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Abstract

The transport of coupled self-propelled particles with colored noise and po-
tential is investigated. Large translational motion noise intensity is good for
the transport in −x direction, but large self-correlation time of translational
motion noise will inhibit this transport. For proper value of the asymmetry
parameter, coupled passive particles move always in −x direction with in-
creasing angle noise intensity, but coupled self-propelled particles appear the
transport reverse phenomenon with increasing angle noise intensity. Large
length of the spring is good for the directional transport. The average veloc-
ity has a maximum and a minimum with increasing spring constant k. For
passive and very small self-propelled speed coupled particles, large number
of particle is good for directional movement, but the effect of coupling will
become weak when the self-propelled speed is large.
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1. Introduction

Investigation of property of Brownian particles is a key issue for a variety
of situations in recent years due to its ubiquitous importance ranging from
physicochemical to biological systems. Some biological processes such as ion
pumping, neuronal signaling, porous media, and photosynthesis, rely on the
transport of ions[1, 2, 3, 4, 5]. Hänggi et al. presented an overview of arti-
ficial Brownian motors and explored new applications of artificial Brownian
motors[6].
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Discussion of active matter has attracted widely attention and shown
some interesting phenomena. Ranging from bioinspired micro- and nanorobotics
and engines to crowd behavior, the applications of the ideas in active matter
research spans a multitude of length scales[7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19]. Romanczuk et al. given an overview over the theoretical
foundations and concepts of active particles systems and discussed devel-
opments in the field of statistical physics applied to active particle systems
far from equilibrium[20]. Pototsky et al. considered a colony of point like
self-propelled particles without direct interactions that cover a thin liquid
layer on a solid support[21]. Zhang et al. investigated collective motion of
self-propelled particles with complex noise environments based on the Vicsek
model and found the proportion of noise region has an important impact on
the collective motion of the system[22]. Shi et al. investigated the effects of
the noise and quenched disorder, on the dynamics of active particles in two
dimensions and found that within the tailored parameter regime, nonergodic
superdiffusion and nonergodic subdiffusion occur[23].

Interactions between particles are of primary importance and should be
taken into consideration in a lot of systems. Investigation of these systems
exhibits new and interesting properties that we could not find in single-
particle systems. Csahok et al. studied the motion of a chain of elastically
coupled particles in an asymmetric potential and found that the collective
behavior of the elastically coupled particles under certain conditions leads to
an average velocity which is larger than that of a single particle[24]. Denisov
et al. studied the overdamped, deterministic dynamics of a chain of charged,
interacting particles driven by a longitudinal alternating electric field and
additionally interacting with a smooth ratchet potential[25]. Kaviani et al.
investigated current fluctuations in a stochastic system of classical particles
with next-nearest-neighbor interaction[26].

In this paper, we investigate the transport phenomenon of coupled self-
propelled Brownian particles in the presence of potential and colored noise.
The paper is organized as follows. In Section 2, the basic model is pro-
vided. In Section 3, the effects of parameters are investigated by means of
simulations. In Section 4, we get the conclusions.

2. Basic model and methods

In the present work, we consider coupled self-propelled Brownian particles
with colored noises in the presence of potential. The dynamics of the ith
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particle is described by the following Langevin equations[27]

dxi

dt
= v0 cos θi + µ(Fxi

+Gxi
) + ξi(t) (1)

dyi

dt
= v0 sin θi + µGyi + ξi(t) (2)

dθi

dt
= ζi(t) (3)

where xi and yi are the position of the particle. v0 is the self-propelled speed
and µ is the mobility, respectively. θ is the self-propelled angle and denotes
the moving direction. ξi is the Gaussian colored noise of translational motion.
ζi is the angle Gaussian colored noise. ξi and ζi satisfy the following relations

〈ξi(t)〉 = 〈ζi(t)〉 = 0, (4)

〈ξi(t)ξj(t
′)〉 = δij

Q

τQ
exp[−

|t− t′|

τQ
], (5)

〈ζi(t)ζj(t
′)〉 = δij

D

τD
exp[−

|t− t′|

τD
], (6)

〈· · · 〉 denotes an ensemble average over the distribution of the random forces.
Q and D are the noise intensity of the noises, respectively. τQ and τD are
the self-correlation time.

The potential U(x) satisfy the following equation,

U(x) =

{

U0

L1

(L1 − x), 0 < x < L1
U0

L2

(x− L1), L1 < x < L
(7)

where L = L1 + L2 is the period of the potential. U0 is the potential height.
∆ = L2−L1 is the asymmetry parameter of the potential. The force F (x) =

−∂U(x)
∂x

.
~G(i) = Gxi

~ex + Gyi~ey is the interaction force due to springs between the
nearest-neighbour particles,

~G(1) = k(|~r2 − ~r1| − a) ·
~r2 − ~r1

|~r2 − ~r1|
, (8)

~G(i) = k(|~ri+1−~ri|−a)·
~ri+1 − ~ri

|~ri+1 − ~ri|
+k(|~ri−~ri−1|−a)·

~ri − ~ri−1

|~ri − ~ri−1|
, 1 < i < N−1

(9)
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~G(N) = k(|~rN − ~rN−1| − a) ·
~rN − ~rN−1

|~rN − ~rN−1|
, (10)

here ~ri is the position vector of the ith particle. a is the natural length of
the springs. k is the spring constant. N is the number of the particle.

A central practical question in the theory of Brownian motors is the
over all long time behavior of the particle, and the key quantities of particle
transport are the particle velocity 〈V 〉. After the system reaches a stable
state, the average velocity is,

〈V 〉 = lim
t→∞

i=N
∑

i=1

〈xi(t)− xi(t0)〉

N · (t− t0)
(11)

x(t0) is the position of particles at time t0.

3. Results and discussion

In order to give a simple and clear analysis of the system. Eqs.(1), (2)
and (3) are integrated using the Euler algorithm. The total integration time
was more than 105 and the integration step time ∆t = 10−4. The stochastic
averages were obtained as ensemble averages over 105 trajectories. With
these parameters, the simulation results do not depend on the time step, the
integration time, and the number of trajectories.

The average velocity 〈V 〉 as a function of the translation motion noise
intensity Q with different self-propelled speed v0 is reported in Fig.1. In this
figure, we find the average velocity 〈V 〉 < 0, this means the coupled particles
move in −x direction. The average speed |〈V 〉| increases monotonically with
increasing Q(〈V 〉 decreases monotonically with increasing Q). So large Q is
good for the directional transport in −x direction. The slope of 〈V 〉−Q curve
is different for different self-propelled speed v0. When Q is small, large v0 is
good for directional transport. But when noise intensity Q is large, large v0
will inhabit this directional transport speed. For passive particles(v0 = 0.0),
changes of Q has remarkable effect on the average velocity 〈V 〉.

The average velocity 〈V 〉 as a function of the self-correlation time τQ with
different v0 is reported in Fig.2. Contrary to the effect of noise intensity Q,
we find 〈V 〉 increases with increasing τQ(The average speed |〈V 〉| decreases
with increasing τQ). So large self-correlation time will inhabit the directional
transport in −x direction. When τQ is small(τQ < 0.5), coupled passive
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Figure 1: The average velocity 〈V 〉 as a function of the translation motion noise intensity Q

with different self-propelled speed v0. The particles number N = 4. The other parameters
are τQ = 1.0, D = 1.0, τD = 1.0, L = 2.0, ∆ = 0.4, k = 0.5, a = 1.0.
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Figure 2: The average velocity 〈V 〉 as a function of the self-correlation time τQ of
translation motion noise with different v0. The particles number N = 4. The other
parameters are Q = 1.0, D = 1.0, τD = 1.0, L = 2.0, ∆ = 0.4, k = 0.5, a = 1.0.
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Figure 3: The average velocity 〈V 〉 as a function of the angle noise intensity D with
different v0. The particles number N = 4. The other parameters are Q = 1.0, τQ = 1.0,
τD = 1.0, L = 2.0, ∆ = 0.4, k = 0.5, a = 1.0.

particles(v0 = 0.0) are more easily produce directional transport then coupled
self-propelled particles. But when τQ is large, coupled self-propelled particles
are more easily produce directional transport then coupled passive particles.

Fig.3 shows the average velocity 〈V 〉 as a function of the angle noise
intensity D with different v0. In this figure, for passive particles(v0 = 0),
the average velocity 〈V 〉 < 0, so coupled passive particles move always in
−x direction, and angle noise intensity D has negligible effect on these par-
ticles. For coupled propelled particles(v0 = 1.0, v0 = 2.0 and v0 = 3.0),
we find 〈V 〉 > 0 when D = 0, but the moving direction changes to in −x

direction(〈V 〉 < 0) with increasing D. So the coupled self-propelled particles
move in +x direction when the angle noise is not exit, and the moving direc-
tion changes from in +x direction to in −x direction with increasing angle
noise intensity. This means the transport reverse phenomenon appears with
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Figure 4: The average velocity 〈V 〉 as a function of the angle noise self-correlation time
τD with different v0. The particles number N = 4. The other parameters are Q = 1.0,
τQ = 1.0, D = 1.0, L = 2.0, ∆ = 0.4, k = 0.5, a = 1.0.

increasing D for coupled self-propelled particles. When D > 0, we find the
average velocity 〈V 〉 decreases slowly with increasing D.

Fig.4 shows the average velocity 〈V 〉 as a function of angle noise self-
correlation time τD with different v0. Just like the result of Fig.3, passive
particles(v0 = 0) move in −x direction, and 〈V 〉 is almost remain unchanged
with increasing τD. But for propelled particles(v0 = 1.0, v0 = 2.0 and v0 =
3.0), we find 〈V 〉 < 0, and 〈V 〉 decreases with increasing τD, and the slope
of 〈V 〉 − τD changes to zero when τD is large.

The average velocity 〈V 〉 as a function of the natural length of the springs
a with different v0 is reported in Fig.5. We find 〈V 〉 < 0, and this result is
compatible with the results of Figs.(1, 2, 3, 4). The average velocity 〈V 〉
decreases with with increasing a. This is an interesting phenomenon, the
longer of spring is, maybe the larger of the moving speed. We also find
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Figure 5: The average velocity 〈V 〉 as a function of the natural length a of the spring with
different v0. The particles number N = 4. The other parameters are Q = 1.0, τQ = 1.0,
D = 1.0, τD = 1.0, L = 2.0, ∆ = 0.4, k = 0.5.
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Figure 6: The average velocity 〈V 〉 as a function of the asymmetry parameter ∆ with
different v0. The particles number N = 4. The other parameters are Q = 1.0, τQ = 1.0,
D = 1.0, τD = 1.0, L = 2.0, k = 0.5, a = 1.0.

the absolute value of the slope for passive particles(v0 = 0.0) is larger than
propelled particles(v0 = 1.0,v0 = 2.0,v0 = 3.0). So directional moving speed
of coupled passive particles is more easily effect by the springs length than
coupled self-propelled particles.

Fig.6 shows 〈V 〉 as a function of asymmetry parameter ∆ with different
v0. We find 〈V 〉 < 0 when ∆ < 0.7, and this result agrees well with the
results of Figs.1-6 as ∆ = 0.4 in those figures. The 〈V 〉 − ∆ curves for
different v0 are almost coincide when ∆ < 0.7. So the effect of v0 will weak
when ∆ < 0.7. We can also find 〈V 〉 > 0 when ∆ > 0.7, and 〈V 〉−∆ curves
separate with other for different v0. So the transport reverse phenomenon
appears with increasing ∆, and effect of v0 becomes obvious when ∆ is large.

Fig. 7 shows 〈V 〉 as a function of the spring constant k with different
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Figure 7: 〈V 〉 as a function of v0 with different spring constant k. The particles number
N = 4. The other parameters are Q = 1.0, τQ = 1.0, D = 1.0, τD = 1.0, ∆ = 0.4, L = 2.0,
a = 1.0.
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Figure 8: The average velocity 〈V 〉 as a function of self-propelled speed v0 with different
particle number N . The other parameters are Q = 1.0, τQ = 1.0, D = 1.0, τD = 1.0,
L = 2.0, k = 0.5, a = 1.0.

self-propelled speed v0. We find 〈V 〉 appears complex phenomenon with in-
creasing k. 〈V 〉 has a minimum and a maximum with increasing k. Proper
small k is good for the directional transport(k = 0.1), but the directional
transport will be inhibited(|〈V 〉| has a minimum) when k ≈ 0.7, and then in-
creasing k promotes the directional transport(|〈V 〉| increases with increasing
k when k > 0.8).

The dependence of 〈V 〉 on the self-propelled speed v0 with different cou-
pling particle number N is shown in Fig. 8. We find the average 〈V 〉 has
a maximum(〈V 〉 < 0) with increasing v0 for different particle number(|〈V 〉|
has a minimum |〈V 〉|min with increasing v0). The more particles, the larger
of |〈V 〉|min is. For passive particle(v0 = 0), the average speed |〈V 〉| of 8
coupled particles is larger then the average speed |〈V 〉| of 2(4, 6) coupled
particles. So coupling is good for directional transport of passive particles.
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In this figure we can also find |〈V 〉| → −0.56 as self-propelled speed v0 → 8
whenever N = 2, N = 4, N = 6 and N = 8, so the effect of coupling will
become weak when v0 is large.

4. Conclusions

In this paper, we numerically investigated the transport phenomenon of
coupled self-propelled particles in the presence of potential with colored noise.
We find large noise intensity of translational motion is good for the moving in
−x direction, but large self-correlation time of translational motion will in-
hibit the directional movement. Coupled passive particles move always in −x

direction when the asymmetry parameter ∆ = 0.4, but coupled self-propelled
particles changes the moving direction from in x direction to in −x direction
with increasing angle noise intensity. Long spring is good for the directional
movement of the particles. Whenever passive or self-propelled particles, the
moving changes form in −x direction to +x direction with increasing asym-
metry parameter. The average velocity appears complex behaviour with
increasing spring constant k. For passive or very small self-propelled speed
coupled particles, coupling is good for directional movement. For different
coupling number, the average velocity tending to the same value when the
self-propelled speed is large.

5. Acknowledgments

Project supported by Natural Science Foundation of Anhui Province(Grant
No:1408085QA11) and College Physics Teaching Team of Anhui Province(Grant
No:2019jxtd046).

References

[1] L. Machura, M. Kostur, P. Talkner, J. Luczka, P. Hänggi, Phys.Rev. E
73 (2006) 031105.

[2] D. Reguera, G. Schmid, P. S. Burada, J. M. Rub́ı, P. Reimann, P.Hänggi,
Phys. Rev. Lett. 96 (2006) 130603.

[3] L. Angelani, R. Di Leonardo, G. Ruocco, Phys. Rev. Lett. 102 (2009)
048104.

13



[4] D. C. Mei, L. C. Du, C. J. Wang, J. Stat. Phys. 137 (2009) 625.

[5] K. Lindenberg, J. M. Sancho, A. M. Lacasta, I. M. Sokolov, Phys.Rev.
Lett. 98 (2007) 020602.

[6] P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81 (2009) 387.

[7] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, L. S. Chayes, Phys.
Rev. Lett. 96 (2006) 104302.

[8] J. C. Wu, Q. Chen, R. Wang, B. Q. Ai, J. Phys. A: Math. Theor 47
(2014) 325001.

[9] N. Koumakis, C. Maggi, R. Di Leonardo, Soft Matter 10 (2014) 5695.

[10] Y.Y. Li, P.K. Ghosh, F. Marchesoni, B.W. Li, Phys. Rev. E 90 (2014)
062301.

[11] Z. Liu, L. Du, W. Guo, D. Mei, Eur. Phys. J. B 89 (2016) 222.

[12] A. Guidobaldi, Y. Jeyaram, I. Berdakin, V.V. Moshchalkov, C.A. Con-
dat, V.I. Marconi, L. Giojalas, A.V. Silhanek, Phys. Rev. E 89 (2014)
032720.

[13] P. Pietzonka, E. Fodor, C. Lohrmann, M. E. Cates, and U. Seifert, Phys.
Rev. X 9 (2019) 041032.

[14] X. Ao, P. K. Ghosh, Y. Li, G. Schmid, P. Hänggi, F. Marchesoni, EPL
109 (2015) 10003.

[15] J. Liao, W. Zhu, B. Ai, Phys. Rev. E 97 (2018) 062151.

[16] T. Bertrand, Y. Zhao, O. Benichou, J. Tailleur, R. Voituriez, Phys. Rev.
Lett. 120 (2018) 198103.

[17] Y. Gou, H. Jiang, Z. Hou, Soft Matter 15 (2019) 9104.

[18] J. C. Moreno, M. L. Rubio Puzzo, and W. Paul, Phys. Rev. E 102 (2020)
022307.

[19] J. Liu, J. D. Bao, X. Chen, Phys. Rev. E 102 (2020) 062122.

14



[20] P. Romanczuk, M. Bar, W. Ebeling, B. Lindner, L. Schimansky-Ge,
Eur. Phys. J. Special Topics 202 (2012) 1.

[21] A. Pototsky, U. Thiele, H. Stark, Eur. Phys. J. E 39 (2016) 51.

[22] B. Zhang, Z. Shao, Physica A 563 (2021) 125382.

[23] H. Shi, L. Du, F. Huang, W. Guo, Phys. Rev. E 107 (2023) 024114.

[24] Z. Csahók, F. Family, T. Vicsek, Phys. Rev. E 55 (1997) 5179.

[25] S. I. Denisov, E. S. Denisova, P. Hänggi, Phys. Rev. E 71 (2005) 016104.

[26] S. Kaviani, F. H. Jafarpour, J. Stat. Mech. (2020) 01321.

[27] Q. Chen, J. Wu, C. Hu, Y. Ou, B. Ai, Eur. Phys. J. B 88 (2015) 22.

15


	1 Introduction
	2 Basic model and methods
	3 Results and discussion
	4 Conclusions
	5 Acknowledgments

