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Abstract

How a system initially at infinite temperature responds when suddenly
placed at finite temperatures is a way to check the existence of phase
transitions. It has been shown in [R. da Silva, IJMPC 2023] that phase
transitions are imprinted in the spectra of matrices built from time evo-
lutions of magnetization of spin models. In this paper, we show that this
method works very accurately in determining the critical temperature
in the mean-field Ising model. We show that for Glauber or Metropolis
dynamics, the average eigenvalue has a minimum at the critical temper-
ature, which is corroborated by an inflection at eigenvalue dispersion at
this same point. Such transition is governed by a gap in the density of
eigenvalues similar to short-range spin systems. We conclude that the
thermodynamics of this mean-field system can be described by the fluc-
tuations in the spectra of Wishart matrices which suggests a direct rela-
tionship between thermodynamic fluctuations and spectral fluctuations.

Keywords: Random Matrices, Mean-field regime, Time-dependent Monte
Carlo simulations, Mean-field regime
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1 Introduction

Ising-like Hamiltonians [1] can be simply written as:

H = −J
∑
〈i,j〉

sisj − h
N∑
i=1

si , (1)

where si = ±1 (spin 1/2). Here h is the external field that couples with each
spin, and 〈i, j〉 denotes the sum over the nearest neighbors in a d-dimensional
lattice. Each spin, placed in its original lattice, is linked to other z = 2d

neighbors. The number of links in the lattice is Nz
2 where factor 1/2 avoids

double counting.
A mean-field (MF) approximation considers that each spin si interacts with

a kind of magnetic cloud represented (composed?) by the average magnetiza-

tion of all other spins, that is: ξi = 1
N

N∑
j=1,j 6=i

sj . Thus, in this approximation,

the interacting term Hint = −J
∑
〈i,j〉

sisj must be replaced by

H(MF )
int = −Jz

2

N∑
i=1

siξi ≈ −
Jz

2N

N∑
i=1

N∑
j=1

sisj .

Finally, one has that mean-field Hamiltonian is given by

H(MF ) = − Jz
2N

M2 − hM , (2)

where M =
N∑
i=1

si is the total magnetization of the system. Its properties are

well known and, once our interest is in its behavior close to the continuous
phase transition at βczJ = 1, the external field h is made null in this work.

To briefly contextualize, the long-range (LR) MF regime has been explored
in several models [2]. It has been also shown that Monte Carlo (MC)
simulations could be applied to the MF Ising Model [3, 4].

When dealing with equilibrium properties, we can choose any prescription
for system’s dynamics that satisfies the detailed balance condition, for example,
the usual Glauber dynamics for a single spin flip, si → −si:

w(s→ s(j)) =
1

2τ

[
1− tanh

(
β

∆H(MF )

2

)]
(3)

where τ is a characteristic parameter that can be made equal to one or fitted
to the time scale of the specific problem, β = 1/(kBT ) is the inverse of tem-
perature (T ) and ∆H(MF ) is system’s energy change due to the flip of spin
si.
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In the case of the MF Ising model, one has ∆H(MF ) =

− J
2N z

[(∑N
i=1, i 6=j si − sj

)2

−
(∑N

i=1, i 6=j si + sj

)2
]

= 2J
N zsj (M − sj) ≈

2J
N zsjM . Thus, since s2

j = 1, 〈sj〉 = m, and considering that in the MF one

has
〈

tanh
(
βJ
N zM

)〉
= tanh

〈
βJ
N zM

〉
= tanh(βzJm). With these quantities,

it is possible to write the time evolution of magnetization [5]

τ
dm

dt
= −m+ tanh (βJzm) (4)

where m = limN→∞
〈M〉
N . One should note that the RHS of this equation is

exactly the negative of free energy of the Ising model:

τ
dm

dt
=
∂f

∂y

∣∣∣∣
y=m

,

with f(y) = Φ(y,h=0)
Jz = y2

2 −
1
βJz ln(2 cosh(βJzy)). Surely, for βcJz = 1 (criti-

cal point), m << 1, thus τ dmdt = −m+tanhm ≈ − 1
3m

3. And then at criticality,
the Ising model has the asymptotical decay given by [5–7]:

m(t) = m0

√
3

3 + 2m2
0t/τ

∼ t−1/2 for t→∞ (5)

where m0 = m(t = 0). Here it is important to mention that such behavior can
also be captured by performing time-dependent simulations in which m(t) is
obtained for each t−th MC step, as an average over many different runs, i.e.,
different time series of magnetization [6, 7].

On the other hand, short-range systems like the two-dimensional Ising
model at criticality has a behavior determined by short-time dynamics, a
theory that prescribes a crossover between two power-law:

m(t) =


m0t

θ, if t < m
z/x0

0

t−
βν
z , if m

z/x0

0 < t < t∞.

(6)

Here t∞ is the equilibrium time, β and ν are the static exponents, while z is the
dynamic one. The new exponent θ = (x0− β

ν )/z governs the initial anomalous
behavior of magnetization, where x0 is known as the anomalous dimension of
initial magnetization. (Note that we use β to denote the critical exponent to
maintain the tradition of the field. Unless explicitly specified, β = 1/kBT ). The
exponent θ can be obtained in two ways via time-dependent MC simulations.
First, by performing simulations with an initial state prepared with fixed but
random magnetization m0 << 1, and thus one calculates θ considering an
average to obtain m(t) for each t−MC step over tens of hundreds of different
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time evolutions and extrapolating the result for m0 → 0 [8]. In a second way,
by considering simulations with the initial random state also at T →∞ (spins
chosen with probability 1/2). In this case, m0 is not fixed, but by construction
very small and with 〈m0〉 ≈ 0. The correlation is obtained by considering

the time correlation C(t) = 1
N

〈
N∑
i=1

N∑
j=1

si(t)sj(0)

〉
, which, also, behaves as

C(t) ∼ tθ such as m(t) [9, 10].
For systems starting from m0 = 1, one does not observe the initial slip

characterized by the exponent θ [8, 11, 12], instead the magnetization decays

with the second power law behavior m(t) ∼ t−
βν
z directly, followed by an

exponential decay at thermodynamic equilibrium. Note that, for T > TC or
T < TC , one does not observe power laws at short times, and one must observe
a stretched exponential behavior for magnetization.

The exponent θ and consequently the initial slip of magnetization for sys-
tems at high temperature (m0 << 1) is related to how the spin the system
reacts when suddenly placed at a finite temperature, more precisely in this
case at T = TC .

Thus the short-time theory suscitates relevant questions about how the the
system captures the critical behavior or weak first-order transitions behavior
before thermalization [13] even in nonequilibrium models [14–18]. These are
important questions since one can determine not just the critical exponents
but also localize the critical parameters (see, for example, a method that we
developed to optimize power-laws in [19])

However, this signature of criticality out of equilibrium seems to be inserted
in ways even more notorious that can reflect what happens when uncorrelated
systems (T → ∞) are placed at finite temperatures, more importantly at
T ≈ TC . Recently [20], by using random matrices built from time evolutions
of magnetization in earlier times of a spin system, we show how their spectra
respond to phase transitions. We showed how much the spectral properties of a
statistical mechanics system could be affected by criticality out of equilibrium.
In this case, we used the short-range two-dimensional Ising model as a test
model.

We also showed in this same work that by building such correlation random
matrices, known as Wishart matrices, from different time series of magnetiza-
tion simulated with MC, the density of eigenvalues of such matrices can, with
excellent precision, capture the phase transition of this system. In another
recent paper, we show that our method can go beyond responding not only for
critical points but also for strong first-order points [21]

In this current contribution, we want to answer another question: can this
method be used for long-range systems such as the mean-field Ising system,
since such systems have different behavior in earlier times? The answer is
positive. To show that we build Wishart matrices for time evolutions of the
mean-field Ising model by considering MC simulations of such systems. We
will show that the random matrices method based on Wishart matrices can
also be used to describe the phase transition in this long-range system. We
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will show that, similarly to the short-range systems, the method works very
well to localize the critical point of the MF Ising model.

In the next section, we present the necessary points of random matrices
theory necessary to contextualize the problem. In the sequence, we present our
main results in section 3 and finally in section 4 a brief summary of our results
and conclusions.

2 Random matrices and spin systems

We can assert that random matrices theory had its origin in the context of
nuclear physics, where E. Wigner [22, 23] considered to describe the complex
energy levels of heavy-weight nucleus representing its Hamiltonian by matrices
with random entries.

If we consider symmetric (hij = hji) and well-behaved entries, i.e.,
distributed according to a probability density function f(h) such that∫ ∞

−∞
dhijf(hij)h

k
ij <∞,

for k = 1, 2, of a matrix H, with dimension N ×N , and independent entries,
and therefore with joint distribution given by:

Pr

(∏
i<j

hij

)
=
∏
i<j

f(hij)

will lead to jointly eigenvalues distribution P (λ1, ..., λN ), such that its density
of eigenvalues:

σ(λ) =

∫ ∞
−∞

...

∫ ∞
−∞

P (λ, λ2, λ3, ..., λN )dλ2...dλN

is universally described by semi-circle law [24, 25]:

σ(λ) =


1
π

√
2N − λ2 if λ2 < 2N

0 if λ2 ≥ 2N
(7)

In the particular case that f(hij) = e
−h2ij/2√

2π
, one has the Boltzmann weight:

P (λ1, ..., λN ) = CN exp

[
−1

2

N∑
i=1

λ2
i +

∑
i<j

ln |λi − λj |

]



Springer Nature 2021 LATEX template

6 Brazilian Journal of Physics

where C−1
N =

∫∞
0
...
∫∞

0
dλ1...dλN exp[−H(λ1...λN )], corresponding to the

Coulomb gas Hamiltonian:

H(λ1...λN ) =
1

2

N∑
i=1

λ2
i −

∑
i<j

ln |λi − λj |

at temperature β−1 = 1. The last term is a logarithmic repulsion exactly as
the standard Wigner/Dyson [26] ensembles, while the first is an attractive
term. For both hermitian or symplectic entries [24] the result is similar also

resulting in P (λ1, ..., λN ) = C
(β)
N exp(−βH) with respectively β = 2 and 4,

and universally leading to the same density of eigenvalues from Eq.7.
Despite this analogy, we do not have a direct connection between the ther-

modynamics of a physical system and the fluctuations from random matrices
obtained from acquired data from this same physical system. This connection
emerges when we look at matrix correlations. With this knowledge, we can
recover the results from phase transitions and critical phenomena from Ther-
mostatistics. Surprisingly, only Wishart [27], around thirty years before Wigner
and Dyson, focused on analyzing correlated time series. Instead of using Gaus-
sian or Unitary ensembles, he considered the so-called Wishart ensemble, which
essentially considers random correlation matrices.

Thus, looking at such direction, we here define the main object for our
analysis, the magnetization matrix elementmij that denotes the magnetization
of the j-th time series at the i-th MC step of a system with N spins. Here i =
1, ..., NMC , and j = 1, ..., Nsample. So the magnetization matrix M is NMC ×
Nsample. In order to analyze spectral properties, an interesting alternative is
to consider not M but the square matrix Nsample× Nsample:

G =
1

NMC
MTM ,

such that Gij = 1
NMC

∑NMC
k=1 mkimkj , known as Wishart matrix [27]. At this

point, instead of working with mij , it is more convenient to take the Matrix
M∗, defining its elements by the standard variables:

m∗ij =
mij − 〈mj〉√〈
m2
j

〉
− 〈mj〉2

,

where: 〈
mk
j

〉
=

1

NMC

NMC∑
i=1

mk
ij .
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Thereby:

G∗ij =
1

NMC

NMC∑
k=1

mki − 〈mi〉√
〈m2

i 〉 − 〈mi〉2
mkj − 〈mj〉√〈
m2
j

〉
− 〈mj〉2

=
〈mimj〉 − 〈mi〉 〈mj〉

σiσj

(8)

where 〈mimj〉 = 1
NMC

∑NMC
k=1 mkimkj and σi =

√
〈m2

i 〉 − 〈mi〉2. Analytically,

if m∗ij are uncorrelated random variables, the jointly distribution of eigenvalues
is described by the Boltzmann weight [28, 29]:

P (λ1, ..., λNsample) = CNsample exp
[
− N2

MC

2Nsample

∑Nsample
i=1 λi

− 1
2

∑Nsample
i=1 lnλi +

∑
i<j ln |λi − λj |

]
where C−1

Nsample
=

∫∞
0
...
∫∞

0
dλ1...dλNsample exp[−H(λ1...λNsample)], corre-

sponding to the Hamiltonian:

H(λ1...λNsample) =
N2
MC

2Nsample

Nsample∑
i=1

λi +
1

2

Nsample∑
i=1

lnλi −
∑
i<j

ln |λi − λj |

the density of eigenvalues σ(λ) of the matrix G∗ = 1
NMC

M∗TM∗ follows in
this case the known Marcenko-Pastur distribution [30], which is written as:

σ(λ) =


NMC

2πNsample

√
(λ− λ−)(λ+ − λ)

λ
if λ− ≤ λ ≤ λ+

0 otherwise

(9)

where λ± = 1 +
Nsample
NMC

± 2
√

Nsample
NMC

.

Now our aim is to analyse the behavior of σnumerical(λ) considering mij

obtained from mean-field Ising model simulated at different temperatures. We
expect that when T → ∞, σnumerical(λ) must be closer to σ(λ) according to
Eq. 9. However, the interesting results are for T ≈ TC or T < TC . They will
be presented in the next section.
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3 Results

We performed MC simulations of the mean-field Ising model for N = 104

spins. Thus we obtained matrix elements mij , for i = 1, ..., NMC = 300 MC
steps, and j = 1, ..., Nsample = 100 different time series for each temperature.
We start with random configurations m0 ≈ 0 (T → ∞), and used Glauber
dynamics except when explicitly mentioned.

First, we show 20 different time series for sake of comparison. Only for
comparison, we also simulated a two-dimensional Ising model keeping the same
number of spins L2 = 104. The evolutions are shown in Fig. 1. Both systems
were simulated in their respective critical temperatures: kBT

J = 2
ln(1+

√
2)

and
kBT
Jz = 1.

A sample of magnetization time evolutions to be used for obtaining the
matrices and thus, performing the spectral study. Plot (a) shows the series
of mean-field Ising model that is the subject of this current study. Plot (b)
shows (for comparison) the results of the two-dimensional Ising model. We
observe that the mean-field series seems to be present less variability than the
time series of the two-dimensional short-range Ising model. But the question
persists: should matrices G built from MF Ising data produce spectra that can
describe the thermodynamics of this model?

Thus we build our ensemble of matrices, considering Nrun = 1000 different
matrices G (Nsample×Nsample). Then, we diagonalize them and categorize the

data between λ
(Numerical)
min and λ

(Numerical)
max among all eigenvalues, keeping the

number of bins fixed in Nbin = 100.
We repeated the process for several different temperatures between Tmin =

1
2TC until Tmax = 13

2 TC , recalling that TC = Jz/kB (which is exactly 1 in our
reduced units). We show the numerical density of eigenvalues for the different
temperatures in (Fig. 2). We observe that for exactly T = TC , there is no
gap between two groups of eigenvalues that occurs for T < TC . For T >
TC , the density approaches to Marchenko-Pastur law (Eq. 9), indicating that
magnetization time-series become uncorrelated.

Now, the first step of our study is ready. The spectra responded to the
the temperature of the system and apparently the gap between the eigenval-
ues reduces to a single bulk. This also occurs with two-dimensional Ising and
Potts model (see [20, 21]). It is worth emphasizing that in a direct comparison
between these short-range systems with the current MF one, the gap closing
occurs exactly at T = TC while for the former, we need to have a temperature
a little higher than TC (T ≈ 1.10TC).

However, independently of that, when we look at eigenvalues fluctuations,
our method is precise in asserting where is the critical temperature as shown
in Fig. 3. The results were obtained via MC simulations from Glauber and
Metropolis dynamics and they show very good agreement.

By estimating the numerical moments:
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Mean-Field Ising Model

(a)
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t (MCsteps)

2D Ising short-range Model

(b)

Fig. 1 A sample of magnetization time evolutions to be used for obtaining the matrices
and thus, performing the spectral study. Plot (a) shows the series of mean-field Ising model
that is the subject of this current study. Plot (b) shows (for comparison) the results for
the two-dimensional Ising model. Both systems are simulated in their respective critical
temperatures

〈
λk
〉

=

Nbins∑
i=1

λki σ
(Numerical)(λi)

Nbins∑
i=1

σ(Numerical)(λi)

,

we observe in the Fig. 3, the average eigenvalue as as function of T/TC , as
well as the dispersion

〈
(∆λ)2

〉
=
〈
λ2
〉
−〈λ〉2 as function of the same quantity.
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Fig. 2 Density of eigenvalues for different temperatures. We observe that for T = TC ,
there is no gap between two groups of eigenvalues that occurs for T < TC . For T > TC the
density approaches to Marchenko-Pastur law (Eq. 9) indicates that magnetization time series
become uncorrelated. The red continuous curve corresponds to Marchenko-Pastur density
for comparison.

We performed MC simulations in this case for both Glauber and Metropo-
lis dynamics. We observe a minimal of the average eigenvalue at T = TC ,
concurrently with an inflection of the variance at the same point.

Thus we can conclude that for this MF regime, the spectra of eigenval-
ues of Wishart matrices built from magnetization time series work exactly as
the short-range models. However, it is interesting to investigate what occurs
directly on the correlations between the time series. Thus we build histograms
of elements of matrices G directly in different temperatures which can observe
in Fig 4.

Magnetization has a growth trend over the different evolutions when the
system suddenly quenches to a temperature T = 1

2TC . This the tendency
of ordering generates correlations between the different evolutions corrobo-
rated by Fig. 4 (a), where considerable negative or positive correlations occur
depending on the initial configuration.

However, when the system quenches to a temperature T = TC (Fig.
4 (b)), we see that correlation distribution is broadly distributed. This is
an intermediate situation that characterizes the spontaneous breaking of
symmetry.

The system becomes uncorrelated (no novelty) when the relaxation occurs
from a high temperature T = 13

2 TC (Fig. 4 (c)). Such qualitative behavior
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Fig. 3 Average eigenvalue and variance of the eigenvalue as a function of T/TC . We observe
a minimum on the average eigenvalue at T = TC , concurrently with an inflection of the
variance at the same temperature.

reflects on the spectra of Wishart matrices, whose fluctuations can determine
with precision the critical point of the system

4 Conclusions and summaries

Our purpose here was to apply a method of studying the spectra of eigenvalues
of Wishart matrices of magnetization time series for a long-range spin system:
the mean-field Ising model. Exactly as applied in previous contributions (see
refs. [20, 21]) in short-range systems, we showed here that the method can also
be applied to a mean-field system with time series obtained from Monte Carlo
simulations.

We believe that the method is promising and that it should be tested in
strict long-range systems, other magnetic spin systems, and nonequilibrium
models, among others.

It will be interesting to study the use of Wishart matrices in unsupervised
learning as those proposed, for example, in Refs. [31, 32].
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Fig. 4 Histograms of the correlations between different time evolutions for the Mean-field
Ising. Such study was performed for three different temperatures, starting from random
initial configurations. (a) T = TC/2, (b) T = TC , and (c) T = 6TC/5, showing strong
correlation, indetermination, and decorrelation respectively, exactly as occurs in short-range
systems studied with the same method.
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