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Maxwell lattices, where the number of degrees of freedom equals the number of constraints, are
known to host topologically-protected zero-frequency modes and states of self stress, characterized
by a topological index called topological polarization. In this letter, we show that in addition to
these known topological modes, with the help of a mirror symmetry, the inherent chiral symmetry
of Maxwell lattices creates another topological index, the mirror-graded winding number (MGWN).
This MGWN is a higher order topological index, which gives rise to topological zero modes and
states of self stress at mirror-invariant domain walls and corners between two systems with different
MGWNs. We further show that two systems with same topological polarization can have different
MGWNs, indicating that these two topological indices are fundamentally distinct.

Introduction.–Bulk-boundary correspondence is a
defining feature of topological states where nontrivial
topology of the bulk gives rise to modes localized at the
boundary [1, 2]. Early research on topological band the-
ory focused on d-dimensional topological systems with
localized states at (d − 1)-dimensional boundaries (e.g.,
quantum Hall effect [3], quantum anomalous Hall ef-
fect [4], quantum spin Hall effect [5, 6]); this type of
topology is now called first-order topology. A new kind of
topological states, called higher-order topological states
(HOTS), has been proposed in the last five years [7–9].
Here, instead of having (d− 1)-dimensional topologically
protected boundary modes, the d-dimensional n-th or-
der topological system has (d − n)-dimensional (n > 1)
boundary modes. The boundary modes corresponding
to n = d and n = d − 1 are generally called corner
and hinge modes, respectively. These higher order states
are generally protected by crystalline symmetries such
as mirror [10], inversion [11], rotation [12, 13], product
of time reversal (TRS) and rotation [9], etc (see [14] for
an exhaustive literature survey). Along with realizations
in electronic systems, crystalline symmetry protected
HOTS have been implemented in mechanical/elastic sys-
tems too, offering a class of materials in which elastic
energy can be selectively confined to low-dimensional re-
gions [15–20].

One key challenge in the study of HOTS lies in the
stability of topological corner modes. For example, in
contrast to the quantum Hall effect, where the topolog-
ical edge modes remain stable for any boundary condi-
tions, for a 2D HOTS, unless certain special ingredient
is introduced (e.g., a chiral symmetry), the frequency of
the topological corner modes is in general not pinned to a
particular value. Thus, depending on the microscopic de-
tails, such as boundary conditions and disorder near the
corners, these topological modes and can disappear into
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bulk bands [21, 22]. To overcome this challenge, recently,
a generalized chiral symmetry was introduced to real-
ize corner modes in an breathing kagome lattice acoustic
metamaterial [20], while there are still some open discus-
sions about the topological origin of these modes [22, 23].
Another attempt [24] showed existence of corner modes
pinned at zero frequency in an over-constrained system
made of rigid quadrilaterals connected by free hinges;
however, this can be understood within the framework
of boundary obstructed topological phases [25].

In this Letter, we provide a different approach towards
HOTS using Maxwell lattices (i.e., lattices with equal
numbers of degrees of freedom (DOFs) nd and constraints
nc [26, 27]), and show that the intrinsic chiral symmetry
protected by this counting extends robustness to topo-
logical corner modes in this lattices, without requiring
any detailed matching at boundaries. As shown by Kane
and Lubensky [28], Maxwell systems can be mapped to
a superconducting Bogoliubov de Gennes (BdG) Hamil-
tonian, which naturally has a chiral symmetry. With
the BdG Hamiltonian, a first-order topological index, the
topological polarization, can be introduced [28], resulting
in topologically protected edge modes at zero frequency.
We find that in addition to this first-order topological
index, a nontrivial higher-order topological index (the
MGWN [29–31]) can be introduced to a new class of
Maxwell lattices, controlling zero-frequency topological
domain-wall/corner modes, with robustness originating
from the intrinsic chiral symmetry of the locking of de-
grees of freedom and constraints in Maxwell lattices.

Kane-Lubensky topological index of Maxwell lattices.–
Linear mechanics of lattices made of point masses con-
nected by springs is characterized by the compatibility
matrix C which relates extensions of springs ei = Cijuj
to the displacements ui of the point masses. Further-
more, fi = CT

ijtj relates the forces fi on the point masses
to the tensions ti in the springs. In Fourier space, the
matrix C(q) has the size nc × nd. The normal mode fre-
quencies of these lattices ω2(q) are the eigenvalues of the
dynamical matrix D(q) = C†(q)C(q) Kane and Luben-
sky [28] defined a ‘square root’ of the dynamical matrix,
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FIG. 1: The mirror symmetric Maxwell lattice. (a) The unit
cell consists of three blue and three red point masses enumer-
ated by bold numbers. The blue points can move in both x
and y direction whereas the red points can only move along
the direction of the corresponding double-directional black
arrow. Parameter δi (i = 1, . . . , 3) is the perpendicular dis-
tance of point i + 3 from the line joining points i and i + 1.
The numbers in italics enumerate the springs. The partially
transparent blue points are in adjacent unit cells. (b) A 3× 3
lattice. The springs shown in grey at the edges are required
for periodic boundary condition. The green arrows show the
the lattice vectors. (c) First Brillouin zone with the high sym-
metry points. The non-contractible loop Li is invariant under
mirror reflection when δi = δi+1.

which in reciprocal space takes the following form:

H(q) =

(
0 C†(q)

C(q) 0

)
. (1)

For every nonzero eigenvalue ω2(q) of D(q), H(q) has
two eigenvalues ±ω(q). The zero modes of H(q) include
nullspace of C(q) (zero modes – ZMs) and nullspace of
C†(q) (states of self stress – SSSs), whereas the zero
modes of D(q) include the ZMs. Maxwell Calladine
theorem [26, 32] dictates that the number of ZMs (n0)
and number of SSSs (ns) are equal (n0 = ns) for a
Maxwell lattice. The matrix H(q) has the property that
SH(q)S = −H(q), where S = Diag{1,−1}. This prop-
erty is known as the chiral (or sublattice) (anti)symmetry
in the literature. Also, it is easy to check that H(q)
has TRS: H(q) = H∗(−q), where ∗ is complex conjuga-
tion. These two symmetries put the matrix H(q) in BDI
class of Altland Zirnbauer classification [33–36]. Along a
closed loop l in the Brillouin zone where the spectrum of
the matrix is gapped at zero, a topological invariant nl
can be defined: nl =

1
2πi

∮
l
dq · ∇q log detC

†(q), which
controls the number of topological ZMs at an open edge
or domain walls.

Mirror-graded winding number.–Interestingly, in mirror
symmetric Maxwell lattices, along the mirror invariant
lines in the Brillouin zone, the mirror reflection oper-
ator M(q) commutes with the matrix H(q). Conse-
quently, M(q) and H(q) can be simultaneously diagonal-
ized. Since, M(q) only takes eigenvalues ±1, using the
eigenvectors of M(q) the matrices C(q) and H(q) can
be block-diagonalized into odd (−) and even (+) sectors
(Supplemental Material (SM) [37] Sec. SM.2-3):

C(q) =

(
C−(q) 0

0 C+(q)

)
, (2a)

H(q) =


0 C†

−(q) 0 0
C−(q) 0 0 0

0 0 0 C†
+(q)

0 0 C+(q) 0

 . (2b)

Now, using C±(q) we can define a topological invariant
in each sector, the MGWNs:

ν± =
1

2πi

∮
q→q+Gm

dq · ∇q log detC
†
±(q), (3)

where Gm is the smallest reciprocal lattice vector along
the mirror plane [29–31]. Note that ν+ + ν− = nl, since
in this basis detC(q) = detC+(q) detC−(q). In other
words, the mirror symmetry allows us to split topological
polarization into two different topological indices ν+ and
ν−. This observation expanded the topological classifica-
tion of Maxwell lattices, and allow us to realize HOTS.
It is worthwhile to highlight that to define a topologi-

cal index, the Hamiltonian [Eq. (2)] must remain gapped
with detC ̸= 0. Because a mirror plane in the momen-
tum space often passes through the Γ point (k = 0), it
is necessary to gap the acoustic phonon bands at Γ. As
will be shown below, this can be achieved by restrict-
ing the motion of certain lattice points, which break the
translational invariance of the lattice.
The mirror symmetric Maxwell lattice.–We now illustrate
one Maxwell lattice that support HOTS. As shown in
Fig. 1, each unit cell of this lattice contains 6 point masses
with coordinates

ri =
1

3

(
cos

(
2πi

3
− 5π

6

)
, sin

(
2πi

3
− 5π

6

))
, (4a)

ri+3 = (
1

6
+ δi)

(
cos

(
2πi

3
− π

2

)
, sin

(
2πi

3
− π

2

))
,

(4b)

with i ∈ {1, 2, 3}. The three points i = 1, 2 and 3 can
move in both x and y directions, while the rest three
are restricted to move along the direction marked by the
black arrows shown in Fig. 1(a):

ui = (uix, uiy) , (5a)

ui+3 = ui+3

(
cos

(
2πi

3
− π

2

)
, sin

(
2πi

3
− π

2

))
, (5b)

for i ∈ {1, 2, 3}. Consequently, there are nd = 9 DOFs
per unit cell {u1x, u1y, . . . , u3y, u4, u5, u6}.
We then repeat this unit cell to form a 2D lattice

and connect the mass poits with springs (solid lines in
Fig. 1(b)). Here we set the lattice vectors a1 = (1, 0)

and a2 = 1
2 (−1,

√
3), and the masses of all points and

the stiffnesses of all springs are set to 1 for simplicity.
Notice that here we have 9 springs per unit cell, which
match the DOFs nd = 9, making the system a Maxwell
lattice.
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FIG. 2: Spectrum of H for different values δ = δ1 = δ2 keeping δ3 = 1/3. The unit cell corresponding to each configuration is
shown inset. Each diagram has nc + nd = 18 bands. All systems except (c) are gapped along line Γ−M ′ (L1 in Fig. 1(c)). (c)
has four flat bands at zero frequency. The spectrum in (b) and (d) are gapped at ω = 0 along the line Γ−M ′, but not gapped
everywhere in the Brillouin zone. Only (a) and (e) are fully gapped at ω = 0 over the entire Brillouin zone.

Note that if we set δi = δi+1, the system is invariant
under mirror reflection about the perpendicular bisector
of points i + 3 and i + 4. The corresponding mirror in-
variant lines Li in the reciprocal space (Brillouin zone)
are shown in Fig. 1(c). Because all the mirror planes go
through Γ, it is important to gap out the phonon bands
at Γ to define the topological index. In this setup, this
is automatically achieved because points i = 4, 5, 6 can
only move along the arrow directions, which gaps out the
acoustic modes.

The compatibility matrix C(q) is given in SM [37]
Sec. SM.1. For simplicity we set δ3 = 1/3 and vary

FIG. 3: Spectrum (a), ZMs (b) and SSSs (c) of a supercell con-
sisting of 2N0 unit cells among which N0 in the middle have
δ = 1/3 and the other ones have δ = −13/42. Periodic bound-
ary condition is employed in direction (1/2,

√
3/2), whereas

Bloch-periodic boundary condition u(x + (1, 0)) = u(x)eiqx

is employed in (1, 0) direction. In (a), gray bands are bulk
modes whereas the red and the blue bands are localized at
the top and bottom domain walls, respectively. The left ZM
in (b) is localized at the top domain wall and is even under
vertical mirror mx, whereas the right ZM in (b) is localized
at the bottom domain wall and is odd under vertical mirror
mx. The left SSS in (c) is localized at the bottom domain
wall and is even under vertical mirror mx, whereas the right
SSS in (c) is localized at the top domain wall and is odd un-
der vertical mirror mx. The red and blue colors of the bonds
in (c) indicate the elongation and compression of the bonds,
respectively.

δ1 = δ2 ≡ δ. In this case, the lattice has one mir-
ror mx per unit cell with normal in x direction. Along
the mirror invariant line qx = 0 (L1 in Fig. 1(c)), we

calculate det C†
+

∣∣∣
L1

,det C†
−

∣∣∣
L1

and integrate them from

q = (0,−2π/
√
3) to q + b2 = (0, 2π/

√
3) along path L1

according to Eq. (3). We find

ν+ =

{
1 if δ > 0,

0 if δ < 0,
ν− =


0 if δ > 0,

1 if − 5/12 < δ < 0,

0 if δ < −5/12.

(6)

Clearly, the phases with δ > 0 and 0 > δ > −5/12 are
distinct w.r.t. the MGWNs but same w.r.t. the Kane-
Lubensky index. We will call δ > 0 phase 1, and 0 >
δ > −5/12 phase 2. In Fig. 2, we show the spectrum
of matrix H(q) for different values of δ. At δ = 0, the
DOFs corresponding to points 4 and 5 are perpendicular
to the springs connected to them; hence displacements of
these points do not change the length of the springs to the
linear order. These give two ZMs at every wave-vector q.
Then, due to the Maxwell-Calladine index theorem there
are two SSSs at every q. Hence, there are 4 flat bands at
ω = 0 of the matrix H(q) for δ = 0. When δ ̸= 0, ω = 0
gapped along C1 line allowing us to define the MGWNs
ν±.
In addition to defining the MGWNs, in order to local-

ize ZMs at the junction of two different mirror graded
phases, we require the bulk bands to be completely
gapped at ω = 0 in addition to the path L1. We find
that phase 1 is fully gapped at ω = 0 over the entire
Brillouin zone for δ > 5/42 (Fig. 2(a)), whereas phase 2
is fully gapped for −5/12 < δ < −1/6 (Fig. 2(e)) (see
SM [37] SM.4 for details).
Mirror-protected zero frequency edge states.–To examine
the bulk-edge correspondence, we create a supercell in
Fig. 3 with periodic boundary conditions in both direc-
tions, which has domain walls separating δ = 1/3 and
δ = −13/42. The domain walls are horizontal – normal
to the mirror mx; hence invariant under reflection about
the mirror mx. The spectrum of the dynamical matrix
D(qx) of the system is plotted as a function of surface
wave vector qx. We find two ZMs at qx = 0 (Fig. 3(a)).
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FIG. 4: Corner modes in systems with diamond shaped island of one phase inside the other phase. In each panel, the part of
the system in red (green) has δ = 1/3 (δ = −13/42). The vertical grey dashed lines show the line of mirror symmetry; it passes
through the the top and bottom corner of the diamond shaped island. We applied periodic boundary conditions in all cases.
The black arrows show the displacement field corresponding to the zero modes. In all cases, the zero modes are concentrated at
the corners. The corner modes in (a) and (c) are even under the vertical mirror reflection, whereas (b) and (d) are odd under
the same reflection.

Since Kane-Lubensky indices of both domains are same:

nδ=1/3 = ν
δ=1/3
+ +ν

δ=1/3
− = 1 = ν

δ=−13/42
+ +ν

δ=−13/42
− =

nδ=−13/42, the ZMs at the domain walls are not given
by the Kane-Lubensky index. However, since at qx = 0,
matrix C(q) can be block-diagonalized (Eq. (2)) as dis-
cussed above, we can use Eq. (3) on + and − sectors
separately. Since matrix C(qx = 0, qy) is block diagonal,
the ZMs of each sector are also ZMs of the full system.
Hence, at the top and bottom domain walls we get:

top wall:
ν<+ − ν>+ = 1 ⇒ ZM,

ν<− − ν>− = −1 ⇒ SSS,
(7a)

bottom wall:
ν<+ − ν>+ = −1 ⇒ SSS,

ν<− − ν>− = 1 ⇒ ZM,
(7b)

where < and > denote phases below and above the do-
main wall, respectively. It must be emphasized here that
because rigid translation is not a zero mode in our lat-
tice, in general such a lattice is not expected to have zero
modes and all phonon modes should be gapped. How-
ever, at the domain boundary between regions with dif-
ferent topological indices, topological edge modes emerge
with frequency pinned to zero by the chiral symmetry.

It is also worthwhile to highlight that these topologi-
cal zero modes are fundamentally different from the zero
modes protected by topological polarization. First of all,
they are due to a totally different topological index. Sec-
ondly, in contrast to zero modes from topological polar-
ization, the supercell spectrum of which has a flat bands
at zero frequency [28], the topological modes here are
dispersive. Because the mirror symmetry is broken away
from the mirror plane (qx ̸= 0), the frequency of the edge
modes moves away from zero at qx ̸= 0 as shown in Fig. 3.
Finally, in contrast to the deformed kagome lattice ([28])
where the SSSs and ZMs are localized on opposite domain
walls, in our systems, the ZM and SSS are on the same
domain wall. Typically, ZM and SSS cannot be localized
on the same domain wall, because they will be lifted to
finite frequency in the presence of hybridization between
them. In our system, such hybridization is prohibited by
the mirror symmetry, because for each domain, its ZM

and SSS have opposite mirror parity (even vs odd).
To conclude this section, we would like to point out

that this topological index and zero modes can also be
characterized by a low-energy continuum theory (SM [37]
Sec. SM.5) using a Dirac Hamiltonian and the Jackiw-
Rebbi analysis [38, 39].
Mirror-protected corner states.–Mirror symmetric sys-
tems in the BDI class where the mirror reflection oper-
ator commutes TRS and chiral symmetry operators can
have Mirror symmetry protected zero frequency corner
modes [10, 40]. To look for such corner states, we create
a diamond shaped island of one phase inside a rhombus
shaped other phase phase with periodic boundary condi-
tions for the rhombus in both direction (Fig. 4). The top
and the bottom corners of the diamond are invariant un-
der a vertical mirror passing through them. In Figs. 4(a-
b), we see that when the inner island is δ = −13/42 phase
and the outer phase is δ = 1/3, there are zero frequency
corner modes localized at the top and the bottom cor-
ners, the top (bottom) one being odd (even) under the
vertical mirror reflection. The situation is more curious
when the inner island is δ = 1/3 and the outer phase is
δ = −13/42 (Figs. 4(c-d)). There are still two zero fre-
quency corner modes, one of the odd and the other even
under the vertical mirror reflection, but they are both
localized at the right and left corners.
The topological nature and the origin of these corner

modes can be easily understood using standard approach
of HOTS (SM [37] Sec. SM.6). When the domain wall
between the two phases is tilted such that the domain
wall is not invariant under reflection, the localized states
at the domain wall become massive, meaning that the
spectrum is gapped at ω = 0. Moreover, two oppositely
tilted domain walls have opposite sign of the mass m; the
sign of the mass m depends on the sign of the angle of
tilt of the domain wall. Therefore, at the corner both δ
(across the domain boundary) and m (along the domain
boundary) change sign. As is elaborated in the SM [37]
Sec. SM.6, depending on the sign of the mass m, the am-
plitude of the zero frequency mode (∼ e−mx) may either
decrease or increases as we move away from the corner
point (x = 0). If the amplitude increases exponentially as
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we move away from this corner, it implies that this zero
mode is localized at the next corner along the direction
of the increasing amplitude. This theory analysis is in
perfect agreement with numerical simulations. Further-
more, these corner modes persist even when the corner is
not mirror invariant, as long as the bulk structures have
mirror symmetry (see SM [37] Sec. SM.7); which implies
that this HOTS is “intrinsic” [10, 40].
Conclusions.–In this work we demonstrated how spatial
symmetries can protect higher order topological phase in
Maxwell frames and gives rise to zero frequency topo-
logical edge and corner modes. Furthermore, these edge
and corner modes are pinned to zero frequency due to
inherent chiral symmetry of Maxwell frames pointed out
in [28]. This chiral symmetry is often used as an ap-
proximate symmetry in fermionic systems (except in case
of superconductors), but in case of Maxwell lattices it

is exact. As mentioned earlier, our system falls under
the BDI class of Altland-Zirnbauer classification; it has
been known in the literature [10, 40] that mirror sym-
metry that commutes with time reversal and chiral sym-
metry can protect corner modes in 2-dimensions in this
class. To our knowledge, our structure is the first ex-
ample of this in classical systems. This system should
be straightforwardly experimentally realized using hard
plastic parts and hinges similar to what was done in [41]
for deformed kagome lattice; with the three extra point
masses (red points 4-6 in Fig. 1(a)) in our system need to
be put on fixed rails such that they can only move along
the corresponding rails.
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T. Larsen, L. G. Villanueva, and S. D. Huber, Nature
555, 342 (2018).

[18] J. Attig, K. Roychowdhury, M. J. Lawler, and S. Trebst,
Phys. Rev. Res. 1, 032047 (2019).

[19] H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang,
Nature materials 18, 108 (2019).

[20] X. Ni, M. Weiner, A. Alu, and A. B. Khanikaev, Nature

materials 18, 113 (2019).
[21] M. Proctor, P. A. Huidobro, B. Bradlyn, M. B. de Paz,

M. G. Vergniory, D. Bercioux, and A. Garćıa-Etxarri,
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A. Garćıa-Etxarri, I. Swart, C. M. Smith, and
D. Bercioux, Phys. Rev. B 105, 085411 (2022).

[24] A. Saremi and Z. Rocklin, Physical Review B 98, 180102
(2018).

[25] E. Khalaf, W. A. Benalcazar, T. L. Hughes, and
R. Queiroz, Physical Review Research 3, 013239 (2021).

[26] J. C. Maxwell, The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 27, 294
(1864).

[27] T. Lubensky, C. Kane, X. Mao, A. Souslov, and K. Sun,
Reports on Progress in Physics 78, 073901 (2015).

[28] C. L. Kane and T. C. Lubensky, Nature Physics 10, 39
(2014).

[29] T. Neupert and F. Schindler, in Topological Matter: Lec-
tures from the Topological Matter School 2017 (Springer,
2018) pp. 31–61.

[30] Y. Ren, Z. Qiao, and Q. Niu, Phys. Rev. Lett. 124,
166804 (2020).

[31] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W.
Molenkamp, T. Kiessling, F. Schindler, C. H. Lee,
M. Greiter, T. Neupert, et al., Nature Physics 14, 925
(2018).

[32] C. R. Calladine, International journal of solids and struc-
tures 14, 161 (1978).

[33] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142
(1997).

[34] A. Kitaev, in AIP conference proceedings, Vol. 1134
(American Institute of Physics, 2009) pp. 22–30.

[35] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. Ludwig,
New Journal of Physics 12, 065010 (2010).

[36] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu,
Rev. Mod. Phys. 88, 035005 (2016).

[37] “See supplemental material below,” .
[38] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1146/annurev-conmatphys-031115-011417
http://dx.doi.org/10.1146/annurev-conmatphys-031115-011417
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.aah6442
http://dx.doi.org/10.1103/PhysRevB.96.245115
https://www.science.org/doi/full/10.1126/sciadv.aat0346
https://www.science.org/doi/full/10.1126/sciadv.aat0346
http://dx.doi.org/ 10.1103/PhysRevLett.119.246401
http://dx.doi.org/10.1103/PhysRevB.97.205136
http://dx.doi.org/ 10.1103/PhysRevLett.119.246402
http://dx.doi.org/ 10.1103/PhysRevLett.119.246402
http://dx.doi.org/10.1103/PhysRevB.98.081110
http://dx.doi.org/10.1103/PhysRevB.98.081110
http://dx.doi.org/ 10.1103/PhysRevLett.122.204301
http://dx.doi.org/ 10.1103/PhysRevLett.122.204301
http://dx.doi.org/ 10.1103/PhysRevB.101.094107
https://www.nature.com/articles/nature25156
https://www.nature.com/articles/nature25156
http://dx.doi.org/10.1103/PhysRevResearch.1.032047
https://www.nature.com/articles/s41563-018-0251-x
https://www.nature.com/articles/s41563-018-0252-9
https://www.nature.com/articles/s41563-018-0252-9
http://dx.doi.org/ 10.1103/PhysRevResearch.2.042038
http://dx.doi.org/10.1103/PhysRevB.105.085411
https://www.tandfonline.com/doi/pdf/10.1080/14786446408643668
https://www.tandfonline.com/doi/pdf/10.1080/14786446408643668
https://www.tandfonline.com/doi/pdf/10.1080/14786446408643668
https://iopscience.iop.org/article/10.1088/0034-4885/78/7/073901/meta
https://www.nature.com/articles/nphys2835
https://www.nature.com/articles/nphys2835
https://link.springer.com/chapter/10.1007/978-3-319-76388-0_2
https://link.springer.com/chapter/10.1007/978-3-319-76388-0_2
http://dx.doi.org/ 10.1103/PhysRevLett.124.166804
http://dx.doi.org/ 10.1103/PhysRevLett.124.166804
https://www.nature.com/articles/s41567-018-0246-1
https://www.nature.com/articles/s41567-018-0246-1
https://www.sciencedirect.com/science/article/pii/0020768378900525
https://www.sciencedirect.com/science/article/pii/0020768378900525
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
https://aip.scitation.org/doi/abs/10.1063/1.3149495
https://iopscience.iop.org/article/10.1088/1367-2630/12/6/065010/meta
http://dx.doi.org/ 10.1103/RevModPhys.88.035005
http://dx.doi.org/10.1103/PhysRevD.13.3398


6

[39] B. A. Bernevig, Topological insulators and topological su-
perconductors (Princeton university press, 2013).

[40] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,
Phys. Rev. B 97, 205135 (2018).

[41] D. Z. Rocklin, S. Zhou, K. Sun, and X. Mao, Nature
communications 8, 14201 (2017)

Supplemental Material

Contents

S-1. Compatibility matrix of the mirror symmetric Maxwell lattice 7

S-2. Mirror symmetry, Block diagonalization of H 8

S-3. C(q) can always be decomposed into C+(q) and C−(q) along the mirror invariant line 15

S-4. Regime where H(q) or D(q) is fully gapped at ω = 0 17

S-5. Low energy theory and the edge states at mirror invariant domain walls 18
A. Integrate the high frequency bands to obtain the low energy theory 18
B. Zero frequency edge modes at domain wall from the low energy theory 19

S-6. Corner states from the low energy theory 25

S-7. Corner modes where the mirror symmetry is broken at the corner 27

Supplemental References 27

https://press.princeton.edu/books/hardcover/9780691151755/topological-insulators-and-topological-superconductors
https://press.princeton.edu/books/hardcover/9780691151755/topological-insulators-and-topological-superconductors
http://dx.doi.org/ 10.1103/PhysRevB.97.205135


7

S-1. COMPATIBILITY MATRIX OF THE MIRROR SYMMETRIC MAXWELL LATTICE

The compatibility matrix corresponding to the system shown in Fig. 1 of the main text is given by:

C(q) =



1−6δ1

2
√

1+12δ21

−3−6δ1

2
√

3+36δ21

0 0 0 0
6δ1√

3+36δ21

0 0

0 0
1+6δ2

2
√

1+12δ22

3−6δ2

2
√

3+36δ22

0 0 0
6δ2√

3+36δ22

0

0 0 0 0 −1√
1+12δ23

6δ3√
3+36δ23

0 0
6δ3√

3+36δ23
1√

1+12δ23

6δ3√
3+36δ23

0 0 0 0 0 0
6δ3√

3+36δ23

0 0
−1−6δ1

2
√

1+12δ21

3−6δ1

2
√

3+36δ21

0 0
6δ1√

3+36δ21

0 0

0 0 0 0
−1+6δ2

2
√

1+12δ22

−3−6δ2

2
√

3+36δ22

0
6δ2√

3+36δ22

0

−1 0 0 0 eiqx 0 0 0 0

− e
i(−qx+

√
3qy)/2

2

√
3e

i(−qx+
√

3qy)/2

2
1
2

−
√

3
2

0 0 0 0 0

0 0 − e
i(qx+

√
3qy)/2

2
−

√
3e

i(qx+
√

3qy)/2

2
1
2

−
√

3
2

0 0 0


(S1)
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S-2. MIRROR SYMMETRY, BLOCK DIAGONALIZATION OF H

When δ1 = δ2 ≡ δ in Fig. 1 of main text, the system is mirror symmetric about the vertical line passing through
point 2. Let us call this mirrior mx since its normal is in x-direction. Since mx flips the sign of the x component of a
vector, under this mirror the two lattice vectors (see Fig. 1 of main text) get mapped to

mxa1 = −a1,mxa2 = a1 + a2. (S2)

As a consequence, a unit cell at n1a1 + n2a2 gets mapped to (n2 − n1)a1 + n2a2. From Fig. 1 of main text, it is
also easy to see that this mirror maps points 1 ↔ 3, 2 ↔ 2, 4 ↔ 5, 6 ↔ 6. With these information, we see that
displacement states |ui(n1, n2)⟩ transform under mx in the following way:

mx|u1(n1, n2)⟩ = −σz|u3(n2 − n1, n2)⟩,
mx|u2(n1, n2)⟩ = −σz|u2(n2 − n1, n2)⟩,
mx|u3(n1, n2)⟩ = −σz|u1(n2 − n1, n2)⟩,
mx|u4(n1, n2)⟩ = |u5(n2 − n1, n2)⟩,
mx|u5(n1, n2)⟩ = |u4(n2 − n1, n2)⟩,
mx|u6(n1, n2)⟩ = |u6(n2 − n1, n2)⟩,

(S3)

where Pauli matrix σz is used to flip the sign of the y component of the vector, and we recall that the dis-
placements of points 4, 5 and 6 are constrained. Defining the Fourier transforms of the displacement fields as
|ui(q)⟩ = 1√

N

∑
n1,n2

|ui(n1, n2)⟩eiq·(n1a1+n2a2), we ask how these Fourier modes of displacements transform under

the mirror. We show this below:

mx|u1(q)⟩ =
1√
N

∑
n1,n2

mx|u1(n1, n2)⟩eiq·(n1a1+n2a2)

=
1√
N

∑
n1,n2

(−σz)|u3(n2 − n1, n2)⟩eiq·(n1a1+n2a2)

=
1√
N

∑
n′
1,n

′
2

(−σz)|u3(n
′
1, n

′
2)⟩eiq·((n

′
2−n′

1)a1+n′
2a2)

=
1√
N

∑
n′
1,n

′
2

(−σz)|u3(n
′
1, n

′
2)⟩eiq·((n

′
2−n′

1)(1,0)+n′
2(−1/2,

√
3/2))

=
1√
N

∑
n′
1,n

′
2

(−σz)|u3(n
′
1, n

′
2)⟩eiq·(n

′
2/2−n′

1,n
′
2

√
3/2)

=
1√
N

∑
n′
1,n

′
2

(−σz)|u3(n
′
1, n

′
2)⟩ei(−qx,qy)·(n′

1−n′
2/2,n

′
2

√
3/2)

=
1√
N

∑
n′
1,n

′
2

(−σz)|u3(n
′
1, n

′
2)⟩ei(−qx,qy)·(n′

1−n′
2/2,n

′
2

√
3/2)

=
1√
N

∑
n′
1,n

′
2

(−σz)|u3(n
′
1, n

′
2)⟩ei(−qx,qy)·(n′

1a1+n′
2a2)

= (−σz)|u3(−qx, qy)⟩
= (−σz)|u3(mxq)⟩.

(S4)

Similarly,

mx|u2(q)⟩ = (−σz)|u2(mxq)⟩
mx|u3(q)⟩ = (−σz)|u1(mxq)⟩
mx|u4(q)⟩ = |u5(mxq)⟩
mx|u5(q)⟩ = |u4(mxq)⟩
mx|u6(q)⟩ = |u6(mxq)⟩

(S5)
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All together, the transformation is the following:

mx{|u1x(q)⟩|u1y(q)⟩, |u2x(q)⟩, |u2y(q)⟩, |u3x(q)⟩, |u3y(q)⟩, |u4(q)⟩, |u5(q)⟩, |u6(q)⟩}
={|u1x(mxq)⟩, |u1y(mxq)⟩, |u2x(mxq)⟩, |u2y(mxq)⟩, |u3x(mxq)⟩, |u3y(mxq)⟩, |u4(mxq)⟩, |u5(mxq)⟩, |u6(mxq)⟩}Mu(mxq),

(S6)

where

Mu(q) =



0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
−1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1


. (S7)

Now, we turn to the bonds. Under mirror, the bond elongation states get mapped the following way:

mx|e1(n1, n2)⟩ = |e6(n2 − n1, n2)⟩,
mx|e2(n1, n2)⟩ = |e5(n2 − n1, n2)⟩,
mx|e3(n1, n2)⟩ = |e4(n2 − n1, n2)⟩,
mx|e4(n1, n2)⟩ = |e3(n2 − n1, n2)⟩,
mx|e5(n1, n2)⟩ = |e2(n2 − n1, n2)⟩,
mx|e6(n1, n2)⟩ = |e1(n2 − n1, n2)⟩,
mx|e7(n1, n2)⟩ = |e7(n2 − n1 − 1, n2)⟩,
mx|e8(n1, n2)⟩ = |e9(n2 − n1 + 1, n2 + 1)⟩,
mx|e9(n1, n2)⟩ = |e8(n2 − n1, n2 − 1)⟩.

(S8)

Note that the transformation of the last three bonds are different because they are inter-unit-cell bonds. Define the
Fourier transforms of the bond elongation states as |ei(q)⟩ = 1√

N

∑
n1,n2

|ei(n1, n2)⟩eiq·(n1a1+n2a2). The transforma-

tion of Fourier modes of the first 6 bonds under mx can be obtained similar to the displacements:

mx|e1(q)⟩ = |e6(mxq)⟩,
mx|e2(q)⟩ = |e5(mxq)⟩,
mx|e3(q)⟩ = |e4(mxq)⟩,
mx|e4(q)⟩ = |e3(mxq)⟩,
mx|e5(q)⟩ = |e2(mxq)⟩,
mx|e6(q)⟩ = |e1(mxq)⟩.

(S9)
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The transformation of the Fourier mode of the 7th bond is as follows:

mx|e7(q)⟩ =
1√
N

∑
n1,n2

mx|e7(n1, n2)⟩eiq·(n1a1+n2a2)

=
1√
N

∑
n1,n2

|e7(n2 − n1 − 1, n2)⟩eiq·(n1a1+n2a2)

=
1√
N

∑
n′
1,n

′
2

|e7(n′1, n′2)⟩eiq·((n
′
2−n′

1−1)a1+n′
2a2)

=
1√
N

∑
n′
1,n

′
2

|e7(n′1, n′2)⟩eiq·((n
′
2−n′

1−1)(1,0)+n′
2(−1/2,

√
3/2))

=
1√
N

∑
n′
1,n

′
2

|e7(n′1, n′2)⟩eiq·(n
′
2/2−n′

1−1,n′
2

√
3/2)

=
1√
N

∑
n′
1,n

′
2

|e7(n′1, n′2)⟩ei(−qx,qy)·(n′
1−n′

2/2,n
′
2

√
3/2)e−iqx

=
1√
N

∑
n′
1,n

′
2

|e7(n′1, n′2)⟩ei(−qx,qy)·(n′
1−n′

2/2,n
′
2

√
3/2)e−iqx

=
1√
N

∑
n′
1,n

′
2

|e7(n′1, n′2)⟩ei(−qx,qy)·(n′
1a1+n′

2a2)e−iqx

= e−iqx |e7(−qx, qy)⟩
= e−iqx |e7(mxq)⟩.

(S10)

Similarly, for bond 8

mx|e8(q)⟩ =
1√
N

∑
n1,n2

mx|e8(n1, n2)⟩eiq·(n1a1+n2a2)

=
1√
N

∑
n1,n2

|e9(n2 − n1 + 1, n2 + 1)⟩eiq·(n1a1+n2a2)

=
1√
N

∑
n′
1,n

′
2

|e9(n′1, n′2)⟩eiq·((n
′
2−n′

1)a1+(n′
2−1)a2)

=
1√
N

∑
n′
1,n

′
2

|e9(n′1, n′2)⟩eiq·((n
′
2−n′

1)(1,0)+(n′
2−1)(−1/2,

√
3/2))

=
1√
N

∑
n′
1,n

′
2

|e9(n′1, n′2)⟩eiq·(n
′
2/2−n′

1,n
′
2

√
3/2)e−i(−qx+

√
3qy)/2

=
1√
N

∑
n′
1,n

′
2

|e9(n′1, n′2)⟩ei(−qx,qy)·(n′
1−n′

2/2,n
′
2

√
3/2)e−i(−qx+

√
3qy)/2

=
1√
N

∑
n′
1,n

′
2

|e9(n′1, n′2)⟩ei(−qx,qy)·(n′
1−n′

2/2,n
′
2

√
3/2)e−i(−qx+

√
3qy)/2

=
1√
N

∑
n′
1,n

′
2

|e9(n′1, n′2)⟩ei(−qx,qy)·(n′
1a1+n′

2a2)e−i(−qx+
√
3qy)/2

= e−i(−qx+
√
3qy)/2|e9(−qx, qy)⟩

= e−i(−qx+
√
3qy)/2|e9(mxq)⟩,

(S11)
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and for bond 9

mx|e9(q)⟩ =
1√
N

∑
n1,n2

mx|e9(n1, n2)⟩eiq·(n1a1+n2a2)

=
1√
N

∑
n1,n2

|e8(n2 − n1, n2 − 1)⟩eiq·(n1a1+n2a2)

=
1√
N

∑
n′
1,n

′
2

|e8(n′1, n′2)⟩eiq·((n
′
2+1−n′

1)a1+(n′
2+1)a2)

=
1√
N

∑
n′
1,n

′
2

|e8(n′1, n′2)⟩eiq·((n
′
2+1−n′

1)(1,0)+(n′
2+1)(−1/2,

√
3/2))

=
1√
N

∑
n′
1,n

′
2

|e8(n′1, n′2)⟩eiq·(n
′
2/2−n′

1,n
′
2

√
3/2)e−i(−qx−

√
3qy)/2

=
1√
N

∑
n′
1,n

′
2

|e8(n′1, n′2)⟩ei(−qx,qy)·(n′
1−n′

2/2,n
′
2

√
3/2)e−i(−qx−

√
3qy)/2

=
1√
N

∑
n′
1,n

′
2

|e8(n′1, n′2)⟩ei(−qx,qy)·(n′
1−n′

2/2,n
′
2

√
3/2)e−i(−qx−

√
3qy)/2

=
1√
N

∑
n′
1,n

′
2

|e8(n′1, n′2)⟩ei(−qx,qy)·(n′
1a1+n′

2a2)e−i(−qx−
√
3qy)/2

= e−i(−qx−
√
3qy)/2|e8(−qx, qy)⟩

= e−i(−qx−
√
3qy)/2|e8(mxq)⟩.

(S12)

All together, the transformation is the following:

mx{|e1(q)⟩|e2(q)⟩, |e3(q)⟩, |e4(q)⟩, |e5(q)⟩, |e6(q)⟩, |e7(q)⟩, |e8(q)⟩, |e9(q)⟩}
={|e1(mxq)⟩, |e2(mxq)⟩, |e3(mxq)⟩, |e4(mxq)⟩, |e5(mxq)⟩, |e6(mxq)⟩, |e7(mxq)⟩, |e8(mxq)⟩, |e9(mxq)⟩}Me(mxq),

(S13)

where,

Me(q) =



0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 eiqx 0 0

0 0 0 0 0 0 0 0 e−i(qx−
√
3qy)/2

0 0 0 0 0 0 0 e−i(qx+
√
3qy)/2 0


. (S14)

With these, now we are at a position to find how the compatibility matrix transforms under mx. As an operator that
act on the displacement space to give the elongations of the bonds, the compatibility operator can be written as:

Ĉ =
∑
R,R′

∑
i,j

|ei(R)⟩Cij(R−R′)⟨uj(R′)|, (S15)



12

where R and R′ are positions of the unit cells, and i goes over all 9 the 9 bonds in each unit cell whereas j goes over
the 9 degrees of freedom in each unit cell. We can write this in terms of the Fourier modes in the following way:

Ĉ =
∑
R,R′

∑
i,j

|ei(R)⟩Cij(R−R′)⟨uj(R′)|

=
∑
R,R′

∑
i,j

1

N

∑
q,q′

|ei(q)⟩e−iq·RCij(R−R′)eiq
′·R′

⟨uj(q′)|

=
∑
q,q′

∑
i,j

|ei(q)⟩⟨uj(q′)|
∑
R,R′

1

N
e−iq·RCij(R−R′)eiq

′·R′

=
∑
q,q′

∑
i,j

|ei(q)⟩⟨uj(q′)|
∑
R,R′′

1

N
e−iq·RCij(R

′′)eiq
′·(R−R′′)

=
∑
q,q′

∑
i,j

|ei(q)⟩⟨uj(q′)|
∑
R′′

1

N
Cij(R

′′)eiq
′·(−R′′)Nδq−q′,,0

=
∑
q

∑
i,j

|ei(q)⟩⟨uj(q)|
∑
R′′

Cij(R
′′)e−iq·R′′

=
∑
q

∑
i,j

|ei(q)⟩Cij(q)⟨uj(q)|,

(S16)

where we used the definition Cij(q) =
∑

R Cij(R)e−iq·R and the identity
∑

R e
iq·R = Nδq,0, where δi,j is the

Kronecker delta function. We understand that Cij(q) are the elements of the matrix C(q) in Eq. (S1). Since,

the system is invariant under the mirror mx, the operator Ĉ is also invariant under mx. This has the following
consequence:

Ĉ = mxĈm
†
x,

⇒
∑
q

∑
i,j

|ei(q)⟩Cij(q)⟨uj(q)| =
∑
q

∑
i,j

mx|ei(q)⟩Cij(q)⟨uj(q)|m†
x

=
∑
q

∑
i,j

∑
i′,j′

|ei′(mxq)⟩Me(mxq)i′iCij(q)Mu(mxq)
∗
j′j⟨uj′(mxq)|

=
∑
qx,qy

∑
i,j

∑
i′,j′

|ei′(−qx, qy)⟩Me(−qx, qy)i′iCij(qx, qy)Mu(−qx, qy)∗j′j⟨uj′(−qx, qy)|

=
∑
qx,qy

∑
i,j

∑
i′,j′

|ei(qx, qy)⟩Me(qx, qy)ii′Ci′j′(−qx, qy)Mu(qx, qy)
∗
jj′⟨uj(−qx, qy)|,

⇒ Cij(q) =
∑
i′,j′

Me(qx, qy)ii′Ci′j′(−qx, qy)Mu(qx, qy)
∗
jj′ ,

⇒ C(q) = Me(q)C(mxq)Mu(q)
†,

⇒ M†
e(q)C(q)Mu(q) = C(mxq).

(S17)

Then, the “square root” Hamiltonian H(q) transforms as the following:(
M†

u(q) 0
0 M†

e(q)

)(
0 C†(q)

C(q) 0

)(
Mu(q) 0

0 Me(q)

)
=

(
0 C†(mxq)

C(mxq) 0

)
⇒ M†(q)H(q)M(q) = H(mxq),

(S18)
where

M(q) =

(
Mu(q) 0

0 Me(q)

)
. (S19)

Since m2
x = 1, the matrices Mu(q), Me(q) and M(q) have the following property:

Mu(mxq)Mu(q) = 1,Me(mxq)Me(q) = 1,M(mxq)M(q) = 1. (S20)
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Therefore, on the line where mxq = q ⇒ qx = 0, the following is true: M2
u(qx = 0, qy) = 1, M2

e(qx = 0, qy) = 1,
M2(qx = 0, qy) = 1. Hence, on the line qx = 0, the eigenvalues of Mu, Me and M are ±1. The eigenvectors of
Mu(qx = 0, qy) and Me(qx = 0, qy) are listed below

e
(u)
1− =

1√
2



0
0
0
0
0
0
−1
1
0


, e

(u)
2− =

1√
2



0
−1
0
0
0
1
0
0
0


, e

(u)
3− =

1√
2



1
0
0
0
1
0
0
0
0


, e

(u)
4− =



0
0
1
0
0
0
0
0
0


,

e
(u)
5+ =



0
0
0
0
0
0
0
0
1


, e

(u)
6+ =

1√
2



0
0
0
0
0
0
1
1
0


, e

(u)
7+ =

1√
2



0
1
0
0
0
1
0
0
0


, e

(u)
8+ =

1√
2



−1
0
0
0
1
0
0
0
0


, e

(u)
9+ =



0
0
0
1
0
0
0
0
0


,

e
(e)
1− =

1√
2



0
0
0
0
0
0
0

−ei
√

3qy
2

1


, e

(e)
2− =

1√
2



−1
0
0
0
0
1
0
0
0


, e

(e)
3− =

1√
2



0
−1
0
0
1
0
0
0
0


, e

(e)
4− =

1√
2



0
0
−1
1
0
0
0
0
0


,

e
(e)
5+ =

1√
2



0
0
0
0
0
0
0

ei
√

3qy
2

1


, e

(e)
6+ =



0
0
0
0
0
0
1
0
0


, e

(e)
7+ =

1√
2



1
0
0
0
0
1
0
0
0


, e

(e)
8+ =

1√
2



0
1
0
0
1
0
0
0
0


, e

(e)
9+ =

1√
2



0
0
1
1
0
0
0
0
0


,

(S21)
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where the symbol e
(u/e)
i+/− denotes ith eigenvector of Mu/e(qx = 0, qy) with eigenvalue (+/−)1. In the ordered basis

{e(u)1 , . . . , e
(u)
9 } and {e(e)1 , . . . , e

(e)
9 }, the matrix C(qx = 0, qy) beceomes block-diagonal

C̃(qx = 0, qy) =

(
C−(qx = 0, qy) 0

0 C+(qx = 0, qy)

)
,

C−(qx = 0, qy) =


0 3

2
1
2 − 1√

2
e−i

√
3

2 qy

6δ√
3+36δ2

−3−6δ
2
√
3+36δ2

−1+6δ
2
√
1+12δ2

0
−6δ√
3+36δ2

0 0 −1−6δ
2
√
2+24δ2

0 −6δ3√
3+36δ23

1√
1+12δ23

0

 ,

C+(qx = 0, qy) =


0 0 3

2
1
2 −

√
3
2e

−i
√

3
2 qy

0 0 0
√
2 0

0 6δ√
3+36δ2

−3−6δ
2
√
3+36δ2

−1+6δ
2
√
1+12δ2

0

0 6δ√
3+36δ2

0 0 3−6δ
2
√
6+72δ2

12δ3√
6+72δ23

0 6δ3√
3+36δ23

−1√
1+12δ23

0

 .

(S22)

Determinant of these two matrices C−(qx = 0, qy) and C+(qx = 0, qy) for δ3 = 1/3 are:

det C†
+

∣∣∣
L1

=
6δ
√

6/7

1 + 12δ2

(
(1− 2δ) + (1 + 2δ)ei

√
3qy/2

)
, (S23a)

det C†
−

∣∣∣
L1

= −
δ
√
3/14

1 + 12δ2

(
5(1 + 6δ) + (5− 6δ)ei

√
3qy/2

)
. (S23b)
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S-3. C(q) CAN ALWAYS BE DECOMPOSED INTO C+(q) AND C−(q) ALONG THE MIRROR
INVARIANT LINE

To see this, we first note that along the mirror invariant line, due to mirror symmetry, we have

M†
e(q)C(q)Mu(q) = C(q), (S24)

by definition of mirror symmetry. Since reflecting twice about a mirror is identity, we have M2
u(q) = 1 and M2

e(q) = 1

along the mirror invariant line in Fourier space, and thus the eigenvalues of Mu(q) and Me(q) are ±1. Let Mu(q)

(Me(q)) have nd+ (nb+) eigenvectors e
(u)
1+ , . . . , e

(u)
nd++ (e

(e)
1+, . . . , e

(e)
nb++) with eigenvalue +1, and nd− (nb−) eigenvectors

e
(u)
1− , . . . , e

(u)
nd−− (e

(e)
1−, . . . , e

(e)
nb−−) with eigenvalue −1. Note that nd+ + nd− = nd is the total number of d.o.f.s in the

unit cell, and nb+ + nb− = nb is the total number of bonds in the unit cell. Note that e
(u)
i+/− (e

(e)
i+/−) are column

vectors of size nd × 1 (nb × 1). These imply

Mu(q) =
[
e
(u)
1+ , . . . , e

(u)
nd++, e

(u)
1− , . . . , e

(u)
nd−−

](
1nd+×nd+

0nd+×nd−

0nd−×nd+
−1nd−×nd−

)


(
e
(u)
1+

)†
...(

e
(u)
nd++

)†(
e
(u)
1−

)†
...(

e
(u)
nd−−

)†


(S25a)

=
[
E

(u)
+ E

(u)
−

](
1nd+×nd+

0nd+×nd−

0nd−×nd+
−1nd−×nd−

)[
E

(u)
+

†

E
(u)
−

†

]
, (S25b)

Me(q) =
[
e
(e)
1+, . . . , e

(e)
nb++, e

(e)
1−, . . . , e

(e)
nb−−

](
1nb+×nb+

0nb+×nb−

0nb−×nb+
−1nb−×nb−

)


(
e
(e)
1+

)†
...(

e
(e)
nb++

)†(
e
(e)
1−

)†
...(

e
(e)
nb−−

)†


(S25c)

=
[
E

(e)
+ E

(e)
−

](
1nb+×nb+

0nb+×nb−

0nb−×nb+
−1nb−×nb−

)[
E

(e)
+

†

E
(e)
−

†

]
, (S25d)
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where E
(u)
+/− =

[
e
(u)
1+/−, . . . , e

(u)
nd+/−+/−

]
and E

(e)
+/− =

[
e
(e)
1+/−, . . . , e

(u)
nb+/−+/−

]
. Plugging these in Eq. (S24), we obtain

[
E

(e)
+ E

(e)
−

](
1nb+×nb+

0nb+×nb−

0nb−×nb+
−1nb−×nb−

)[
E

(e)
+

†

E
(e)
−

†

]
C(q)

[
E

(u)
+ E

(u)
−

](
1nd+×nd+

0nd+×nd−

0nd−×nd+
−1nd−×nd−

)[
E

(u)
+

†

E
(u)
−

†

]
= C(q)

⇒
(
1nb+×nb+

0nb+×nb−

0nb−×nb+
−1nb−×nb−

)[
E

(e)
+

†

E
(e)
−

†

]
C(q)

[
E

(u)
+ E

(u)
−

](
1nd+×nd+

0nd+×nd−

0nd−×nd+
−1nd−×nd−

)

=

[
E

(e)
+

†

E
(e)
−

†

]
C(q)

[
E

(u)
+ E

(u)
−

]

⇒
(
1nb+×nb+

0nb+×nb−

0nb−×nb+
−1nb−×nb−

)(
E

(e)
+

†
C(q)E

(u)
+ E

(e)
+

†
C(q)E

(u)
−

E
(e)
−

†
C(q)E

(u)
+ E

(e)
−

†
C(q)E

(u)
−

)(
1nd+×nd+

0nd+×nd−

0nd−×nd+
−1nd−×nd−

)

=

(
E

(e)
+

†
C(q)E

(u)
+ E

(e)
+

†
C(q)E

(u)
−

E
(e)
−

†
C(q)E

(u)
+ E

(e)
−

†
C(q)E

(u)
−

)

⇒

(
E

(e)
+

†
C(q)E

(u)
+ −E(e)

+

†
C(q)E

(u)
−

−E(e)
−

†
C(q)E

(u)
+ E

(e)
−

†
C(q)E

(u)
−

)
=

(
E

(e)
+

†
C(q)E

(u)
+ E

(e)
+

†
C(q)E

(u)
−

E
(e)
−

†
C(q)E

(u)
+ E

(e)
−

†
C(q)E

(u)
−

)

⇒ E
(e)
+

†
C(q)E

(u)
− = 0, E

(e)
−

†
C(q)E

(u)
+ = 0, (S26a)

and consequently, in the eigenbasis of Mu(q) and Me(q), the compatibility matrix has form

C̃(q) =

[
E

(e)
+

†

E
(e)
−

†

]
C(q)

[
E

(u)
+ E

(u)
−

]
=

(
E

(e)
+

†
C(q)E

(u)
+ 0

0 E
(e)
−

†
C(q)E

(u)
−

)
, (S27)

and we identify C+/−(q) = E
(e)
+/−

†
C(q)E

(u)
+/−; these two matrices have sizes nb+/− × nd+/−. This is result is very

general and always true as long as there is a mirror symmetry. When nb+ = nd− (and consequently nb− = nd−, since
it is Maxwell frame), these two matrices are square matrices and one can evaluate the determinants of them.
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S-4. REGIME WHERE H(q) OR D(q) IS FULLY GAPPED AT ω = 0

FIG. S1: Density plot of the spectrum of lowest frequency band of D(q) for different values of δ. The red hexagon shows the
edge of the Brillouin zone. The corners of the red hexagon are the K/K′ points. Bands in (b-e) touch ω = 0 whereas bands in
(a) and (f) are never touch ω = 0.

For simplicity, let us keep δ3 = 1/3 and vary δ1 = δ2 ≡ δ. When δ = 0, there is no restoring force to the linear order
to the displacements of points 4 and 5. Therefore, at δ = 0, there are two completely flat zero frequency bands of
the dynamical matrix D(q) and four flat zero frequency bands of the dynamical matrix H(q). As we increase δ from
δ = 0, we see rings of zero frequency Weyl lines surrounding K and K ′ point in the Brillouin zone (Γ, K, K ′ and M ′

are gapped) as can be seen in Fig. S1(c). However, as we increase δ, these rings get tighter around the K and K ′

point, and at some value of δ they disappear giving a band structure completely gapped at ω = 0. Then, clearly at
the transition point between gapless and gapped zero frequency, there are zero modes at K and K ′ points. In other
words, we have to find the value of δ for which the det(C(qx = 4π/3, qy = 0)) = 0. At K point,

det(C(qx = 4π/3, qy = 0)) =
9δ2

2(1 + 12δ2)2
(1 + 6δ)(5− 42δ). (S28)

There is a zero mode at K ′ point when δ = 5/42 (see Fig. S1(b)). This implies that the band structure is fully gapped
at δ > 5/42 (Fig. S1(a)). Similarly, for δ < 0, there are isolated zero modes on the line M ′ −K ′ as well as vertical
lines of zero modes on either side of qx = π (see Fig. S1(d)). They disappear after the isolated zero modes hit point
K and the vertical lines of zero mode hit qx = π. From the above equation, we see that the first one happens at
δ = −1/6 (see Fig. S1(e)). For the latter, we calculate det(C(qx = π, qy = 0)):

det(C(qx = 4π/3, qy = 0)) = − 288δ3

7(1 + 12δ2)2
(1 + 6δ). (S29)

Hence, there is a line of zero mode at qx = π for δ = −1/6 (see Fig. S1(e)). When δ < −1/6, ω = 0 is gapped
everywhere in the Brillouin zone (see Fig. S1(f)). However, the band gap closes again at the M ′ point at δ = −5/12
which can be seen from Eq. (S23b).
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S-5. LOW ENERGY THEORY AND THE EDGE STATES AT MIRROR INVARIANT DOMAIN WALLS

Since, δ = 0 is the phase transition point between phase 1 and phase 2, we can write a low energy theory near δ = 0
near the M ′ point: q = (0, 2π/

√
3) + (kx, ky) keeping only lowest few orders in the momenta kx and ky. Note that

we are expanding near the M ′ point because along the line of our interest Γ −M ′, the gap is smallest near the M ′

point for small values of δ (see Figs. 2(b) and (d)). Using this low energy theory, we can explicitly show the existence
of edge modes at a domain wall between phase δ > 0 and δ < 0. Using the low energy method to show existence of
boundary mode is known as Jackiw-Rebbi analysis in the literature [1, 2].

A. Integrate the high frequency bands to obtain the low energy theory

To get to the low energy theory with small δ, kx and ky, we first do a singular value decomposition at the matrix

C(q = (0, 2π/
√
3))|δ=0:

C(q = (0, 2π/
√
3))|δ=0 = U

(
Λ7×7 07×2

02×7 02×2

)
W†, (S30)

where Λ is diagonal matrix consisting of the 7 nonzero singular values. These are the nonzero finite frequencies at the
M ′ point for δ = 0. There are two 0 singular values since there are no restoring force to points 4 and 5. The columns
of the matrix W are the eigenvectors of D(q = (0, 2π/

√
3))|δ=0 whereas the columns of U are the eigenvectors of[

C(q = (0, 2π/
√
3))C†(q = (0, 2π/

√
3))
]
δ=0

. The matrices U and W are of the form:

U = [UH |UL] ,W = [WH |WL] (S31)

where UH (WH) is 9 × 7 matrix containing the 7 eigenvectors of
[
C(q = (0, 2π/

√
3))C†(q = (0, 2π/

√
3))
]
δ=0

(D(q = (0, 2π/
√
3))|δ=0) corresponding to the nonzero eigenvalues. The matrices UL and WL are 9× 2 containing 2

eigenvectors corresponding to 0 eigenvalues.
Now, we ask how the elements of this matrix are changed once we allow small δ, kx and ky. To facilitate this

expansion, we multiply a small parameter ε to δ, kx and ky and expand the matrix in Taylor series of ε:

C(q = (0, 2π/
√
3) + ε(kx, ky))|δ→εδ = C(q = (0, 2π/

√
3))|δ=0 + εC1 + ε2C2 +O(ε3)

=
(
UH UL

)(Λ+ εP1 + ε2P2 +O(ε3) εQ1 + ε2Q2 +O(ε3)
εR1 + ε2R2 +O(ε3) εS1 + ε2S2 +O(ε3)

)(
W†

H

W†
L

)
,
(S32)

where

Pi = U†
HCiWH ,Qi = U†

HCiWL,Ri = U†
LCiWH ,Si = U†

LCiWL. (S33)

Now, our aim is to integrate out the finite frequency modes and keep the low energy mode. Since the columns of W

form a complete basis for the displacements, we can write any displacement in this basis as u = (u†
H ,u

†
L)

†, where uH

(uL) contain the amplitudes of the high (low) frequency modes. The energy of the system is:

E =
(
u†
H u†

L

)(A† C†

B† E†

)(
A B
C E

)(
uH

uL

)
= u†

H(A†A+C†C)uH + u†
H(A†B+C†E)uL + u†

L(B
†A+E†C)uL + u†

L(B
†B+E†E)uL

= (uH + (A†A+C†C)−1(A†B+C†E)uL)
†(A†A+C†C)(uH + (A†A+C†C)−1(A†B+C†E)uL)

+ u†
L(B

†B+E†E− (A†B+C†E)†(A†A+C†C)−1(A†B+C†E))uL,

(S34)

where A = Λ+ εP1+ ε
2P2+O(ε3), B = εQ1+ ε

2Q2+O(ε3), C = εR1+ ε
2R2+O(ε3) and E = εS1+ ε

2S2+O(ε3).
Since A†A+C†C = Λ2 +O(ε) and Λ is a diagonal matrix with nonzero finite entries in the diagonal, A†A+C†C
is invertible. The effective low energy dynamical matrix is then

DL = B†B+E†E− (A†B+C†E)†(A†A+C†C)−1(A†B+C†E). (S35)
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We will expand this expression in orders of ε.

B†B+E†E = ε2(Q†
1Q1 + S†

1S1) + ε3(Q†
1Q2 +Q†

2Q1 + S†
1S2 + S†

2S1) +O(ε4),

A†B+C†E = ε(Λ†Q1) + ε2(P†
1Q1 +Λ†Q2 +R†

1S1) +O(ε3),

(A†A+C†C)−1 = (Λ†Λ+ ε(Λ†P1 +P†
1Λ) +O(ε2))−1

= (Λ†Λ)−1 − ε(P1Λ
−1 + (Λ†)−1P†

1) +O(ε2).

(S36)

Using these we get:

DL = B†B+E†E− (A†B+C†E)†(A†A+C†C)−1(A†B+C†E)

= ε2(Q†
1Q1 + S†

1S1) + ε3(Q†
1Q2 +Q†

2Q1 + S†
1S2 + S†

2S1)

− ε2Q†
1Q1 − ε3(Q†

1Λ
−1P†

1Q1 +Q†
1Q2 +Q†

1Λ
−1R†

1S1)

− ε3(Q†
1P1Λ

−1Q1 +Q†
2Q1 + S†

1R1Λ
−1Q1)

+ ε3(Q†
1P1Λ

−1Q1 +Q†
1Λ

−1P†
1Q1) +O(ε4)

= ε2S†
1S1 + ε3(S†

1(S2 −R1Λ
−1Q1) + (S2 −R1Λ

−1Q1)
†S1) +O(ε4)

= (εS1 + ε2(S2 −R1Λ
−1Q1))

†(εS1 + ε2(S2 −R1Λ
−1Q1)) +O(ε4).

(S37)

Therefore, the effective compatibility matrix in the low-energy sector is

CL = εS1 + ε2(S2 −R1Λ
−1Q1) +O(ε3). (S38)

Using this formula and definitions of Qi, Ri, Si and Λ from above, the effective compatibility matrix in the low
energy sector for our system is evaluated to

CL(q = (0, 2π/
√
3) + (kx, ky))|δ =

(
11.2δ2 3.2δ2 + iδ(kx +

√
3ky)

−3.2δ2 + iδ(kx −
√
3ky) −11.2δ2

)
. (S39)

Note that this matrixCL is written in the basisUL = {1/
√
3{0,−1, 0, 0, 0, 1, 0, 0, 1}T , 1/

√
3{1, 0, 0, 0,−1, 0, 0,−1, 0}T }

and WL = {{0, 0, 0, 0, 0, 0,−1, 0, 0}T , {0, 0, 0, 0, 0, 0, 0, 1, 0}T }. In these bases, the mirror operators are

ML
u =

(
0 −1
−1 0

)
,ML

e =

(
0 1
1 0

)
,

ML
e CL(q = (0, 2π/

√
3) + (kx, ky))|δML

u = CL(q = (0, 2π/
√
3) + (−kx, ky))|δ

(S40)

Moreover, when δ is zero, the whole matrix is zero meaning the eigenvalues are zero for all kx and ky. This agrees
with the full dynamical matrix where we saw that the lowest bands are zero when δ = 0.

B. Zero frequency edge modes at domain wall from the low energy theory

Now, to create a domain wall between phase 1 and 2 at y = 0 we have two choices:

1. δ < 0 when y < 0, δ > 0 when y > 0,

2. δ > 0 when y < 0, δ < 0 when y > 0.

We will consider these two cases separately. Note that now we have to replace ky with −i∂y since the translation
symmetry is broken in the y-direction.
Case 1: sgn(δ) = sgn(y) This is the case at the bottom domain wall in Fig. 3 of the main text. We will start by

showing that there is a zero mode of the compatibility matrix CL at kx = 0. We choose the form of the zero mode
to be ψu

b (y) = fub (y)(a, b)
T , where a and b scalar numbers and the y-dependence is captured in the function fub (y).

In other words, we seek a solution to the following problem

CL(kx = 0, ky → −i∂y)ψu
b (y) = 0

⇒
(

11.2δ2 3.2δ2 + δ
√
3∂y

−3.2δ2 − δ
√
3∂y −11.2δ2

)
fub (y)

(
a
b

)
=

(
0
0

)
⇒ [11.2δ2σz + i(3.2δ2 +

√
3δ∂y)σy]f

u
b (y)

(
a
b

)
= 0.

(S41)
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Note that we want the function fub (y) to be localized at y = 0, i.e., exponentially decaying away from y = 0.
Multiplying by σx from the left on both sides, we get

[11.2δ21+ (3.2δ2 +
√
3δ∂y)σx]f

u
b (y)

(
a
b

)
= 0. (S42)

Choosing (a, b) = (1, 1)/
√
2, the equation becomes a scalar first order differential equation

√
3∂yf

u
b (y) + 14.4δfub (y) = 0 ⇒ fub (y) =

{
cu1>e

−14.4/
√
3
∫ y
0

dy′δ(y′), y > 0

cu1<e
−14.4/

√
3
∫ y
0

dy′δ(y′), y < 0,
(S43)

where cu1> and cu1< are constants of integration. To find the relation between these two constants, we have to use
appropriate boundary condition. The claim is that cu1> = −cu1<. To see this we first recall that we wrote the

low energy theory around q = (0, 2π/
√
3), as a result the sign of the displacements changes from one unit cell

to the next in the direction (1/2,
√
3/2). Moreover, the low energy theory was written in the displacement basis

WL = {{0, 0, 0, 0, 0, 0,−1, 0, 0}T , {0, 0, 0, 0, 0, 0, 0, 1, 0}T }, and we found that on each side of the domain wall the zero

mode is (1, 1)/
√
2 in this basis. Therefore, in each unit cell the 7th and 8th degrees of freedom (displacements of

4th and 5th node in the unit cell as shown in Fig. 1(a) of main text) have displacement of opposite sign. With this
information, we turn to Fig. S2(a). In unit cell 1 of Fig. S2(a), the displacements of 4th and 5th nodes are shown. If
bonds 2 and 5 (see Fig. 1(a) of main text) are to be in their equilibrium length, node 2 need to be displaced by a small
amount in the shown direction. Then node 3 of unit cell 2 need to move in the same direction by the same amount
for bond 9 of unit cell 2 to be at its equilibrium length. Now, for bond 6 of unit cell to be of equilibrium length, node
5 of unit cell 2 clearly need to be displaced in the opposite direction to that of unit cell 1. This confirms the change
of sign from one unit cell to the next in direction (1/2,

√
3/2) as was predicted before from the low energy theory

around q = (0, 2π/
√
3). However, following this procedure up to the 3rd unit cell, we see that the displacement of the

4th and 5th nodes of the 3rd unit cell are in the same direction as those of the 2nd unit cell. To get this same sign
between 2nd unit cell (y < 0) to the 3rd unit cell (y > 0) on top of the effect of q = (0, 2π/

√
3), we need cu1> = −cu1<.

In a compact form, we can then write

fub (y) = cu1 sgn(y)e
−14.4/

√
3
∫ y
0

dy′δ(y′). (S44)

Here cu1 is a constant chosen to normalize zero mode ψu
b (y). The function fub (y) is exponentially decaying away from

y = 0 due to the fact that δ > 0 for y > 0 and δ < 0 for y < 0. Therefore, zero frequency edge mode of CL(kx = 0) is

ψu
b (y) = cu1 sgn(y)e

−14.4/
√
3
∫ y
0

dy′δ(y′)(1, 1)T /
√
2. Note that we could have chosen (a, b) = (1,−1)/

√
2, but in that case

the differential equation would be
√
3∂yf

u
b (y)− 8δfub (y) = 0 which does not have an exponentially localized solution

near y = 0. We can check how the zero frequency edge mode ψu
b (y) transforms under the effective mirror operator

ML
u :

ML
uψ

u
b (y) =

(
0 −1
−1 0

)
fub (y)√

2

(
1
1

)
= −f

u
b (y)√
2

(
1
1

)
= −ψu

b (y), (S45)

meaning ψb(y) is odd under mirror mx. This matches with the plot in Fig. 3(c).

Next we find the state of self stress at this domain wall. For that we will work with the matrix C†
L:

C†
L = 11.2δ2σz − iδkxσx + (−3.2iδ2 −

√
3δky)σy → 11.2δ2σz − iδkxσx + (−3.2iδ2 + i

√
3δ∂y)σy (S46)

Similar to before, we are going to consider solution of the form ψe
b(y) = feb (y)(a, b)

T with exponentially localized

feb (y). Setting kx = 0 and multiplying by σz from the left on both sides of the equation C†
Lψ

e
b(y) = 0, we get

[11.2δ21+ (−3.2δ2 +
√
3δ∂y)σx]f

e
b (y)

(
a
b

)
= 0. (S47)

Choosing (a, b) = (1, 1)/
√
2, the equation becomes a scalar first order differential equation

√
3∂yf

e
b (y) + 8δfeb (y) = 0 ⇒ fub (y) =

{
ce1>e

−8/
√
3
∫ y
0

dy′δ(y′), y > 0

ce1<e
−8/

√
3
∫ y
0

dy′δ(y′), y < 0
, (S48)

where ce1> and ce1< are constants of integration. To find the relation between these two constants, we have to
use appropriate boundary condition. The claim is that ce1> = ce1<. To see this we first recall that we wrote the
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FIG. S2: Demonstration of boundary conditions for Eqs. (S43) and (S48). In (a-b), a domain wall between the two phases
δ > 0 and δ < 0 is considered. The unit cells are enumerated in increasing order from bottom to top. In (a) starting from
opposite displacements of 4th and 5th node of unit cell 1, the directions of displacements of all other nodes are shown such
that the bonds are not elongation. In (b) starting from tensions in the bonds of unit cell 1, the tensions in all other bonds are
shown such that there is no force on nodes 1-3 and only nonzero force perpendicular to displacement directions of nodes 4 and
5.

low energy theory around q = (0, 2π/
√
3), as a result the sign of the displacements changes from one unit cell

to the next in the direction (1/2,
√
3/2). Moreover, the low energy theory was written in the displacement basis

UL = {1/
√
3{0,−1, 0, 0, 0, 1, 0, 0, 1}T , 1/

√
3{1, 0, 0, 0,−1, 0, 0,−1, 0}T }, and we found that on each side of the domain

wall the state of self stress is (1, 1)/
√
2 in this basis. With this information, we turn to Fig. S2(b). In unit cell 1 of

Fig. S2(b), the tensions/compressions of the bonds according to the basis UL are shown. From this, if want to keep
the nodes 1-3 force free and want forces only perpendicular to displacement directions for nodes 4-5, the only possible
tensions in all other bonds are shown Fig. S2(b). From Fig. S2(b), we see that tensions/compressions are opposite in

unit cell 2 and 3. However, that is already taken care of by q = (0, 2π/
√
3) in our low energy theory. Therefore, the

boundary condition is satisfied by ce1> = ce1<. Hence

feb (y) = ce1e
−8/

√
3
∫ y
0

dy′δ(y′), (S49)

where ce1 is a constant chosen to normalize zero mode ψe
b(y). Therefore, the expression of the state of self stress

localized at the domain wall is ψe
b(y) = ce1e

−8/
√
3
∫ y
0

dy′δ(y′)(1, 1)T /
√
2. We can check how the zero frequency state of

self stress ψe
b(y) transforms under the effective mirror operator ML

e :

ML
e ψ

e
b(y) =

(
0 1
1 0

)
feb (y)√

2

(
1
1

)
=
feb (y)√

2

(
1
1

)
= ψe

b(y), (S50)

meaning ψe
b(y) is even under mirror mx.

The next question that we can ask is how the frequency of these edge modes would vary from 0 as go away from
kx = 0 perturbatively. We can estimate this easily by projecting the effective “square root” Hamiltonian in the basis
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{ψu
b (y), ψ

e
b(y)}eikxx is:

Hb
dw =


∫∞
−∞ dyψu

b (y)
T

(
0 C†

L
CL 0

)
ψu
b (y)

∫∞
−∞ dyψu

b (y)
T

(
0 C†

L
CL 0

)
ψe
b(y)∫∞

−∞ dyψe
b(y)

T

(
0 C†

L
CL 0

)
ψu
b (y)

∫∞
−∞ dyψe

b(y)
T

(
0 C†

L
CL 0

)
ψe
b(y)


=

(
0 −ikx

∫∞
−∞ dyfub (y)f

e
b (y)δ(y)

ikx
∫∞
−∞ dyfub (y)f

e
b (y)δ(y) 0

)
=

(
0 −iAbkx

iAbkx 0

)
,

(S51)

where Ab =
∫∞
−∞ dyfub (y)f

e
b (y)δ(y). The eigenvalues of this matrix Hb

dw are ±|Abkx|, meaning that the edge spectrum

is gapless. We can ask if we can add any other term to Hb
dw without breaking the mirror symmetry mx such that

the edge is gapped. The answer is no. To see this, we first note that the representation of the mirror mx in the basis
{ψu

b (y), ψ
e
b(y)} is:

Mb
dw =

(
−1 0
0 1

)
= −σz. (S52)

Since we are requiring [Hb
dw,M

b
dw] = 0 the only term that we can add is proportional to 1 which is not allowed by

the chiral symmetry. This essentially means that since the state of self stress is even whereas the zero mode is odd
under the mirror, they cannot couple to each other to gap the edge unless the mirror symmetry is broken.

Case 2: sgn(δ) = −sgn(y): This is the case at the top domain wall in Fig. 3 of the main text. To obtain the zero

mode, we choose the same form of the zero mode ψu
t (y) = fut (y)(a, b)

T , and following the same steps ad in Case 1 get
to the equation:

[11.2δ21+ (3.2δ2 +
√
3δ∂y)σx]f

u
t (y)

(
a
b

)
= 0. (S53)

However, this time we choose (a, b) = (1,−1)/
√
2. Consequently, the equation becomes a scalar first order differential

equation
√
3∂yf

u
t (y)− 8δfut (y) = 0 ⇒ fut (y) = cu2 sgn(y)e

8/
√
3
∫ y
0

dy′δ(y′), (S54)

where the factor sgn(y) is due to similar boundary condition as in case 1. Here cu2 is a constant chosen to normalize zero
mode ψu

t (y). The function fut (y) is exponentially decaying away from y = 0 due to the fact that δ < 0 for y > 0 and

δ > 0 for y < 0. Therefore, zero frequency edge mode of CL(kx = 0) is ψu
t (y) = cu2 sgn(y)e

8/
√
3
∫ y
0

dy′δ(y′)(1,−1)T /
√
2.

We can check how the zero frequency edge mode ψu
t (y) transforms under the effective mirror operator ML

u :

ML
uψ

u
t (y) =

(
0 −1
−1 0

)
fut (y)√

2

(
1
−1

)
=
fut (y)√

2

(
1
−1

)
= ψu

t (y), (S55)

meaning ψu
t (y) is even under mirror mx. This matches with the plot in Fig. 3(b).

Next we find the state of self stress at this domain wall. For that we will work with the matrix C†
L:

C†
L = 11.2δ2σz − iδkxσx + (−3.2iδ2 −

√
3δky)σy → 11.2δ2σz − iδkxσx + (−3.2iδ2 + i

√
3δ∂y)σy (S56)

Similar to before, we are going to consider solution of the form ψe
t (y) = fet (y)(a, b)

T with exponentially localized

fet (y). Setting kx = 0 and multiplying by σz from the left on both sides of the equation C†
Lψ

e
t (y) = 0, we get

[11.2δ21+ (−3.2δ2 +
√
3δ∂y)σx]f

e
t (y)

(
a
b

)
= 0. (S57)

Choosing (a, b) = (1,−1)/
√
2, the equation becomes a scalar first order differential equation

√
3∂yf

e
t (y)− 14.4δfet (y) = 0 ⇒ fut (y) = ce1e

14.4/
√
3
∫ y
0

dy′δ(y′), (S58)

where ce2 is a constant chosen to normalize zero mode ψe
t (y). Therefore, the expression of the state of self stress

localized at the domain wall is ψe
t (y) = ce2e

14.4/
√
3
∫ y
0

dy′δ(y′)(1,−1)T /
√
2. We can check how the zero frequency state

of self stress ψe
b(y) transforms under the effective mirror operator ML

e :

ML
e ψ

e
t (y) =

(
0 1
1 0

)
fet (y)√

2

(
1
−1

)
= −f

e
t (y)√
2

(
1
1

)
= −ψe

t (y), (S59)
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meaning ψe
t (y) is odd under mirror mx.

The next question that we can ask is how the frequency of these edge modes would vary from 0 as go away from
kx = 0 perturbatively. We can estimate this easily by projecting the effective “square root” Hamiltonian in the basis
{ψu

t (y), ψ
e
t (y)}eikxx is:

Ht
dw =


∫∞
−∞ dyψu

t (y)
T

(
0 C†

L
CL 0

)
ψu
t (y)

∫∞
−∞ dyψu

t (y)
T

(
0 C†

L
CL 0

)
ψe
t (y)∫∞

−∞ dyψe
t (y)

T

(
0 C†

L
CL 0

)
ψu
t (y)

∫∞
−∞ dyψe

t (y)
T

(
0 C†

L
CL 0

)
ψe
t (y)


=

(
0 −ikx

∫∞
−∞ dyfut (y)f

e
t (y)δ(y)

ikx
∫∞
−∞ dyfut (y)f

e
t (y)δ(y) 0

)
=

(
0 −iAtkx

iAtkx 0

)
,

(S60)

where At =
∫∞
−∞ dyfut (y)f

e
t (y)δ(y). The eigenvalues of this matrix Ht

dw are ±|Atkx|, meaning that the edge spectrum

is gapless. We can ask if we can add any other term to Ht
dw without breaking the mirror symmetry mx such that

the edge is gapped. The answer is no. To see this, we first note that the representation of the mirror mx in the basis
{ψu

t (y), ψ
e
t (y)} is:

Mt
dw =

(
1 0
0 −1

)
= σz. (S61)

Since we are requiring [Ht
dw,M

t
dw] = 0 the only term that we can add is proportional to 1 which is not allowed by

the chiral symmetry. This essentially means that since the state of self stress is even whereas the zero mode is odd
under the mirror, they cannot couple to each other to gap the edge unless the mirror symmetry is broken.

We validate the results from low energy theory described above with numerical results in Fig. S3. For numerical
calculation, we created a system just like Fig. 3 of main text. The low energy theory works for small δ, but for small
δ, the system is not fully gapped at ω = 0 as shown in Fig. 2 of main text. However, fortunately, the system is gapped
near qx = 0 for small δ which is region where the low energy theory works anyway. Anticipating that for small δ the
zero frequency edge modes and states of self stress will decay slowly away from the domain wall, we took a system
with N0 = 80 unit cells in each phase (N0 is defined in Fig. S3(a)). The boundary condition is chosen to be the same
as in Fig. 3 of main text. Two zero modes appear at qx = 0 as shown in Fig. S3(b). In Fig. S3(c) and (d), we plot
in blue solid lines the norm of the two zero modes u(1) and u(2) in each unit cell as a function of unit cell number,
where the norm of each zero mode in nth unit cell is defined as

|u(i)
n | =

√√√√ 9∑
j=1

(
u
(i)
n,j

)2
, (S62)

where the sum goes over the 9 degrees of freedom per unit cell. The unit cells are enumerated from bottom towards
top, i.e., the unit cell number 1 at the bottom most one and the unit cell number 160 is the top most one. The red
dashed lines show the exponential decay predicted by low energy theory. Note that the exponential factors from the

low energy theory were e−14.4|δ|y/
√
3 and e−8|δ|y/

√
3. To plot it as function of unit cell, we recognize that each unit cell

is of length
√
3/2. Therefore, as function of unit cell number n these factors become e−7.2|δ|n and e−4|δ|n. The decay

rates of the zero modes from the numerical calculation match very well with the theoretical prediction. Similarly, In
Fig. S3(e) and (f), we plot in blue solid lines the norm of the two states of self stress s(1) and s(2) in each unit cell as
a function of unit cell number, where the norm of each state of self stress in nth unit cell is defined as

|s(i)n | =

√√√√ 9∑
j=1

(
s
(i)
n,j

)2
, (S63)

where the sum goes over the 9 degrees of freedom per unit cell. The red dashed lines show the exponential decay
predicted by low energy theory. Again, the decay rates of the zero modes from the numerical calculation match very
well with the theoretical prediction.
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FIG. S3: Comparison between numerical calculation and analytical low energy theory prediction for the decay rate away from
the domain wall of the zero modes and states of self stress. (a) Schematic of the system used for numerical calculation. The red
region has δ > 0 whereas the green region has δ < 0. There are N0 unit cells in each region. All numerical calculations in (b-f)
are done for N0 = 80 and δ = 1/50 in red region and δ = −1/50 in green region. Periodic boundary condition is employed in
direction (1/2,

√
3/2), whereas Bloch-periodic boundary condition u(x+ (1, 0)) = u(x)eiqx is employed in (1, 0) direction. (b)

shows the band eigenfrequencies ω as a function of qx. Plotted in grey are the bulk modes, whereas the modes corresponding
to the blue and the red bands are concentrated at the bottom and the top domain walls. In (c-d) the norms of the zero modes

(|u(i)
n | as defined in Eq. (S62)) are plotted in blue as a function of unit cell number. The zero mode in (c) is concentrated at

the bottom domain wall whereas the zero mode in (d) is concentrated at the top domain wall. In (e-f) the norms of the states

of self stress (|s(i)n | as defined in Eq. (S63)) are plotted in blue as a function of unit cell number. The state of self stress in (e) is
concentrated at the bottom domain wall whereas the state of self stress in (f) is concentrated at the top domain wall. In each
of (c-f) the theoretical decay rate is plotted in red dashed line with corresponding exponential factor written in red beside it.
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S-6. CORNER STATES FROM THE LOW ENERGY THEORY

Following the analysis in [3, 4], now we tilt the x > 0 and x < 0 sections of the domain wall y = 0 in the opposite
direction by angle α and −α respectively to break the mirror symmetry on the domain walls but keep the mirror
symmetry at the corner at x = 0 = y as shown in Fig. S4(a). Now, there will be the four cases shown in Fig. S4(b)-(e).
We will consider Fig. S4(b) and (c) together first, and then discuss cases (d) and (e). Before considering each of the
cases in detail, let us discuss the effect of breaking mirror symmetry far away from the corner x = 0 = y. To keep
the problem analytically tractable, we will consider α≪ 1 and the domain wall is still very close being parallel to the
x-axis. We will start from the domain wall “square root” Hamiltonian Hdw and replace ikx with ∂x in Hdw since we
are breaking translation symmetry in the x-direction by creating the corner. More importantly, we can now add extra
terms to Hdw since we have broken the mirror symmetry on the domain walls. The only nontrivial term that break
mirror symmetry (σzHdw(kx)σz = Hdw(−kx) since σz is the mirror operator in the space of the domain wall modes)
while maintaining time reversal symmetry (H∗

dw(kx) = Hdw(−kx)) is mσx. This mass m has to be proportional to α
to the lowest order in α since when α = 0, the mirror symmetry is restored. The mass m gaps domain wall spectrum
at ω = 0. However, since the system is still mirror symmetric about x = 0, m(x) = −m(−x) such that we have
mirror symmetry about x = 0: σzm(x)σxσz = −m(x)σx = m(−x)σx. Therefore, the modified Hamiltonian Hc for
the corner is

Hc = −iAσy∂x +m(x)σx, (S64)

where A takes value Ab for the cases in Fig. S4(b-c) and At for the cases in Fig. S4(d-e). This is readily recognizable
as the low energy theory of the Su-Schriffer-Heager (SSH) model [5].

Cases in Fig. S4(b-c): These two are obtained from case 1 in the previous section by deforming the domain in

opposite direction.Therefore, the corner Hamiltonian Hc in these two cases are obtained by modifying Hb
dw (which

is written in the basis {ψu
b , ψ

e
b}). In (b), the slope of the domain wall is positive (negative) when x > 0 (x < 0).

The configuration in (c) is opposite, i.e., the slope of the domain wall is positive (negative) when x < 0 (x > 0).
As a result, m(b)(x) = −m(c)(x). Note that Fig. S4(b) is situation at the bottom corner of Fig. 4(c-d) in the
main text, whereas Fig. S4(c) corresponds to the top corner of Fig. 4(a-b). We seek solutions of the equation

Hcψ̃b(x) =

(
0 −Ab∂x +m(x)

Ab∂x +m(x) 0

)
ψ̃b(x) = 0 of the form ψ̃u

b (x) = gub (x)(1, 0)
T and ψ̃e

b(x) = geb(x)(0, 1)
T .

The first one would be a zero mode, and second one would be a state of self stress. Plugging these, we get

Ab∂xg
u
b (x) +m(x)gub (x) = 0 ⇒ gub (x) = aub e

−
∫ x
0

dx′m(x′)/Ab ,

−Ab∂xg
e
b(x) +m(x)geb(x) = 0 ⇒ geb(x) = aebe

∫ x
0

dx′m(x′)/Ab .
(S65)

Note that the full solution for the zero mode (state of self stress) is then ψu
c (x, y) = gub (x)ψ

u
b (y) = gub (x)f

u
b (y)(1, 1)

T /
√
2

(ψe
c(x, y) = geb(x)f

e
b (y)(1, 1)

T /
√
2). A few points are in order here. First, gub (x) is exponentially decay away from

FIG. S4: Corners. (a) Creating a corner from a straight domain wall y = 0 by tilting x > 0 and x < 0 sections in the opposite
direction by angle α. (b)-(e) show four different cases depending on the value of α as well as the which phase is above or below
the domain wall. The red and green color denote phases with δ > 0 and δ < 0 respectively.
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x = 0 if m(x)/Ab > 0 and m(x)/Ab < 0 for x > 0 and x < 0 respectively, whereas it grows exponentially away from
x = 0 if m(x)/Ab < 0 and m(x)/Ab > 0 for x > 0 and x < 0 respectively. One of them is the case for Fig. S4(b),
the other for Fig. S4(c). Therefore, if in one of these subfigures, there is a zero mode exponentially decaying away
from x = 0, there would be a zero mode exponentially growing away from x = 0. In the case, where the zero mode
is exponentially grows away from x = 0, it will be exponentially localized at the other ends of the domain wall. This
is exactly why in case of Fig. 4(b) the corner mode is localized at top corner, whereas in Fig. 4(d) the corner mode
is localized at the right and left corners (these are the other two ends of the domain walls). Moreover, in both cases
the zero mode is odd under mirror mx passing through the top corner since the basis function for the zero mode
ψu
b (y) = fub (y)(1, 1)

T /
√
2 is odd under ML

u .
Cases in Fig. S4(d-e): These two are obtained from case 2 in the previous section by deforming the domain in

opposite direction. Therefore, the corner Hamiltonian Hc in these two cases are obtained by modifying Ht
dw (which

is written in the basis {ψu
t , ψ

e
t }). In (d), the slope of the domain wall is positive (negative) when x > 0 (x < 0). The

configuration in (e) is opposite, i.e., the slope of the domain wall is positive (negative) when x < 0 (x > 0). As a
result, m(d)(x) = −m(e)(x). Note that Fig. S4(d) is situation at the bottom corner of Fig. 4(a-b) in the main text,
whereas Fig. S4(e) corresponds to the top corner of Fig. 4(c-d) in the main text. We seek solutions of the equation

Hcψ̃t(x) =

(
0 −At∂x +m(x)

At∂x +m(x) 0

)
ψ̃t(x) = 0 of the form ψ̃u

t (x) = gut (x)(1, 0)
T and ψ̃e

t (x) = get (x)(0, 1)
T .

The first one would be a zero mode, and second one would be a state of self stress. Plugging these, we get

At∂xg
u
t (x) +m(x)gut (x) = 0 ⇒ gut (x) = aut e

−
∫ x
0

dx′m(x′)/At ,

−At∂xg
e
t (x) +m(x)get (x) = 0 ⇒ get (x) = aete

∫ x
0

dx′m(x′)/At .
(S66)

Note that the full solution for the zero mode (state of self stress) is then psiuc (x, y) = gut (x)ψ
u
t (y) =

gut (x)f
u
t (y)(1,−1)T /

√
2 (ψe

c(x, y) = get (x)f
e
t (y)(1,−1)T /

√
2). A few points are in order here. First, gut (x) is ex-

ponentially decay away from x = 0 if m(x)/At > 0 and m(x)/At < 0 for x > 0 and x < 0 respectively, whereas it
grows exponentially away from x = 0 if m(x)/At < 0 and m(x)/At > 0 for x > 0 and x < 0 respectively. One of
them is the case for Fig. S4(d), the other for Fig. S4(e). Therefore, if in one of these subfigures, there is a zero mode
exponentially decaying away from x = 0, there would be a zero mode exponentially growing away from x = 0. In the
case, where the zero mode is exponentially grows away from x = 0, it will be exponentially localized at the other ends
of the domain wall. This is exactly why in case of Fig. 4(a) the corner mode is localized at bottom corner, whereas
in Fig. 4(c) the corner mode is localized at the right and left corners (these are the other two ends of the domain
walls). Moreover, in both cases the zero mode is even under mirror mx passing through the top corner since the basis

function for the zero mode ψu
t (y) = fut (y)(1,−1)T /

√
2 is even under ML

u .
Similar calculations can be done to obtain states of self stress localized at corners.
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S-7. CORNER MODES WHERE THE MIRROR SYMMETRY IS BROKEN AT THE CORNER

FIG. S5: Corner modes in systems with diamond shaped island of one phase inside the other phase.. In each panel, the part of
the system in red (green) has δ = 1/3 (δ = −13/42). The angle of tilt of the domain walls on the left and right of the corners
are not the same unlike Fig. 4 of main text. We applied periodic boundary conditions in all cases. The black arrows show the
displacement field corresponding to the zero modes. The zero modes are still localized at the corners just like they were in
Fig. 4 of main text, however they are mirror symmetric since the mirror at the corners is broken due to different angle of tilt
on each side of the corners.
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