat.2015.03.023
http://dx.doi.org/10.1016/j.mattod.2015.11.026
http://dx.doi.org/10.1007/s11837-015-1594-2
http://dx.doi.org/10.1007/s11837-015-1594-2
http://dx.doi.org/10.1103/PhysRevLett.65.353
http://dx.doi.org/10.1016/S0364-5916(02)80006-2
http://dx.doi.org/10.1016/j.calphad.2013.06.006
http://dx.doi.org/10.1016/j.calphad.2013.06.006
http://dx.doi.org/10.1088/0305-4608/18/5/010
http://dx.doi.org/10.1088/0305-4608/18/5/010
http://dx.doi.org/10.1103/PhysRevA.43.3161
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1103/PhysRevB.46.6671
http://dx.doi.org/10.1103/PhysRevB.46.6671
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
https://github.com/dalcorso/thermo_pw
http://dx.doi.org/10.21105/joss.01824
http://dx.doi.org/10.21105/joss.01824
http://dx.doi.org/10.2172/946741
http://dx.doi.org/10.2172/946741
http://dx.doi.org/10.1103/PhysRev.135.A482
http://dx.doi.org/10.1103/PhysRev.135.A482
http://dx.doi.org/10.1016/j.scriptamat.2016.11.019
http://dx.doi.org/10.1016/j.actamat.2018.01.014
http://dx.doi.org/10.1016/j.actamat.2018.01.014
http://dx.doi.org/10.1038/s41586-018-0685-y
http://dx.doi.org/10.1038/s41586-018-0685-y
http://dx.doi.org/10.1016/j.matchar.2018.06.012
http://dx.doi.org/10.1103/PhysRevLett.126.025501
http://dx.doi.org/10.1209/epl/i1998-00224-x
http://dx.doi.org/10.1103/PhysRevB.28.784
http://dx.doi.org/10.1063/1.2977970
http://dx.doi.org/10.1063/1.2977970
http://dx.doi.org/10.1103/PhysRevMaterials.1.023404
http://dx.doi.org/10.1103/PhysRevMaterials.1.023404
http://dx.doi.org/10.1016/j.intermet.2015.04.014
http://dx.doi.org/10.1016/j.actamat.2015.08.050

	Entropic Stabilization and Descriptors of Structural Transformation in High Entropy Alloys
	Abstract
	I Introduction
	II Computational Details
	III Results and Discussion
	A Local structure and identification of the underlying lattice
	B ILDs peak at the HCP to BCC transition
	C ILDs and configurational entropy
	D Entropic stabilization

	IV Conclusions
	 Acknowledgement
	 References


