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Abstract. Mixed quantum-classical models have been proposed in sev-
eral contexts to overcome the computational challenges of fully quan-
tum approaches. However, current models typically suffer from long-
standing consistency issues, and, in some cases, invalidate Heisenberg’s
uncertainty principle. Here, we present a fully Hamiltonian theory of
quantum-classical dynamics that appears to be the first to ensure a se-
ries of consistency properties, beyond positivity of quantum and classical
densities. Based on Lagrangian phase-space paths, the model possesses a
quantum-classical Poincaré integral invariant as well as infinite classes of
Casimir functionals. We also exploit Lagrangian trajectories to formulate
a finite-dimensional closure scheme for numerical implementations.

Keywords: Mixed quantum-classical dynamics · Lagrangian trajectory
· Koopman wavefunction · Hamilton’s variational principle · group action.

1 Introduction

The search for a mixed quantum-classical description of many-body quantum
systems is motivated by the formidable challenges posed by the curse of di-
mensionality appearing in fully quantum approaches. For example, it is com-
mon practice in molecular dynamics to approximate nuclei as classical particles
while retaining a fully quantum electronic description. Similar mixed quantum-
classical approximations have also been proposed in quantum plasmas and, more
recently, in magnon spintronics.

Hybrid quantum-classical models. Despite the computational appeal, the interac-
tion dynamics of quantum and classical degrees of freedom continues to represent
a challenging question since the currently available models suffer from several
consistency issues. In some cases, the Heisenberg principle is lost due to the fact
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that the quantum density matrix is allowed to change its sign. In some other
cases, the model does not reduce to uncoupled quantum and classical dynamics
in the absence of a quantum-classical interaction potential. At a computational
level, the most popular approach is probably the Ehrenfest model, which reads

∂tD + div
(
D〈XĤ〉

)
= 0, i~

(
∂tψ + 〈XĤ〉 · ∇ψ

)
= Ĥψ, (1)

where XĤ =
(
∂pĤ,−∂qĤ

)
. Here, D(q, p) is the classical density, while ψ(x; q, p)

is a wavefunction depending on the quantum x−coordinate and parameter-
ized by the classical coordinates (q, p). Also, Ĥ(q, p) is a quantum Hamilto-
nian operator depending on (q, p) and we have resorted to the usual notation

〈Â〉 = 〈ψ|Â(q, p)ψ〉, where 〈ψ1|ψ2〉 =
´

ψ∗
1(x)ψ2(x) dx. In this setting, the matrix

elements of the quantum density operator are given as

ρ̂(x, x′) =

ˆ

D(q, p)ψ(x; q, p)ψ∗(x′; q, p) dqdp.

Despite its wide popularity, the Ehrenfest model (1) fails to reproduce realistic
levels of decoherence, which is usually expressed in terms of the norm squared
‖ρ̂‖2 of the density operator, a quantity also known as quantum purity.

Any quantum-classical description beyond the Ehrenfest model must still
ensure its five consistency properties: 1) the classical system is identified by a
phase-space probability density at all times; 2) the quantum system is identi-
fied by a positive-semidefinite density operator ρ̂ at all times; 3) the model is
covariant under both quantum unitary transformations and classical canonical
transformations; 4) in the absence of an interaction potential, the model reduces
to uncoupled quantum and classical dynamics; 5) in the presence of an interac-
tion potential, the quantum purity ‖ρ̂‖2 is not a constant of motion (decoherence
property). A model satisfying properties 1)-4), but not 5) is the mean-field model

∂D

∂t
+
{
D, 〈Ĥ〉

}
= 0, i~

dρ̂

dt
=

[
ˆ

DĤ dqdp, ρ̂

]
, (2)

where {·, ·} denotes the canonical Poisson bracket. Here, we notice that the
quantum density matrix ρ̂ does not carry any dependence on the phase-space
coordinates. Most recent efforts in quantum-classical methods are addressed to
the design of new models beyond the Ehrenfest system that can better capture
decoherence effects and still retain all the consistency properties above.

Beyond the Ehrenfest model. Blending Koopman wavefunctions in classical me-
chanics with the geometry of prequantum theory, we recently formulated a
quantum-classical model [3,4] which was developed in two stages. First, we pro-
vided an early quantum-classical model [1] that succeeded in satisfying only the
properties 2)-5). Then, more recently, we upgraded this model in such a way
that property 1) is also secured [3,4]. This upgrade was achieved by combin-
ing Lagrangian trajectories on the classical phase-space with a gauge princi-
ple which ensures that classical phases are unobservable, that is they do not
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contribute to measurable expectation values. Inspired by Sudarshan’s work [6],
this combination leads naturally to crucial properties such as the characteriza-
tion of entropy functionals and the Poincaré integral invariant in the context
of quantum-classical dynamics. Nevertheless, the model is nonlinear and its ex-
plicit form is rather intricate due to the appearance of the non-Abelian gauge
connection i[P,∇P ], where P (x, x′; q, p) = ψ(x; q, p)ψ∗(x′; q, p). In particular,
this gauge connection emerges through the (Hermitian) operator-valued vector

field Γ̂ = i[P,XP ] in such a way that the model proposed in [3,4] reads

∂tD + div(DX ) = 0, i~(∂tψ +X · ∇ψ) = Ĥψ, (3)

with

X = 〈XĤ〉+ ~

2D
Tr

(
XĤ · ∇(DΓ̂ )− (DΓ̂ ) · ∇XĤ

)
, (4)

and

Ĥ = Ĥ + i~
(
{P, Ĥ}+ {Ĥ, P} − 1

2D
[{D, Ĥ}, P ]

)
. (5)

Thus, we conclude that the vector field X and the Hermitian generator Ĥ can
be regarded as ~−modifications of the original Ehrenfest quantities 〈XĤ〉 and

Ĥ , respectively. While equations (3)-(5) appear hardly tractable at first sight,
a direct calculation of divX reveals that no gradients of order higher than two
appear in the equations (3). In addition, the Hamiltonian/variational structure of
this system unfolds much of the features occurring in quantum-classical coupling.
Thus, we consider the equations above as a platform for the formulation of
simplified closure models that can be used in physically relevant cases.

Trajectory-based numerical algorithms. The presence of transport terms in equa-
tions (3) results from the predominant role played by Lagrangian trajectories on
the classical phase-space. These terms hint to the possibility of using characteris-
tic curves to design trajectory-based schemes for mixed quantum-classical simu-
lation codes in molecular dynamics [5]. However, the presence of several gradients
in the expression of the transport vector field X prevents the direct application
of trajectory-based methods, which instead can be readily used for the Ehrenfest
equations (1). In the latter case, if we denote z = (q, p), we observe that the first

equation is solved by D(z, t) =
∑N

a=1 waδ(z−ζa(t)) with ζ̇a = 〈XĤ〉|z=ζ
a

. Here,
the quantity 〈XĤ〉|z=ζ

a

requires evaluating ψa(t) := ψ(ζa(t), t) at all times and
this can indeed be done by multiplying the second in (1) by D and then inte-

grating, so that i~ψ̇a(t) = Ĥ(ζa(t))ψa(t). Eventually, direct application of the
trajectory method to the Ehrenfest model leads to the equations

q̇a = ∂pa
〈ψa|Ĥaψa〉, ṗa = −∂qa〈ψa|Ĥaψa〉, i~ψ̇a = Ĥaψa, (6)

where Ĥa := Ĥ(qa, pa) and ζa = (qa, pa). Then, for a finite-dimensional quantum
Hilbert space, ψ(z, t) ∈ Cn and the quantum density matrix is ρ̂ =

´

Dψψ†d2z =∑
a waψaψ

†
a.
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The same approach may be applied to the mean-field model by writing ρ̂ =∑N
i=1 waψaψ

†
a and D =

∑N
i=1 waδ(z − ζa(t)) in (2). Then, in the case N =

1 (only one trajectory) the closure of the Ehrenfest equations coincides with
the closure of the mean-field model for the interaction of a classical particle
with a pure quantum state. Notice, however, that the equations (6) generally
account for decoherence effects when N > 1, while the same is not true for
the mean-field model. Thus, while the Ehrenfest and the mean-field models are
regarded as equivalent in the chemistry literature, this alleged equivalence is
actually a mere resemblance that arises from the fact that the equations to be
implemented in the closure scheme are the same in the case of only one trajectory.
We also mention that quantum-classical algorithms alternative to the Ehrenfest
model are widely available. The most popular is the surface hopping method,
which however does not retain positivity of the quantum density matrix and
thus invalidates Heisenberg’s uncertainty principle.

In this paper, we propose to exploit the geometric variational structure of the
new model (3)-(5) in order to make it amenable to trajectory-based closures as-
sociated to the Lagrangian paths in the classical phase-space. Upon regularizing
a suitable term in Hamilton’s action principle, we will obtain a closure scheme
that is formally the same as (6), although the Hamiltonian Ĥa is replaced by an
effective Hamiltonian retaining correlation effects beyond the Ehrenfest theory.
The resulting variational closure scheme will be illustrated after reviewing the
formulation of the system in (3)-(5) and its geometric properties.

2 Formulation of mixed quantum-classical models

As mentioned in the Introduction, the model (3)-(5) was formulated in [3] by
blending the symplectic geometry of Koopman’s wavefunctions in classical me-
chanics with a gauge-invariance principle that arises from physical arguments.

Koopman wavefunctions. As shown by Koopman in 1931, classical mechanics
may be formulated as a unitary flow on the Hilbert space of square-integrable
functions on phase-space. The main observation is that the Koopman-von Neu-

mann equation (KvN) i~∂tχ = {i~H,χ} yields the classical Liouville equa-
tion ∂tD = {H,D} for D(z) = |χ(z)|2. Importantly, the Liouvillian operator
L̂H = {i~H, } is self-adjoint, thereby identifying a unitary evolution for χ.

Since both quantum and classical dynamics are written as unitary dynamics
on Hilbert spaces, Sudarshan suggested to consider unitary evolution on the
tensor-product space [6]. However, this turns out to be a difficult task and the
first difficulty resides in the way phases are treated in KvN theory. Indeed, writing
χ =

√
DeiS/~ gives dD/dt = 0 and dS/dt = 0 along ż = XH(z), so that the KvN

phase evolution fails to reproduce the usual prescription arising from Hamilton-
Jacobi theory, that is dS/dt = L, where L is the Lagrangian. This issue is readily
addressed by modifying the Liouvillian L̂H to include a phase term, so that the
resulting Koopman-van Hove equation (KvH) reads

i~∂tχ = {i~H,χ} − (p∂pH −H)χ, (7)
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where the terms in parenthesis evidently comprise the phase-space expression of
the particle Lagrangian L. In this case, the unitary time propagator is of the par-
ticular type χ(t) = (e−iφ(t)/~χ0/

√
det∇η(t))◦η(t)−1, where (η(t), eiφ(t)/~) is an

element of the infinite-dimensional group
{
(η, eiφ/~) ∈ Diff(T ∗Q)sF(T ∗Q,S1)∣∣η∗A+dφ = A

}
. Here, F(T ∗Q,S1) denotes the space of functions on the phase

space T ∗Q taking values in the unit circle, s denotes the semidirect-product, η∗

is the pullback, and A = pdq is the Liouville one-form so that the canonical sym-
plectic two-form reads ω = −dA. Notice that the relation η

∗A+dφ = A amounts
to preservation of the Liouville one-form under the action of the semidirect-
product group Diff(T ∗Q)sF(T ∗Q,S1). Also, we observe that η is a symplectic
diffeomorphism, i.e. η∗ω = ω. The main advantage of the KvH equation (7), first
arisen in prequantization theory, is that it includes the correct prescription for
the phase evolution as well as reproducing the Liouville equation for the density.

At this point, a first quantum-classical theory is obtained by starting with two
classical systems and then quantizing one of them. This leads to the quantum-

classical wave equation (QCWE) for the hybrid wavefunction Υ (z, x) [1]:

i~∂tΥ = {i~Ĥ, Υ} − (p∂pĤ − Ĥ)Υ. (8)

As before, z = (q, p) are classical coordinates, x is the quantum configuration

coordinate, and Ĥ(z) is an operator-valued function. Once again, the right-hand
side of equation (8) identifies a self-adjoint operator which leads to a unitary

evolution of the hybrid wavefunction. The action principle δ
´ t2
t1

´

Re
〈
Υ
∣∣i~∂tΥ −

{i~Ĥ, Υ} + (p∂pĤ − Ĥ)Υ
〉
d2z dt = 0 underlying (8) identifies a Hamiltonian

functional h =
´

〈D̂ |Ĥ〉d2z, where 〈A|B〉 = Tr(A†B) and D̂(z) := Υ (z)Υ †(z) +
∂p(pΥ (z)Υ

†(z)) + i~{Υ (z), Υ †(z)} is a measure-valued von Neumann operator.

Then, Tr D̂ is the classical density and
´

D̂ d2z is the quantum density matrix.

Phase symmetry in classical dynamics. While the QCWE has been studied ex-
tensively, the unitary dynamics of hybrid wavefunctions does not appear suffi-
cient for a consistent theory. For example, the classical density Tr D̂ associated to
(8) is generally sign-indefinite [1]. As a further step, Sudarshan pointed out that
classical phases, while crucial to retain quantum-classical correlations, should
eventually be made ‘unobservable’. We applied this idea by resorting to a ‘gauge
principle’ [3], that is by enforcing a symmetry under the group F(T ∗Q,S1) of
phase transformations, in such a way that the latter are treated as a ‘gauge free-
dom’. For this, one first needs to extract the classical phase from the hybrid wave-
function Υ . This is accomplished by writing Υ (z, x) =

√
D(z)eiS(z)/~ψ(x; z), so

that the last factor is a conditional quantum wavefunction and S(z) is the clas-
sical phase. Replacing this factorization in the action principle underlying the
QCWE (8) (see previous paragraph) yields δ

´ t2
t1
L(D,S, ∂tS, ψ, ∂tψ) dt = 0, with

L =

ˆ

D
(
∂tS−Re

〈
ψ
∣∣i~∂tψ−{i~Ĥ, ψ}+(p∂pĤ− Ĥ)ψ+∇S ·XĤψ

〉)
d2z (9)

and arbitrary variations δD, δS, and δψ. Upon denoting 〈 , 〉 = Re〈 | 〉, one real-
izes [4] that replacing ∇S → A + 〈ψ, i~∇ψ〉 makes the Hamiltonian functional
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h(D,S, ψ) =
´

D
〈
ψ, (Ĥ−p∂pĤ)ψ+ {i~Ĥ, ψ}−∇S ·XĤψ

〉
d2z gauge-invariant,

i.e., invariant with respect to (D,S, ψ) 7→ (D,S+ϕ, e−iϕ/~ψ) for all ϕ(z, t). Here,
A = (p, 0) is the coordinate representation of the one-form A = A · dz = pdq.

In order to obtain an entire phase-invariant variational principle (not just a
Hamiltonian functional), one transforms the term

´

D∂tS d2z in such a way to
make ∇S appear explicitly and then replaces ∇S → A + 〈ψ, i~∇ψ〉. This was
done in [4] by noting that the equation ∂tD + div(D〈XĤ〉) = 0 resulting from
the variations (9) allows to use the dynamical relation D(t) = η(t)∗D0, that is
the density evolves by the push-forward of the initial condition D0 by a time-
dependent Lagrangian path η(t) ∈ Diff(T ∗Q). Integration by parts with respect

to time and phase-space leads to δ
´ t2
t1

´

D∂tS d2z = −δ
´ t2
t1

´

D∇S ·X d2z, where

we have used ∂tD = − div(DX ) and the vector field X is such that η̇ =: X ◦ η.

Then, a phase-invariant action principle δ
´ t2
t1
l(X , D, ψ, ∂tψ) dt = 0 is obtained

upon replacing (9) by the Euler-Poincaré Lagrangian [3]

l =

ˆ

D
(
X ·

(
A+〈ψ, i~∇ψ〉

)
+
〈
ψ, i~∂tψ−Ĥψ+i~

(
XĤ−〈XĤ〉

)
·∇ψ

〉)
d2z. (10)

Here, the variations δD and δX are found to be constrained so that

δD = − div(DY), δX = ∂tY +X · ∇Y −Y · ∇X , (11)

where Y = δη◦η−1 is arbitrary. Finally, one last convenient step consists in writ-
ing ψ(t) = (U(t)ψ0) ◦ η(t)−1, without loss of generality [3]. Here, U(t) = U(z, t)
is a unitary operator on the quantum Hilbert space that is parameterized by
phase-space coordinates. This step amounts to expressing the quantum unitary
dynamics in the frame of Lagrangian classical paths. In this way, the Lagrangian
(10) is entirely expressed in terms of P = ψψ†, i.e. it becomes gauge-independent.

3 Geometry of quantum-classical dynamics

The quantum-classical model (3)-(5) follows from the variational principle asso-
ciated to (10). We will now review the high points of its underlying geometry.

Euler-Poincaré variational principle. Expressing the quantum evolution in the
classical frame, or, equivalently, setting ψ(t) = (U(t)ψ0) ◦ η(t)−1 in (10), leads

to the action principle δ
´ t2
t1
ℓ dt = 0 for the following Lagrangian:

ℓ(X , D, ξ,P) =

ˆ (
DA ·X +

〈
P , i~ξ − Ĥ − i~D−1{P , Ĥ}〉

)
d2z . (12)

Here, 〈 , 〉 = Re〈 | 〉, P = Dψψ†, and ξ = (U̇U †) ◦ η−1 is skew-Hermitian, so that

δP = [Σ,P ]− div(PY), δξ = ∂tΣ + [Σ, ξ] +X · ∇Σ −Y · ∇ξ, (13)

where Σ = (δUU †)◦η−1 is skew-Hermitian and arbitrary. These variations arise
by standard Euler-Poincaré reduction from Lagrangian to Eulerian variables.
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Indeed, Lagrangian trajectories play a crucial role in the variational problem as-
sociated to (12). In particular, if η(z0, t) is the diffeomorphic Lagrangian path on
phase-space and U(z, t) is a unitary operator, we define the Eulerian quantities

D := η∗D0, P := η∗(UP0U
†), X := η̇◦η−1, ξ := U̇U † ◦η−1.

(14)
Then, taking the time derivative of the first two in (14) yields ∂tD+div(DX ) = 0
and ∂tP + div(XP) = [ξ,P ], respectively. Furthermore, upon taking variations

of (12), the action principle δ
´ t2
t1
ℓ dt = 0 yields

X = X δh
δD

+
〈
X δh

δP

〉
,

[
i~ξ− δh

δP ,P
]
= 0, where h =

ˆ

〈DĤ+i~{P , Ĥ}〉d2z
(15)

and we have used 〈Â〉 := 〈ψ, Âψ〉 = D−1〈P , Â〉. Then, after various manipula-
tions we recover the system (3)-(5). The purely quantum and classical cases are

recovered by restricting to the cases XĤ = 0 and Ĥ = H1, respectively [3]. In
addition, if one neglects the ~−terms in the Hamiltonian functional h, then the
variational principle (12) recovers the Ehrenfest model.

Notice that the first two in (14) indicate that the evolution of D and P
occurs on orbits of the semidirect-product group Diff(T ∗Q)sF(T ∗Q,U(H )),
where F(T ∗Q,U(H )) denotes the space of phase-space functions taking values
in the group U(H ) of unitary operators on the quantum Hilbert space H .
In particular, these orbits are determined by the group action given by the
composition of the standard conjugation representation of F(T ∗Q,U(H )) and
the pushforward action of Diff(T ∗Q). The latter diffeomorphism group comprises
Lagrangian paths on the classical phase-space.

Hamiltonian structure. While the Hamiltonian structure of the model (3)-(5) is
not necessary towards the development of the trajectory-based closure presented
later, we quickly review it here as we are not aware of similar structures occurring
elsewhere in continuum mechanics. Notice that the same Hamiltonian structure
also applies to the Ehrenfest model (1), which indeed is recovered by neglecting
the ~−terms in the Hamiltonian functional h in (15). Thus, all the considerations
in this discussion apply equivalently to the Ehrenfest model (1).

First, we observe that the variable D may be written as D = TrP so that the
Euler-Poincaré Lagrangian (12) is expressed entirely in terms of the variables
(X , ξ, P ). Going through the same steps as above leads to rewriting (15) as

X = 〈Xδh/δP〉 and [i~ξ − δh/δP,P ] = 0, where h =
´

〈Ĥ TrP + i~{P , Ĥ}〉d2z.
Then, the Hamiltonian equation

i~
∂P
∂t

+ i~ div
(
P
〈
X δh

δP

〉)
=

[ δh
δP ,P

]
(16)

leads directly to the following bracket structure via the usual relation ḟ = {{f, h}}:

{{f, h}}(P) =

ˆ

1

TrP

(
P :

{
δf

δP ,
δh

δP

}
: P

)
d2z−

ˆ

〈
P , i

~

[
δf

δP ,
δh

δP

]〉
d2z, (17)
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where we have introduced the convenient notation A : B = Tr(AB). The proof
that (17) is Poisson involves a combination of results in Lagrangian and Poisson
reduction [4]. The first term in (17) is related to the Lagrangian classical paths.

Equation (16) easily leads to characterizing the Casimir invariant C1 =
Tr
´

DΦ(P/D) d2z for any matrix analytic function Φ. Also, upon writing P =
Dψψ†, one finds the quantum-classical Poincaré integral invariant

d

dt

˛

c(t)

(
pdq + 〈ψ, i~dψ〉

)
= 0

for any loop c(t) = η(c0, t) in phase-space. Here, we notice the important role
of the Berry connection 〈ψ,−i~dψ〉. By Stokes theorem, the above relation also
allows to identify a Lie-transported quantum-classical two-form on T ∗Q, that is

Ω(t) = η∗Ω(0), with Ω(t) := ω + ~ Im 〈dψ(t)| ∧ dψ(t)〉,

so that Ω(t) remains symplectic in time if it is so initially. As a result, if dimQ =
n, one finds the additional class of Casimirs C2 =

´

DΛ
(
D−1Ω∧n

)
d2nz, where

Ω∧n = Ω∧· · ·∧Ω (n times) is a volume form and Λ is any scalar function of one
variable. These Casimirs may be used to construct quantum-classical extensions
of Gibbs/von Neumann entropies [3]. If dimQ = 1, then Ω = (1+~ Im{ψ†, ψ})ω.

Quantum-classical von Neumann operator. We observe that the Hamiltonian
energy functional h in (15) is not simply given by the usual average of the

Hamiltonian operator Ĥ . Indeed, the ~−term seems to play a crucial role in
taking the model (3)-(5) beyond simple Ehrenfest dynamics. As discussed in [3],
this suggests that the quantum-classical correlations trigger extra energy terms
that are not usually considered. Alternatively, one may insist that the total
energy must be given by an average of Ĥ . Following this route leads to rewriting
the last in (15) as h = Tr

´

D̂Ĥ d2z, where

D̂ = DP +
~

2
div(DΓ̂ ) = DP +

i~

2
div(D[P,XP ])

is a measure-valued von Neumann operator and we recall P = ψψ†. Then, clas-
sical and quantum densities are given by taking the trace and integral of D̂,
respectively. Unlike the quantum density operator, the hybrid operator D̂ is not
sign-definite. Remarkably, however, D̂ enjoys the equivariance properties

D̂(η∗D,η∗P ) = η∗D̂(D,P ), and D̂(D,U PU
†) = U D̂(D,P )U †,

where η is a symplectic diffeomorphism on T ∗Q and U ∈ U(H ). These two
properties ensure the following dynamics in the classical and quantum sector [4]:

∂D

∂t
= Tr{Ĥ, D̂} , i~

dρ̂

dt
=

ˆ

[Ĥ, D̂] d2z .

For example, the first can be verified directly upon writing X = D−1〈D̂,XĤ〉+
~D−1div

(
DTr(XĤ ∧ Γ̂ )

)
, where (XĤ ∧ Γ̂ )jk :=

(
Xj

Ĥ
Γ̂ k − Γ̂ jXk

Ĥ

)
/2 identifies

a bivector.
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4 Trajectory-based closure

As discussed in the Introduction, the quantum-classical model (3)-(5) does not
immediately allow for the application of the trajectory-based closure typically
adopted for the Ehrenfest equations. This is due to the appearance of several
gradients in the expressions (4) and (5). A similar situation also occurs in quan-
tum hydrodynamics, thereby preventing the existence of particle solutions in
Bohmian mechanics [2]. In the latter case, a regularization technique was re-
cently introduced to allow the standard application of trajectory-based closures.
Unlike common regularizations, this particular one was introduced at the level of
the variational principle and its successful implementation was presented in [5].
The resulting closure arises from a sampling process at the level of the classical
Lagrangian paths. This section exploits this approach in such a way to formulate
a trajectory-based closure of the quantum-classical model (3)-(5). In particular,
we will devise a computational method that inherits basic conservation laws,
such as energy and total probability, and retains decoherence effects beyond the
standard Ehrenfest model.

Variational regularization. The present method arises from the observation that
the singular solution ansatz P(z, t) =

∑N
a=1 waρa(t)δ(z− ζa(t)) is prevented by

the last term in the Hamiltonian h in (15). Thus, if a regularization needs to be
introduced at the variational level, it has to be introduced in that term. Here,
we will replace the Lagrangian (12) by the regularized Lagrangian

ℓ̄ =

ˆ (
DA ·X + 〈P , i~ξ − Ĥ

〉
− 1

2

〈
P̄, i~D̄−1

[
∇P̄ ,XĤ

]〉)
d6z ,

where the commutator arises from conveniently projecting i{P , Ĥ} on its Her-
mitian part, and we have introduced the regularized quantities

D̄ =

ˆ

Kα(z− z
′)D(z′) d2z′ , P̄ =

ˆ

Kα(z − z
′)P(z′) d2z′.

The mollifier Kα is chosen as a smooth convolution kernel that is invariant
under phase-space translations and tends to the delta function as α → 0, that
is the limit in which one recovers the original model. For example, Kα may be
a Gaussian kernel with variance α, although here we will keep it general. With
this regularization, one allows to consider the singular solution ansatz

D =

N∑

a=1

waδ(z− ζa) , P =

N∑

a=1

waρaδ(z − ζa). (18)

For example, the first in (3) now leads to ζ̇a = X a with X a := X (ζa). Similarly,
the equation i~∂tP + i~ div(PX ) = [ξ,P ] (see previous section) leads to ρ̇a =
[ξa, ρa] with ξa := ξ(ζa). Here, we will set ρa = ψaψ

†
a so that ψ̇a = ξaψa. We re-

mark that, as in the case of the Ehrenfest model, the trajectories ζa(t) in (18) are
not physical particles, but rather arise from a sampling process of the Lagrangian
classical paths underlying the Eulerian action principle associated to (12).
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Trajectory equations. At this stage, we are ready to replace the ansatz (18) in
the regularized Lagrangian, thereby obtaining the finite-dimensional Lagrangian

L({ζa}, {ξa}, {ρa}) =
∑

a

wa

(
paq̇a+

〈
ρa, i~ξa−Ĥa−i~

∑

b

wb[ρb, Iab]
〉)

. (19)

Here, δξa = Σ̇a + [Σa, ξa], with Σa arbitrary, and we have denoted

Iab :=
1

2

ˆ

Ka{Kb, Ĥ}∑
c wcKc

d2z , and Ks(z, t) := K(z− ζs(t)) .

Once again, we observe that if the ~−terms are neglected in (19), then the
associated variational principle recovers the closure equations (6) associated to
the Ehrenfest model. Instead, in the general case each trajectory is directly
coupled to all the others via the ~−term. The equations of motion read

q̇a = w−1
a ∂pa

h, ṗa = −w−1
a ∂qah, i~ρ̇a = w−1

a [∂ρa
h, ρa], (20)

where

h =
∑

a

wa

〈
ρa, Ĥa+i~

∑

b

wb[ρb, Iab]
〉
, ∂ρa

h = Ĥa+i~
∑

b

wb[ρb, Iab−Iba].

In analogy to the discussion in the previous section, we can rearrange the Hamil-
tonian h above as h = Tr

´

D̂Ĥ d2z with the hybrid von Neumann operator

D̂(z, t) =
∑

a

waρ̂a(t)δ(z − ζa(t)) + i~
∑

a,b

wawbJab(z, t)
[
ρ̂a(t), ρ̂b(t)

]
,

where

Jab :=
1

4

({
Ka,

Kb∑
c wcKc

}
−
{
Kb,

Ka∑
cwcKc

})
.

The implementation of this closure scheme is currently underway. We observe
that the canonical Hamiltonian structure underlying this scheme may pave the
way to the application of symplectic integration techniques for the long-time
simulation of fully nonlinear processes.
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