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The idea of simulating quantum physics with controllable quantum devices had been proposed
several decades ago. With the extensive development of quantum technology, large-scale simulation,
such as the analog quantum simulation tailoring an artificial Hamiltonian mimicking the system of
interest, has been implemented on elaborate quantum experimental platforms. However, due to the
limitations caused by the significant noises and the connectivity, analog simulation is generically
infeasible on near-term quantum computing platforms. Here we propose an alternative analog
simulation approach on near-term quantum devices. Our approach circumvents the limitations
by adaptively partitioning the bath into several groups based on the performance of the quantum
devices. We apply our approach to simulate the free induction decay of the electron spin in a
diamond NV− center coupled to a huge number of nuclei and investigate the nonclassicality induced
by the nuclear spin polarization. The simulation is implemented collaboratively with authentic
devices and simulators on IBM quantum computers. We have also applied our approach to address
the nonclassical noise caused by the crosstalk between qubits. This work sheds light on a flexible
approach to simulate large-scale materials on noisy near-term quantum computers.

I. INTRODUCTION

Simulating quantum physics has long been a widely
known challenging problem [1]. One of the primary diffi-
culties lies in the exponential growth of the Hilbert space
of a large quantum system with increasing constituent
components. This would require a huge amount of com-
puter memory to store the quantum states and the quan-
tum operations acting on them. In particular, if we are
further interested in the time evolution of the quantum
system, the burden imposed on the computational re-
source would become even heavier and rapidly exceed
the computational power of conventional computers.

Instead of developing sophisticated, but inevitably ap-
proximate, classical algorithms, an alternative proposal
for solving the problem of simulating quantum physics is
to harness the power of quantum mechanical systems [1–
5], underpinned by the intuitive idea that nature itself
ultimately behaves quantum mechanically. An appeal-
ing approach is to directly map the Hamiltonian of a
less controllable system of interest onto that of a quan-
tum simulator consisting of well-controlled quantum sys-
tems, referred to as analog quantum simulation (AQS)
[6–8]. With the extensive development of quantum tech-
nology, AQS has been implemented with many quantum
mechanical systems, including superconducting circuit
[8–10], ultracold atoms [7, 11], Rydberg atoms [12, 13],
and trapped ions [14–16]. Noteworthily, these successful
demonstrations of AQS are implemented on the elaborate
quantum experimental platforms, which are generically
inaccessible to public.

∗ hongbinchen@gs.ncku.edu.tw

On the other hand, many programable quantum com-
puting platforms have emerged in recent years. They are
featured by the accessibility to the public via online user
interfaces, opening an avenue for the public to experience
the principles of quantum mechanics. In particular, theo-
rists are able to design prototypical experiments running
on the quantum computers to examine and demonstrate
theoretical concepts. Consequently, many demonstra-
tions of the fundamental principles of quantum mechan-
ics have been achieved on these state-of-the-art quantum
computing platforms [17–25].

In addition to the aforementioned demonstrations of
fundamental quantum-information-theoretic principles,
quantum computers are also conceived to be versatile in
the simulation of open quantum system dynamics [26–
29]. However, the near-term quantum computers are still
in an era of noisy intermediate-scale quantum (NISQ)
devices [30]. Except for some prominent breakthroughs
of quantum computers outperforming conventional com-
puters [31–33], due to the limitations on the performance
caused by the significant noises and the qubit topological
connectivity, a straightforward simulation of large-scale
materials remains intractable. Either the simulation of a
few atoms arranged in an one-dimensional chain [26], hy-
brid quantum-classical algorithm [34–36], or variational
quantum algorithms [37–39], can be efficiently imple-
mented. There is one another approach, referred to as
Trotterization [26, 40–42], attainable on near-term quan-
tum computers. This approach approximates the whole
time-evolution operator by discretizing and decomposing
it into a series of smaller ones according to the Suzuki-
Trotter formula. The primary drawback of the Trotter-
ization is the errors introduced during the decomposi-
tion. Additional overhead analyzing the impacts of the
decomposition errors is necessary. A quantum hardware-
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efficient approach capable of simulating large-scale ma-
terials in an AQS manner free from the Trotterization
decomposition errors is desirable.

On the other hand, an unambiguous demonstration of
certain genuine quantumness of interest out of classicality
has long been a vigorous studying topic [43–46]. Along
with the development of quantum theory, these studies
have provided deeper insights into the quantumness of
nature. Prominent paradigms includes the nonclassical
correlations [47–49] and the nonclassicality of quantum
states [50–52]. Additionally, an emerging type of non-
classicality investigates the nature of quantum dynam-
ical processes. Various definitions have been put for-
ward to elucidate different aspects of nonclassicality of
quantum dynamical processes [53–61]. Recently, we have
also approached this issue with the technique of canoni-
cal Hamiltonian ensemble representation (CHER) [62–64]
and applied it to the free-induction-decay (FID) process
of a negatively charged nitrogen-vacancy (NV−) center
in diamond [65].

In this work we propose an alternative analog sim-
ulation approach capable of not only simulating large-
scale materials on near-term quantum computing plat-
forms, but also reflecting the physical mechanisms un-
derlying the observed phenomena at a microscopic level.
Our approach circumvents the limitations on the perfor-
mance by adaptively partitioning the bath into several
groups based on the performance of the quantum devices.
We apply our approach to simulate the FID process of
the electron spin of an NV− center in diamond lattice
and perform the simulation on IBM quantum computers
(IBMQ) [66].

To do this, we first design a quantum circuit imple-
menting the total Hamiltonian of an NV− center coupled
to a huge nuclear spin bath. Additionally, to realize the
effects of various nuclear spin polarizations, we also de-
sign a family of polarization oracles accompanied with
ancillary qubits. In order to adequately divide the nu-
clear spin bath into smaller groups fitting into the per-
formance of the quantum devices, we test their capabil-
ities by a series of preliminary examinations with a few
number of nuclei. Based on their performance, we can
simulate the FID process either in an collaboration with
authentic quantum device and classical simulator, or fully
on classical simulator of IBMQ. With this adaptive par-
tition approach, we can reproduce the nonclassical FID
process in the presence of a transversely polarized nuclear
spin bath and estimate the corresponding CHER. Note-
worthily, our AQS circuit model on quantum computers
is free from Trotterization decomposition errors.

To further showcase the versatility of our approach, we
have also applied it to address the nonclassicality in the
nonlocal noise caused by the crosstalk between qubits,
which constitutes the primary source of error in our sim-
ulations and is hard to be mitigated with post-processing
of gathered data. Our approach suggests a convenient
way to suppress the crosstalk by optimally grouping
the bath and launching appropriate qubits. With these

paradigmatic simulation tasks, we achieve demonstration
of the flexibility and capability of our approach in the ex-
ploration of new physics behind the simulated materials.

II. DYNAMICS OF NV− CENTER

Our approach is developed in the spirit of analog
quantum simulation (AQS), which manipulates the tun-
able Hamiltonian of a well-controlled quantum system to
numerically mimic a less-controllable one. The circuit
model of our appraoch will be designed specifically ac-
cording to the details of the target material. Therefore,
before explaining the construction of the quantum cir-
cuit, it would be instructive to elucidate the target to be
simulated.

A. Hamiltonian of NV− center

We consider a single negatively charged nitrogen-
vacancy (NV−) center in diamond lattice consisting of
a substitutional nitrogen (N) and a vacancy (V) in an
adjacent lattice site, as shown in Fig. 1(a). The axis join-
ing V and N defines an intrinsic z axis for the electron
spin. There are totally six electrons confined in the V
site, forming a complicated electron spin configuration.
The ground state of the electron spin is a spin triplet
state with S = 1. Figure 1(b) shows the energy level
structure of the electron spin ground state. There is a
zero-field splitting D/2π = 2.87 GHz between the sub-
levels mS = 0 and mS = ±1. In the absence of the
external magnetic field, the two sublevels mS = ±1 de-
generate; while the degeneracy will be lifted due to the

Zeeman effect by applying an external magnetic field B⃗.
For simplicity, we assume that the external magnetic field

B⃗ = Bz e⃗z is aligned with the z axis. Due to the Zeeman
splitting, we can selectively excite the two different spin
transitions |0⟩ ↔ | ± 1⟩ with microwave (MW) pulses at
an appropriate frequency. Therefore, the free Hamilto-
nian of the electron spin triplet is given by

ĤNV = DŜ2
z + γeBzŜz, (1)

where γe/2π = 2.8025 MHz/G is the electron gyromag-
netic ratio.
The diamond lattice sites are mostly occupied by the

spinless 12C nuclei [light gray spheres in Fig. 1(c)], which
have negligible effects on the electron spin free-induction-
decay (FID) process. The electron spin dephasing is
mainly caused by the randomly distributed 13C isotopes
of natural abundance about 1.1% [dark gray spheres in
Fig. 1(c)] with nuclear spin J = 1/2. Then the free
Hamiltonian of the nuclear spin bath consisting of 13C
isotopes indexed by k is given by

ĤC =
∑
k

γCBzĴ
(k)
z , (2)



3

FIG. 1. (a) An NV− center in diamond lattice is a point defect consisting of a substitutional nitrogen (N) and a vacancy (V) in

an adjacent lattice site. The axis joining V and N defines an intrinsic z axis, along which an external magnetic field B⃗ = Bz e⃗z
is applied. (b) For the electron spin triplet ground state, there is a zero-field splitting D/2π = 2.87 GHz between the sublevels
mS = 0 and mS = ±1. In the presence of an external magnetic field, the degeneracy between mS = ±1 can be lifted due to
the Zeeman splitting. Then the two different spin transitions |0⟩ ↔ | ± 1⟩ can be selectively addressed with MW pulses at an
appropriate frequency, forming a logical qubit. (c) Schematic illustration of an NV− center in diamond lattice interacting with
13C nuclear spin bath (dark gray spheres). To guarantee the validity of the dipole-dipole hyperfine interaction, all 13C nuclei
lie outside a radius of 0.5 nm. Furthermore, we also assume that only the nuclei within a polarization area (yellow shadow) of
radius 1 nm can be identically polarized in a controllable manner via the DNP technique.

with γC/2π = 1.0704 kHz/G being the gyromagnetic ra-
tio of the 13C nuclei.

The coupling between the electron spin and the 13C
nuclear spin bath is given by the hyperfine interaction
with interaction Hamiltonian expressed as

ĤI = Ŝ ·
∑
k

→
A

(k)

·Ĵ (k). (3)

Since the electron wavefunction is tightly confined in the
V site, the Fermi contact risen by the overlap with the
electron wavefunction becomes negligible for nuclei far-
ther away than 0.5 nm from the NV− center. In our
simulation, we post-select a randomly generated config-
uration with all 13C nuclei lying outside a radius of 0.5
nm, as schematically shown in Fig. 1(c). Therefore, the
hyperfine interaction (3) is caused by the dipole-dipole
interaction and the hyperfine coefficients are given by

A
(k)
ij =

µ0γeγC
4π|r⃗(k)|3

[
e⃗i · e⃗j − 3(e⃗(k) · e⃗i)(e⃗(k) · e⃗j)

]
, (4)

with µ0 the magnetic permeability of vacuum, r⃗(k) the
displacement vector toward the kth nucleus, and e⃗(k) the
unit vector of r⃗(k). Note that, due to the three order of
magnitude difference between γe and γC, the inter-nuclei
interaction has negligible effects on the FID process. This
has also be verified with the cluster-correlation expansion
technique [67, 68]. We therefore ignore the internuclei
interaction here.

Moreover, it is worthwhile to note that the dilute 13C
nuclear spin bath leads to a relaxation time T1 of the
electron spin in the order of milliseconds [69, 70] and
a dephasing time T ∗

2 of microseconds [71–73]. Due to
this experimentally measured three order of magnitude
difference between T1 and T ∗

2 , the electron spin dynam-
ics can be well approximated by pure dephasing, on the

time scale under study. Therefore, it is relevant for us to

neglect the terms proportional to Ŝx and Ŝy in Eq. (3)

and consider only the Ŝz component phenomenologically.
Then the total Hamiltonian can be expressed as

ĤT = DŜ2
z + γeBzŜz +

∑
k

γCBzĴ
(k)
z + Ŝz

∑
k

A⃗(k)
z · Ĵ (k),

(5)

and only the three hyperfine coefficients A⃗
(k)
z =

(A
(k)
zx , A

(k)
zy , A

(k)
zz ) left. Additionally, it is critical to note

that the total Hamiltonian (5) can be expressed in a block
diagonal form with respect to the electron spin basis as

ĤT =
∑

mS=0,±1

|mS⟩⟨mS | ⊗ ĤmS
, (6)

where ĤmS
= (m2

SD+mSγeBz)+
∑

k Ω⃗
(k)
mS · Ĵ (k), Ω⃗

(k)
0 =

Ω⃗0 = (0, 0, γCBz), and Ω⃗
(k)
±1 = ±A⃗

(k)
z + Ω⃗0.

Finally, the total unitary time evolution operator

ÛT(t) = exp(−iĤTt)

=
∑

mS=0,±1

|mS⟩⟨mS | ⊗ ÛmS
(t), (7)

is also block diagonal with respect to the electron spin

basis with conditional evolution operators ÛmS
(t) =

exp(−iĤmS
t).

B. FID process of electron spin

The FID process of the electron spin is a pure dephas-
ing dynamics caused by the 13C nuclear spin bath. The
initial state of total system is assumed to be a direct
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product of all constituent componets

ρT(0) = ρNV(0)⊗
∏
k

ρ(k), (8)

where ρ(k) = [Î(k) + p⃗(k) · σ̂(k)]/2 is the initial state of

the kth nuclear spin with polarization p⃗(k), and Î(k) and
σ̂(k) are the identity and the Pauli operators, respectively,
acting on the kth nuclear spin Hilbert space. In a conven-
tional FID experiment, the electron spin will be first opti-
cally polarized to |0⟩ by a 532-nm green laser, and a sub-
sequent π/2 MW pulse will set the electron spin state to

a superposition state |ΨNV(0)⟩ = (|0⟩+ |1⟩)/
√
2. There-

fore, in our simulation, the electron spin is described in
a qubit manifold with Hilbert space spanned by the two
sublevels mS = 0 and mS = 1.

Once the electron spin state is set to ρNV(0), the hy-
perfine interaction in Eq. (5) is turned on and the time
evolution of the total system is governed by the block
diagonal unitary operator

ÛT(t) = |0⟩⟨0| ⊗
∏
k

Û
(k)
0 (t)

+|1⟩⟨1| ⊗ e−i(D+γeBz)t
∏
k

Û
(k)
1 (t), (9)

where Û
(k)
0 (t) = exp[−i(Ω0σ̂

(k)
z )t/2] and Û

(k)
1 (t) =

exp[−i(Ω⃗
(k)
1 · σ̂(k))t/2], and u⃗(k) = Ω⃗

(k)
1 /|Ω⃗(k)

1 | is the axis
of nuclear spin precession.

The electron spin reduced density matrix ρNV(t) =

TrCÛT(t)ρT(0)Û
†
T(t) is obtained by tracing over the 13C

nuclear spin bath from the total system, and the elec-
tron spin pure dephasing dynamics is characterized by
the dephasing factor

ϕ(t) = ⟨0|ρNV(t)|1⟩

= ei(D+γeBz)t
∏
k

Tr
[
Û

(k)†
1 (t)Û

(k)
0 (t)ρ(k)

]
.(10)

Moreover, since we are paying particular attention to the
pure dephasing dynamics caused by the 13C nuclear spin
bath, it is clear that the leading factor exp[i(D+γeBz)t]
plays no role in describing the profile of ϕ(t) but merely
introducing a rapidly rotating phase. Consequently, for
our purpose, we can neglect the leading factor. Finally,

with the help of the prescription (u⃗ · σ̂)(v⃗ · σ̂) = (u⃗ · v⃗)Î+
i(u⃗× v⃗) · σ̂ and the orthogonality of the identity and the
Pauli operators Trσ̂j σ̂k = 2δjk, the dephasing factor can

be expressed analytically as

ϕ(t) =
∏
k

[(
cos

Ω0t

2
− ip(k)z sin

Ω0t

2

)
cos

Ω
(k)
1 t

2

+u(k)
z

(
sin

Ω0t

2
+ ip(k)z cos

Ω0t

2

)
sin

Ω
(k)
1 t

2

+i
(
p(k)x u(k)

x + p(k)y u(k)
y

)
cos

Ω0t

2
sin

Ω
(k)
1 t

2

+i
(
p(k)x u(k)

y − p(k)y u(k)
x

)
sin

Ω0t

2
sin

Ω
(k)
1 t

2

]
.(11)

C. Nuclear spin polarization

Equation (11) suggests that one is possible to manip-
ulate the dynamical behavior of the electron spin by en-
gineering the polarization p⃗(k) and the precession axis
u⃗(k) of the nuclear spin bath. One of the extensively de-
veloped techniques engineering the nuclear spin bath is
the dynamical nuclear polarization (DNP) [74–84], which
utilizes the hyperfine interaction and the resonance be-
tween the electron spin and the nuclei to transfer the elec-
tron spin polarization to the surrounding nuclear spins,
achieving a hyperpolarized nuclear spin bath.
On the other hand, since the underlying mechanism

of the DNP relies on the hyperfine interaction between
the electron spin and the nuclei, which attenuates rapidly
with increasing displacement, as can be seen from Eq. (4),
it is generically infeasible to polarize the whole nuclear
spin bath. Therefore, we assume that only the nuclei
within a polarization area of radius 1 nm [yellow shadow
in Fig. 1(c)] can be polarized with identical polarization
p⃗; otherwise p⃗ = 0 for r⃗(k) ≥ 1 nm.

III. DYNAMICAL PROCESS
NONCLASSICALITY

From the above discussion, we acquire the fact that the
decoherence of the electron spin is caused by the hyper-
fine interaction to the 13C nuclear spin bath. In fact, this
phenomenon of decoherence is ubiquitous in any quan-
tum systems, as they are impossible to be fully isolated
from their environments, and the inevitable interactions
to their environments constitute the origin of decoher-
ence [85–90]. From the quantum-information-theoretic
perspective, the interactions will establish complicated
correlations between them; while the correlations are sub-
ject to the destructions arising from the fluctuations in
the huge environments, rendering themselves fragile and
transient.
Consequently, an intriguing question is naturally

raised: Given exclusively the FID signal, to what extent
can the experimentalist infer the essential of the corre-
lations between the electron spin and the nuclear spin
bath? To this end, we have developed a technique of
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canonical Hamiltonian ensemble representation (CHER)
to characterize the nonclassicality of a dynamical process
according to the witness of the nonclassical correlations
between the primary system and its environments [62–
64].

Our definition of process nonclassicality is constructed
based on the possibility to explain a dynamical process in
an ensemble-averaged manner. The mathematical tool of
fundamental importance in our definition is the Hamil-

tonian ensemble (HE) {(pλ, Ĥλ)}λ, which consists of a

collection of traceless Hermitian operators Ĥλ ∈ su(n)
associated with a probability pλ of occurrence [91, 92].
For a given HE, it will give rise to an ensemble-averaged
dynamics expressed as

ρ(t) = Et{ρ(0)} =

∫
pλÛλ(t)ρ(0)Û

†
λ(t)dλ, (12)

where Ûλ(t) = exp(−iĤλt) is the unitary time-evolution
operator generated by the member Hamiltonian operator

Ĥλ.
A particularly inspiring example considers a single

qubit subject to spectral disorder with the HE given by
{(p(ω), ωσ̂z/2)}ω, where p(ω) can be any probability dis-
tribution function, then the ensemble-averaged dynamics
describes pure dephasing:

ρ(t) =

∫ ∞

−∞
p(ω)e−iωσ̂zt/2ρ0 e

iωσ̂zt/2dω

=

[
ρ⇈ ρ↑↓ ϕ(t)

ρ↓↑ ϕ
∗(t) ρ⇊

]
(13)

with the dephasing factor ϕ(t) =
∫
p(ω) exp(−iωt)dω be-

ing the Fourier transform of p(ω).
Crucially, it has been shown that [62], if a primary

system and its environments remain at all times classi-
cally correlated without establishing nonclassical correla-
tions during their interactions, then the reduced system
dynamics Et can be explained in terms of a HE in the
sense of ensemble-averaged dynamics (12). Namely, the
incoherent dynamical behavior can be conceived as a re-
sults of the consumption of classical correlations. On the
contrary, if nonclassical correlations emerge during the
interactions, then one may fail to construct a HE with
legitimate probability distribution function pλ, and nec-
essarily appeals to a quasi-distribution ℘λ with negative
values instead. Consequently, the quasi-distribution ℘λ,
referred to as the CHER, can be used to characterize the
nonclassicality of a dynamics Et [62–64].
Considering the FID process governed by the unitary

operator (9), the electron spin undergoes a pure dephas-
ing dynamics characterized by the dephasing factor (11).
In view of Eq. (13), the corresponding CHER ℘(ω) of the
electron spin FID is determined by the inverse Fourier
transform

℘(ω) =
1

2π

∫ ∞

−∞
ϕ(t)eiωtdt. (14)

It is interesting to note that the electron spin FID has
shown to be nonclassical when the 13C nuclear spin bath
is transversely polarized; moreover, the degree of nonclas-
sicality will become stronger with increasing polarization
and magnetic field [65]. In the following, we will design a
quantum circuit capable of reproducing the nonclassical
effects induced by the nuclear spin path polarization on
the electron spin FID process.

IV. ADAPTIVELY PARTITIONED AQS FOR
NV− CENTER

After elucidating the target material to be simulated
and the underlying physics of nonclassicality to be re-
vealed, we proceed to explain how to design the quantum
circuit model implementing the adaptively partitioned
AQS for NV− center coupling to a huge 13C nuclear spin
bath. The whole procedure consists of several steps out-
lined in the following:

Step 1 AQS quantum circuit. Since the total Hamil-
tonian (5) will generate the corresponding unitary
time-evolution operator (9), our approach begins
with the design of a quantum circuit implement-
ing Eq. (9), as well as all the relevant experimental
setup, including the initial state preparation and
the nuclear spin polarization.

Step 2 Preliminary examination. To fully simulate
the effects of the whole nuclear spin bath in an
AQS manner, the quantum circuit should launch
several hundreds of qubits. This is obviously in-
feasible on nera-term quantum computing plat-
forms. We therefore adaptively partition the bath
into several groups based on the performance of
the quantum devices. To this end, the second
stage is to preliminarily examine the performance
of available quantum devices by testing prototyp-
ical circuits designed in the first stage.

Step 3 Adaptive partition. Based on the limitations
of the quantum devices examined in the previous
stage, the third stage is a partition of the nuclear
spin bath into smaller groups fitting into the per-
formances of the available quantum devices. Then
each individual group is attainable on the quan-
tum devices and can be performed separately.

Step 4 Combination of groups. Ultimately, according
to Eq. (11), the final results can be obtained by
combining the output of each group.

Detailed implementations of each stage are explained in
the following.

A. AQS circuit model for NV− center

The purpose of the AQS is to tailor an artificial Hamil-
tonian with controllable quantum systems mimicking the
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FIG. 2. The overall quantum circuit implementing the AQS for NV− center coupling to the whole 13C nuclear spin bath. To
prepare the qubit initial states satisfying the experimental condition, each qubit will go through a stage of state preparation.
The Hadamard gate on the electron qubit sets the qubit state to (|0⟩+ |1⟩)/

√
2, reflecting the effect of a π/2 MW pulse. While

the mixed state of the nucleus qubit can be realized by a polarization oracle P(k) acting on the kth nucleus qubit associated
with an additional ancilla qubit. The desired nuclear spin polarization can be achieved by the polarization oracles listed in
Table I. At the end of the electron qubit, the QST is applied to construct the time evolution of the dephasing factor ϕ(t) along
a time sequence.

TABLE I. Polarization oracle and polarization vector.

p⃗(k) (0, 0, 1) (0, 0, 0) (0, 0, cos θ) (1, 0, 0) (sin θ1 sin θ2, 0, cos θ1)

P(k)

H • U(θ, 0, 0) • U(π/2, 0, 0) U(θ1, 0, 0) •

U(θ2, 0, 0)

one of interest. We therefore design a quantum circuit
by mapping the total unitary time-evolution operator

ÛT(t) = |0⟩⟨0| ⊗
∏
k

Û
(k)
0 (t) + |1⟩⟨1| ⊗

∏
k

Û
(k)
1 (t) (15)

into quantum gates. Note that the factor exp[−i(D +
γeBz)t] has been neglected from Eq. (9). This factor
is given by the energy-level spacing between |0⟩ and
|1⟩ states described by the electron spin free Hamilto-
nian (1). It is responsible for the rapid oscillation in
the FID profile. However, here we are interested in the
dephasing caused by the interaction to the nuclear spin
bath. Consequently, for our purpose, we can neglect the
this factor.

It is crucial to observe that the hyperfine interaction
in Eq. (5) gives rise to an intrinsic conditional opera-
tion conditioned on the electron spin state. This can
be realized by the controlled-U gates on IBMQ after the

following manipulation of Eq. (15):

ÛT(t) =

(
|0⟩⟨0| ⊗

∏
k

Î(k) + |1⟩⟨1| ⊗
∏
k

Û
(k)
1 (t)Û

(k)†
0 (t)

)

×

(
Î(NV) ⊗

∏
k

Û
(k)
0 (t)

)
, (16)

where Î(NV) is the identity operator acting on the qubit
playing the role of electron spin. Then the above unitary
operator can be realized with quantum gates as:

ÛT =

(
C(NV)

∏
k

Û (k)(θ(k), φ(k), λ(k), γ(k))

)

×

(
Î(NV) ⊗

∏
k

R̂z(Ω0t)

)
. (17)

The second term denotes a series of identical and inde-
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pendent R̂z(Ω0t) rotations, with matrix representation

Rz(θ) = e−i θ
2 σ̂

(k)
z =

[
e−i θ

2 0

0 ei
θ
2

]
, (18)

on the qubits playing the role of 13C nuclear spins, fol-
lowed by the controlled-U gates conditioned on the elec-
tron qubit denoted by the first term. They can be real-
ized by the circuit

• •
=

U (k) eiγ
(k)

U(θ(k), φ(k), λ(k))

(19)

on IBMQ; meanwhile, the gate parameters can be deter-
mined according to the Hamiltonian (6) as follows:

θ(k) = 2 cos−1

√
cos2

Ω
(k)
1 t
2 + sin2

Ω
(k)
1 t
2 u

(k)2
z

φ(k) = −π
2 −Θ(k) +Φ(k)

λ(k) = π
2 − Ω0t−Θ(k) − Φ(k)

γ(k) = Ω0t
2 +Θ(k)

Θ(k) = Arg

[
cos

Ω
(k)
1 t
2 − i sin

Ω
(k)
1 t
2 u

(k)
z

]
Φ(k) = Arg

[
u
(k)
x + iu

(k)
y

]
. (20)

Further details are shown in Appendix A. Consequently,
the total unitary time-evolution operator (15) can be re-
alized with the AQS circuit succinctly shown below:

AQS

UT(t)

•
=

/ / Rz(Ω0t) U (k)

. (21)

B. State preparation and polarization oracle

Once the total unitary time-evolution operator (15)
has been realized with quantum circuit, following the dis-
cussions in Sec. II, the next step is to prepare the initial
state as given in Eq. (8) according to the FID experi-
ments.

The qubit initial state on IBMQ is preset to |0⟩. An
Hadamard gate realizes the effect of a π/2 MW pulse set-

ting the electron spin state to (|0⟩ + |1⟩)/
√
2, as shown

in Fig. 2. On the other hand, a single-qubit gate on nu-
cleus qubit is insufficient to realize various nuclear spin
states, particularly those of mixed states. To do this, we
design the polarization oracle P(k) acting on the kth nu-
cleus qubit associated with an additional ancilla qubit,
as shown in Fig. 2. After the operation of an appro-
priate P(k), tracing out the ancilla qubit leaves the nu-

cleus qubit in the state ρ(k) = [Î(k) + p⃗(k) · σ̂(k)]/2 with a
corresponding polarization vector p⃗(k). Table I shows a

family of polarization oracles P(k) and the corresponding
polarization vectors p⃗(k). Therefore, we can manipulate
individual nucleus qubit state and realize a nuclear spin
bath of experimental condition schematically shown in
Fig. 1(c).
At the end of the AQS circuit, the quantum state to-

mography (QST) is applied to probe the state of the
electron qubit. Additionally, since we are aiming at sim-
ulating the electron spin pure dephasing characterized by
the dephasing factor (11), its time evolution can be con-
structed by measuring σ̂x and σ̂y along a time sequence
according to ϕ(t) = ⟨σ̂x⟩t − i⟨σ̂y⟩t. Finally, the overall
layout of the circuit is shown in Fig. 2. Note that merely
the electron qubit is measured for QST at the end of the
AQS circuit. The nucleus and the ancilla qubits are ig-
nored after the AQS block. This reflects the trace over
the nuclear spin degrees of freedom in Eq. (10).

C. Preliminary examination

FIG. 3. The qubits launched in the simulation on the (a)
ibm auckland and (b) ibm washington quantum devices. The
red, dark gray, and orange qubits play the role of the electron
spins, the nuclear spins, and the ancilla qubits controlling the
nuclear spin polarizations, respectively.

To perform the AQS circuit on IBMQ [66], we have to
map the circuit onto the qubits of the quantum devices.
However, due to the qubit topological connectivity, it is
obviously infeasible to map the whole circuit simulating
hundreds of nucleus qubits onto IBMQ devices.
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FIG. 4. The AQS results for three nuclei obtained from ibm auckland. We demonstrate the results for two polarizations,
p⃗(k) = (0, 0, 0) (top panels) and p⃗(k) = (0, 0, 1) (bottom panels), at various values of the magnetic field. The simulation results

for p⃗(k) = (0, 0, 1) fit the theoretical calculations well since the polarization corresponds to the preset qubit state |0⟩ without

additional operation. On the other hand, to prepare the nuclear spin polarization p⃗(k) = (0, 0, 0) requires a CNOT gate,
resulting in obvious discrepancies, particularly the erroneous imaginary part Im[ϕ(t)].

FIG. 5. The AQS results for six nuclei obtained from ibm washington. We demonstrate the results for two polarizations,
p⃗(k) = (0, 0, 0) (top panels) and p⃗(k) = (0, 0, 1) (bottom panels), at various values of the magnetic field. Due to the limitation
imposed by the topological connectivity of IBMQ devices, nucleus qubits exceeding three will lie at farther positions away
from the electronic qubit, resulting in a rapidly increasing number of CNOT gates. This not only enhances the noise, but also
deepens the circuit, rendering the simulation unreliable.

To verify the validity of the circuit, as well as to
benchmark the performance of the IBMQ devices for
later purpose, we first perform two prototypical circuits
simulating the effects of three and six 13C nuclei on
ibm auckland and ibm washington, respectively. The
qubits launched and the labels on IBMQ devices are
shown in Fig. 3. The red qubits play the role of the
electron spin, and the dark gray and orange qubits de-
note the nucleus and the ancilla qubits controlling the
nuclear spin polarizations, respectively.

Figures 4 and 5 show the results of the prototypical

simulations of three and six nuclei, respectively. We
demonstrate the results of two polarizations, i.e., p⃗(k) =
(0, 0, 0) and (0, 0, 1), at various values of the magnetic
field. In Fig. 4, the results obtained from ibm auckland
for p⃗(k) = (0, 0, 1) (bottom panels) are in good agreement
with the theoretical calculations given by Eq. (11); while
the ones for p⃗(k) = (0, 0, 0) (top panels) show promi-
nent discrepancies. These discrepancies can be under-
stood from two aspects. The first one is the polarization
oracles listed in Table I. Polarization p⃗(k) = (0, 0, 1) cor-
responds to the preset qubit state |0⟩ without additional
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operation. However, the one for p⃗(k) = (0, 0, 0) requires
an additional CNOT gate coupling to an ancilla qubit
for each nucleus qubit, which constitutes one source of
the noise on IBMQ devices. Later we will further in-
vestigate the second source of the nonlocal noise caused
by the crosstalk between qubits on IBMQ devices. We
will find that this nonlocal noise is also nonclassical, and
constitutes the primary source of error, particularly the
erroneous imaginary part Im[ϕ(t)].

Additionally, we have also increased the number of nu-
clei to six and shown the results in Fig. 5. It can be
seen that the results obtained from ibm washington de-
viate even more considerably from the theoretical calcu-
lations. The reason for this enhanced deviation can be
understood from the topological connectivity of IBMQ
devices. As shown in Fig. 3(b), an electron qubit can at
most physically connect to three nucleus qubits, to each
of which an additional ancilla qubit is appended. Further
nucleus qubits will lie at farther positions away from the
electronic qubit, leading to remotely controlled-U gates.
Due to the limited connectivity, the remotely controlled-
U gates are implemented in the back end by appending
additional SWAP gates as

• × ×
×× ××

= × • ×

U (k) U (k)

; (22)

and each swap gate will introduce three more CNOT
gates as

× • •
=

× •
. (23)

This results in a rapidly increasing number of CNOT
gates in the back end implementation, as well as the
detrimental noises. Furthermore, an increasing number
of CNOT gates also implies a deeper circuit, which re-
quires a longer execution time approaching, or even ex-
ceeding, the life time of physical qubits, rendering the
results unreliable.

Finally, we have also performed the AQS for ten nuclei
on ibmq qasm simulator. We find that the results from
the simulator fit the theoretical calculations very well
besides tiny errors due to the approximations introduced
by classical simulation algorithm; whereas, this simulator
has a limited computational capability and can simulate
the effects of at most ten nucleus-ancilla qubit pairs in a
single task. The results and further discussions are shown
in Appendix B.

D. Adaptive partition of the bath

From the previous preliminary examinations, it can be
seen that the number of nuclei simulated in a single task

is very limited, far from simulating large-scale materials
in an AQS manner. To circumvent these limitations, we
design a simulation algorithm by adaptively dividing the
nuclear spin bath into several groups, each of which fits
into the performance of the quantum devices.
In our simulation, we first generate a nuclear spin con-

figuration of natural abundance about 1.1%, consisting
of 520 13C nuclei randomly distributed over the diamond
lattice sites. Then we list the nuclei according to the
distance |r⃗(k)| to the electron spin in an increasing order.
To ensure the validity of the dipole-dipole interaction de-
scribed by Eq. (4), we have also verified that all nuclei
are farther away than 0.5 nm from the electron spin.
Table II shows how we partition the 520 nuclei. For

example, the first row denotes a group consisting of
three nuclei lying within the polarization area (0.5 nm <
|r⃗(k)| < 1 nm). Then the effect can be simulated
on ibm auckland with a circuit launching seven qubits
[Fig. 3(a)], and the polarization vector p⃗(k) is control-
lable with appropriate polarization oracle listed in Ta-
ble I. In our configuration, there are ten nuclei lying
within the polarization area. For the unpolarized nuclei
with p⃗(k) = (0, 0, 0) outside the polarization area, e.g.,
the group consisting of nuclei ranging from ♯11 to ♯20,
the circuits are simulated on ibmq qasm simulator.
Then the effects of the whole nuclear spin bath

are implemented in a collaboration between the
authentic device ibm auckland and the simulator
ibmq qasm simulator on IBMQ. Finally, according to
Eq. (11), the desired dephasing factor ϕ(t) accounting
for 520 nuclei is given by the product of the results of all
groups, and the corresponding CHER ℘(ω) can be esti-
mated according to the inverse Fourier transform (14).

V. SIMULATION RESULTS

We first show the results in Fig. 6 for an unpolarized
nuclear spin bath, i.e., p⃗(k) = (0, 0, 0) for both the ten
nuclei simulated on ibm auckland and the outer nuclei
on ibmq qasm simulator, denoted by the colored dots.
As expected from the top panels of Fig. 4, we can ob-
serve significant errors in Fig. 6, particularly in the be-
ginning of the time evolution. As a comparative study,
we also demonstrate a counterpart fully performed on
ibmq qasm simulator, denoted by the colored circles.
Although the simulator gives better results than those
of collaborative simulation, the algorithmic errors now
become visible in the imaginary parts, due to the am-
plification caused by the production over all groups of
nuclei.
In the bottom panels of Fig. 6, we show the corre-

sponding CHER ℘(ω) at various values of the magnetic
field. The theoretical calculations show that the CHER
should be positive in the case of unpolarized nuclear spin
bath, whereas the errors caused by ibm auckland re-
sult in negative wings. In view of the physical mean-
ing of the negativity as a witness of nonclassical system-
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TABLE II. Partition of the 520 nuclei and the implementation of each group.

k |r⃗(k)| (nm) p⃗(k) Device Amount of 13C Amount of qubits

♯1-♯3 0.5 ∼ 1 Controllable ibm auckland 3 7

♯4-♯6 0.5 ∼ 1 Controllable ibm auckland 3 7

♯7-♯9 0.5 ∼ 1 Controllable ibm auckland 3 7

♯10 0.5 ∼ 1 Controllable ibm auckland 1 3

♯11-♯20 > 1 (0, 0, 0) ibmq qasm simulator 10 21

♯21-♯30 > 1 (0, 0, 0) ibmq qasm simulator 10 21
...

♯511-♯520 > 1 (0, 0, 0) ibmq qasm simulator 10 21

FIG. 6. The adaptively partitioned AQS results for 520 unpolarized nuclei at various values of the magnetic field (top panels)
and the corresponding CHER (bottom panels). The collaborative simulations with ibm auckland and ibmq qasm simulator

are denoted by the colored dots, and the ones fully given by ibmq qasm simulator are denoted by the colored circles. The
errors caused by the ibm auckland are prominent, particularly in the beginning of the time evolution. The simulator gives
better results besides the amplified algorithmic errors in the imaginary part. Although the CHER in the case of unpolarized
nuclear spin bath should be positive, the errors caused by the crosstalk on ibm auckland give rise to negative wings. On the
other hand, the results fully given by ibmq qasm simulator reproduce the central peak very well; while the algorithmic errors
give rise to irregularly wavy wings on both sides of the central peak.

environment correlations [62], the negative wings imply
that there are certain nonclassical, and nonlocal, corre-
lations established between the nucleus-ancilla supercon-
ducting devices and the environmental degrees of freedom
in the substrate during the pulse operations. This effect
is referred to as the crosstalk between the nucleus-ancilla
qubit pairs and gives rise to nonlocal noises between qubit
pairs, which in turn come into play in the dynamics of the
electron spin qubit and is captured by the negativity in
the CHERs. Later we will address this issue by suppress-
ing its effect with appropriate qubit pairs. On the other
hand, the results fully given by ibmq qasm simulator
reproduce the central peak very well. However, the algo-
rithmic errors give rise to irregularly wavy wings on both
sides of the central peak.

In Fig. 7, we show the effects of a z-polarized nu-
clear spin bath. Similarly, the colored dots denote the

results simulated in a collaborative manner, where the
ten polarized nuclei with p⃗(k) = (0, 0, 1) are simulated on
ibm auckland and the outer unpolarized nuclei are on
ibmq qasm simulator according to the partition listed
in Table II, and the colored circles denote the counter-
part fully performed on ibmq qasm simulator. As ex-
pected from the preliminary examinations, the collabo-
rative simulations on IBMQ for p⃗(k) = (0, 0, 1) are much
better than those for p⃗(k) = (0, 0, 0) due to the cor-
responding polarization oracles. Moreover, the results
fully given by ibmq qasm simulator also fit the theoret-
ical calculations very well besides the visible algorithmic
errors in the imaginary parts. Furthermore, the profile
of the CHER varies drastically with increasing magnetic
field in this case. Several sharp peaks emerge at strong
fields. Remarkably, this phenomenon has also been well-
reproduced in our simulations.
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FIG. 7. The adaptively partitioned AQS results for a z-polarized nuclear spin bath at various values of the magnetic
field (top panels) and the corresponding CHER (bottom panels). The collaborative simulations with ibm auckland and
ibmq qasm simulator are denoted by the colored dots, and the ones fully given by ibmq qasm simulator are denoted by
the colored circles. Due to the null operation of the polarization oracle implementing p⃗(k) = (0, 0, 1), the collaborative simula-
tions are in good agreement with the theoretical calculations. Remarkably, the emergence of the sharp peaks in the profile of
the CHER has also been well-reproduced in our simulations.

FIG. 8. The adaptively partitioned AQS results for an x-polarized nuclear spin bath at various values of the magnetic
field (top panels) and the corresponding CHER (bottom panels). The collaborative simulations with ibm auckland and
ibmq qasm simulator are denoted by the colored dots, and the ones fully given by ibmq qasm simulator are denoted by
the colored circles. Due to the polarization oracle implementing p⃗(k) = (1, 0, 0) on ibm auckland, the collaborative simulations
ultimately deviate prominently from the theoretical calculations. In this case, the ones fully given by ibmq qasm simulator

also suffer from the amplified algorithmic errors. Remarkably, the negativity in the CHER ℘(ω) is enhanced against the errors
at stronger fields and becomes visible, as shown in the insets. This is an indicator of the nonclassicality reproduced in our
simulations.

It has been shown that the nonclassicality is induced
by the nuclear spin precession in the presence of a trans-
versely polarized nuclear spin bath [65]. Figure 8 shows
the simulation of the nonclassicality induced by an x-
polarized nuclear spin bath at various values of the mag-
netic fields. The polarization oracle implementing p⃗(k) =
(1, 0, 0) requires a quantum gate on the nucleus qubit

to be polarized. After the amplification of the produc-
tion over all x-polarized nucleus qubits on ibm auckland,
the errors in the collaborative simulations become promi-
nent; while the overall profile remains visible. Similarly,
the results fully given by ibmq qasm simulator also suf-
fer from the amplified algorithmic errors. Remarkably, in
the lower panels of Fig. 8, we can observe the emergence
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of the nonclassicality in terms of the negativity in the
CHER ℘(ω). Although the nonclassicality is smeared at
Bz = 50 G due to the errors on ibm auckland, it be-
comes visible at stronger fields, as shown in the insets for
Bz = 100 G and 200 G.

VI. NONCLASSICAL CROSSTALK BETWEEN
QUBITS

From the previous simulation results, it can be realized
that, apart from the intrinsic local errors such as the gate
errors or the finite life times of the qubits, our simula-
tions are suffering from an additional source of nonlocal
noises, i.e., the crosstalk between qubits, which in turn
constitute the primary obstacle hindering the numerical
reliability of our simulations.

To address the nonlocal noises caused by the crosstalk,
we perform the prototypical circuits simulating the ef-
fects of two 13C nuclei on ibm auckland launching dif-
ferent nucleus-ancilla qubit pairs. Figure 9 shows the re-
sults for p⃗(k) = (0, 0, 0) at various values of the magnetic
field. The insets indicate the qubits launched in the cir-
cuits. It can be seen that, the circuits performed on the
left-right qubit pairs [Fig. 9(a)] significantly suppress the
noises caused by the crosstalk. The results are in good
agreement with the theoretical calculations. Crucially,
the results of null imaginary part Im[ϕ(t)] have been cor-
rectly reproduced; while those performed on the top-right
qubit pairs [Fig. 9(c)] give rise to the most prominent er-
roneous imaginary part. Additionally, the behavior of the
errors are the same as those observed in the top panels of
Fig. 4. These preliminary simulations not only confirm
the effect of the crosstalk on the erroneous imaginary
part, but also suggest a convenient way to suppress it by
launching appropriate qubits.

Based on these preliminary simulations, we apply our
adaptive partition approach to simulate the effects of the
520 nuclei. Figure 10 shows the results for p⃗(k) = (0, 0, 0)
at various values of the magnetic field launching differ-
ent nucleus-ancilla qubit pairs, as indicated in the in-
sets. Similarly, the colored dots denote the results per-
formed in a collaborative manner with ibm auckland and
ibmq qasm simulator, and the colored circles denote the
ones simulated with ibmq qasm simulator. Compared
with the FID process simulated in the top panels of Fig. 6,
the results given by the left-right qubit pairs [Fig. 10(a)]
exhibit significant improvements. The discrepancies in
both real Re[ϕ(t)] and imaginary parts Im[ϕ(t)] from the-
oretical calculations are considerably quenched, as ex-
pected from Fig. 9(a). On the other hand, the results
given by the top-left [Fig. 10(b)] or the top-right qubit
pairs [Fig. 10(c)] are subject to the noises caused by the
crosstalk, leading to prominent discrepancies in either
real or imaginary parts.

Noteworthily, the CHER ℘(ω) can further reveal dif-
ferent insights into the effect of the crosstalk. Comparing
the CHERs given by the left-right qubit pairs [Fig. 10(a)]

with those shown in the bottom panels of Fig. 6, the er-
roneous negative wings on the left, as well as the positive
wings on the right, are eliminated due to the suppression
of the crosstalk. Only the irregularly wavy wings caused
by the algorithmic errors of the simulator are left.
On the other hand, the CHERs given by the top-left

[Fig. 10(b)] and the top-right qubit pairs [Fig. 10(c)] re-
veal erroneous negative wings, indicating the nonclassical
essential of the effect of the crosstalk. It is also interest-
ing to note that, the positions of the erroneous negative
wings caused by different qubit pairs are different as well.
This implies that the relative phases between the wave
functions of the spatially separated superconducting de-
vices induced by the crosstalk are of different sign.

VII. CONCLUSION

In this work we propose to simulate large-scale ma-
terials in a manner of analog quantum simulation on
near-term quantum computing platforms. In view of the
limitations on the computing capability imposed by the
noises and the topological connectivity, our simulation
algorithm circumvents the obstacles by adaptively par-
titioning the effects of huge bath into adequate groups
based on the performance of the quantum devices.
We demonstrate our approach by simulating the FID

process of the electron spin of an NV− center coupled to
a huge nuclear spin bath and perform the simulation on
IBMQ. We design a prototypical quantum circuit imple-
menting the total Hamiltonian of an NV− center coupled
to a huge number of nuclei via the dipole-dipole hyper-
fine interaction. Additionally, to reflect the experimental
conditions, we also design a family of polarization oracles
implementing the nuclear spin engineering by the DNP
technique.
To investigate the capability of the quantum devices

simulating the electron spin dynamics, we also perform a
series of preliminary examinations simulating the effects
of a few number of nuclei. Based on their performance,
we can simulate the FID process either in an collabo-
ration with authentic device and classical simulator, or
fully on classical simulator of IBMQ. With this adaptive
partition approach, we can reproduce the effects account-
ing for 520 nuclei on the FID process. In particular, we
have taken into account the various values of magnetic
fields and the nuclear spin polarizations in an experimen-
tal condition. Additionally, by the technique of CHER,
our approach can also reproduce the nonclassical essen-
tial of the electron spin FID process induced by the nu-
clear spin polarizations.
Furthermore, we also notice that the simulation results

are subject to imperfectness caused by both the noise of
the authentic quantum devices and the algorithmic errors
of the simulators. To further showcase the versatility of
our approach, we have also applied it to address the pri-
mary source of error in our simulations, i.e., the nonlo-
cal noise caused by the crosstalk between qubits, and its
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FIG. 9. The AQS results for two nuclei obtained from ibm auckland launching (a) the left-right, (b) the top-left, and (c) the
top-right qubit pairs, respectively, as indicated in the insets. The crosstalk is significantly suppressed by launching merely the
left-right qubit pairs. The corresponding results are in good agreement with the theoretical calculations, particularly the null
imaginary part. However, the results given by the top-left and the top-right qubit pairs are subject to the noises caused by the
crosstalk. The noises are prominent in the erroneous imaginary parts.

nonclassical essential. Our analyses suggest a convenient
way to suppress it by launching appropriate qubits.

In conclusion, we achieve the demonstration of the ca-
pability of our adaptive partition approach in the explo-
ration of the physical mechanisms underlying the simu-
lated phenomena at a microscopic level. Our approach
reproduces critical physical phenomena, including the dy-
namical behavior of the electron spin, the variation of the
profile of the CHER, the nonclassicality in terms of the
negativity in the CHER, and, crucially, the nonclassical-
ity in the noises caused by the crosstalk between qubits.
We stress that, our approach is flexible in the sense that
we can distribute the computing loading not only to dif-
ferent devices, but also to different qubit groups on a
same device in a single task for improving the efficiency.
Namely, the distribution strategy is adjustable depending
on the condition of the available devices and the required
accuracy or efficiency.

(≡ Φ̂ωΦ̂ ≡) ∼ meow
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Appendix A: Parameters of the controlled-U gates
in the AQS quantum circuit

Here we explain how to determine the gate parameters
(θ(k), φ(k), λ(k), γ(k)) of the controlled-U gate in Eq. (17).

The matrix form of the U-gate to be controlled on
IBMQ is expressed as
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FIG. 10. The adaptively partitioned AQS results for 520 unpolarized nuclei at various values of the magnetic field and the
corresponding CHER. The colored dots denote the results performed in a collaborative manner with (a) the left-right, (b) the
top-left, and (c) the top-right qubit pairs on ibm auckland, respectively, and ibmq qasm simulator. The results given by the
left-right qubit pairs exhibit significant improvements, leading to the elimination of the erroneous wings in the corresponding
CHERs. However, the results given by the top-left or the top-right qubit pairs are subject to the noises caused by the crosstalk,
leading to prominent discrepancies in either real or imaginary parts, as well as the erroneous wings in the corresponding CHERs.
Additionally, the negative wings caused by the crosstalk indicate its nonclassical traits.
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FIG. 11. The AQS results for ten nuclei obtained from ibm qasm simulator. We demonstrate the results of three polarizations,
p⃗(k) = (0, 0, 0) (top panels), p⃗(k) = (0, 0, 1) (middle panels), and p⃗(k) = (1, 0, 0) (bottom panels), at various values of the
magnetic field. We find that the classical simulator ibm qasm simulator can simulate at most ten nucleus-ancilla qubit pairs in
a single task. Regardless of the limitation on the number of qubits, the results fit the theoretical calculations very well besides
tiny errors caused by the classical simulation algorithm.
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Appendix B: Simulating ten nuclei on a simulator

Limited by the topological connectivity, it is infeasible
to simulate huge materials in a single task on the IBMQ
authentic devices. To circumvent this limitation, as well
as to benchmark the capability of the classical simula-
tors provided by IBMQ, we have also performed larger
prototypical circuits on the ibm qasm simulator.

Although the ibm qasm simulator provides 32 qubits,
we find that it has a limited computing capability sim-
ulating up to ten nucleus-ancilla qubit pairs (21 qubits
launched in a single task). Errors occur in the backend
operation if more than 21 qubits are included in a single
task. This limitation can be understood from the giant
Hilbert space of size 221, corresponding to the propaga-
tion of a density matrix of dimension 221 × 221.
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In Fig. 11, we show the prototypical simulations for
the effects of ten 13C nuclei on ibm qasm simulator. It
can be seen that the results given by the simulator fit the

theoretical calculations very well for three polarizations.
However, there are still tiny errors due to the approxi-
mations introduced by classical simulation algorithm.
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