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We propose a simple two-step approximation for the radial distribution function of a one-
component two-dimensional Yukawa fluid. This approximation is specified by the key parameters
of the system: coupling parameter and screening parameter. On the basis of this approximation,
analytical expressions are obtained for the same thermodynamic quantities as internal energy, inter-
nal pressure, excess entropy in the two-particle approximation, and also longitudinal sound velocity.
The theoretical results show an agreement with the results obtained in the case of a true radial
distribution function.

The model system of charged particles with a screened
Coulomb (Yukawa) interaction is widely used for model-
ing and predicting the physical properties of a wide vari-
ety of real fluids such as simple neutral fluids, liquid met-
als, colloidal solutions, microemulsions, etc. [1, 2]. This
system represents similarly charged particles of the same
mass (ions, dusty, or colloidal particles) surrounded by a
background of the opposite sign, which in practice usu-
ally consists of particles of a smaller mass (electrons or
ions in the case of dusty plasma or colloidal solutions) [2].
The interaction potential energy u of a pair of charged
particles on the distance r in this case is written as

u(r) =
(Ze)2 exp(−r/λs)

4πε0r
, (1)

where Z is the charge number, e is the electron charge, ε0
is the vacuum permittivity, and λs is the Debye screen-
ing length associated with the presence of a neutralizing
medium, which depends on the concentration and tem-
perature of the background particles and determines how
the interaction of the main particles will differ from the
simple Coulomb interaction.

In the last decade, researchers have increased their
attention on two-dimensional Yukawa systems [1–9].
Firstly, this is due to the fact that such systems can be
easily implemented in experiments. These include ex-
periments with a monolayer of charged macroparticles in
a low-temperature plasma [5, 6] and experiments with
colloidal solutions with microsized particles [9]. Within
the framework of these experiments, it is possible to di-
rectly monitor the dynamics of individual particles, as
well as to study the features of phase transitions in two-
dimensional systems [5]. Second, the Yukawa interaction
potential is expressed by a simple analytical expression.
Thus, a system of particles interacting through a poten-
tial of the form (1) can be considered as a convenient
model of a one-component substance, on the example of
which it is convenient to test one or another microscopic
theory describing the structure or dynamics of simple
substances. This is especially important for liquid-like

disordered systems, which, unlike gases and crystalline
bodies, are characterized by the absence of a suitable
small parameter for the development of an appropriate
theoretical description [10–13]. The key characteristic of
the liquid structure and its short-range order is the ra-
dial distribution function (RDF) g(r). Knowing the RDF
for systems with a known interparticle interaction poten-
tial u(r), one can directly calculate such thermodynamic
parameters of many-particle systems as internal energy,
internal pressure, and excess entropy in the pairwise ap-
proximation [14–20]. Note that the RDF is a special case
of the radial basis functions, which are widely used in
various problems of fluid mechanics [21, 22].
The specificity of the interparticle interaction in the

case of the Yukawa system is determined by two key
dimensionless parameters: coupling parameter Γ and
screening parameter κ [1, 2, 23]. The coupling param-
eter

Γ =
(Ze)2

4πε0akBT
(2)

is the ratio of the average potential energy of interaction
(without screening) to the average energy of the parti-
cle thermal motion. In the expression (2), the quantity
a = (πρ)−1/2 is half the average interparticle distance
or the so-called radius of the Wigner–Seitz cell, ρ is the
number particles per unit area of a two-dimensional sys-
tem, kB is the Boltzmann constant, and T is the absolute
temperature of the system. The screening parameter κ
is defined as the ratio of a to the Debye length λs:

κ =
a

λs
. (3)

The time scale of the charge density fluctuations in the
system is determined by the plasma frequency

ωp =

√

Z2e2ρ

2aε0m
, (4)

where m is the particle mass.
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In [24], on the bases of the quasi-localized charge ap-
proximation (QLCA) [25–27], simple analytical expres-
sions are obtained that describe the dispersions of longi-
tudinal and transverse collective excitations in a three-
dimensional Yukawa fluid. This goal was achieved by the
authors by using the so-called one-step (1st) approxima-
tion for the RDF:

g(1st)(x) = θ(x− xeff), (5)

where θ(x) is the Heaviside function, xeff is the effective
radius of the particle, which is an input parameter in
this approximation, and which is determined from the
known data on the internal pressure and internal energy
systems. It should be noted that the one-step approxi-
mation (5) actually corresponds to the function g(x) of
a highly rarefied gas of absolutely hard spheres of radius
xeff . This approximation ignores the presence of local
short-range order in liquids, which manifests itself in a
characteristic maximum in the function g(x).
In this paper, we propose a two-step approximation for

the function g(x) of a two-dimensional Yukawa system.
It should be noted that, initially, this approximation was
proposed for the three-dimensional system [28]. Here,
two key parameters of the Yukawa system are used as in-
put parameters: Γ and κ. Within the framework of this
approximation, the internal energy, internal pressure, ex-
cess entropy in the two-particle approximation, and the
longitudinal sound velocity of a two-dimensional Yukawa
fluid are calculated. The (Γ, κ)-states of the Yukawa
fluid will be considered, where Γ = 20; 50; and 100 and
κ = 1; 1.5; and 2. The theoretical results are compared
with the calculation results based on the true RDF ob-
tained by us using molecular dynamics (MD) simulations.
The equilibrium molecular dynamics simulations of the
Yukawa fluid for Γ = 20, 50, and 100 and κ = 1, 1.5,
and 2 were carried out using the computational pack-
age LAMMPS [29]. The simulation was performed for a
system consisting of 2500 particles interacting through a
potential (1) in a square cell, on which periodic bound-
ary conditions were imposed. The calculations were per-
formed in the NV T ensemble. The particle motion equa-
tions were integrated in accordance with the Verlet algo-
rithm with a time integration step tstep = 0.01/ωp. Av-
eraging over 10,000 time steps was used to calculate the
RDF.
The two-step (2st) approximation for the function g(x)

is provided as:

g(2st)(x) = gmθ(x − x1)θ(x2 − x) + θ(x− x2). (6)

Here, the distances x1 and x2 determine the position
and width of the first maximum of the function g(x)
on the x axis, and gm is the height of this maximum.
The presence of the maxima corresponding to the sec-
ond, third, and other co-ordinations are ignored within
the framework of the two-step approximation (6). Fol-
lowing [30], we define the distance x1 as the size of the

region of absence of interparticle correlations, which is
provided by the condition g(x1) = 0.5. Further, the dis-
tance x1 can be related to the coupling parameter Γ and
the screening parameter κ [30]:

x2
1 =

1

b1
ln

Γ− b2(κ)

b3(κ)
, (7)

where

b1 = 2.434,

b2(κ) = −5.21 + 6.866κ− 2.492κ2 ,

b3(κ) = 0.712− 0.572κ+ 0.437κ2 .

The values of the constant coefficients in these polyno-
mials can be determined by numerically solving a system
of seven non-linear Equations (7) written for seven dif-
ferent states with Γ = 20, 50, and 100; κ = 1, and 2, and
also Γ = 50, κ = 1.5. In this case, the distances x1 for
these states were determined from the true g(r) obtained
from the results of our MD simulation. The solution of
the system of equations was carried out using the modi-
fied Newton method, the accuracy of the numerical solu-
tion of the system of equations was at least 99.7 % (this
is quite sufficient for the purposes of this work). On the
other hand, the distance x2, which determines the size of
the first coordination shell within the framework of the
(6) approximation, can be found from the condition of
the charge neutrality of the system under consideration,
which in the two-dimensional case is written as

∫

∞

0

[1− g(x)]xdx =
1

2
. (8)

From the expression (8) and taking into account the
relation (6), we obtain:

x2
2 =

x2
1gm − 1

gm − 1
. (9)

The value of gm can be determined from the relation
found in [30],

Γ = a1(κ) + a2(κ)gm + a3(κ)g
2
m, (10)

where the κ-dependence of the parameters a1, a2, and a3
are providing by using a second degree polynomial

aξ(κ) = c
(ξ)
1 + c

(ξ)
2 κ+ c

(ξ)
3 κ2, ξ = 1, 2, 3 .

For the case of a two-dimensional Yukawa fluid, the

values of the dimensionless parameters c
(ξ)
1 , c

(ξ)
2 , and c

(ξ)
3

were are found by solving a system of nine cases of Equa-
tion (10) written for states with Γ = 20, 50, and 100, and
κ = 1, 1.5, and 2. The solution was also carried out using
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the modified Newton method; the error of the numerical
solution of this system of equations in this case did not
exceed 0.03 %. The values for gm were collected from
MD simulation data. As a result of solving this system,

it was obtained that: c
(1)
1 = −248.56, c

(1)
2 = 369.596,

and c
(1)
3 = −126.792; c

(2)
1 = 272.541, c

(2)
2 = −427.101,

and c
(2)
3 = 137.019; and c

(3)
1 = −58.808, c

(3)
2 = 112.002,

and c
(3)
3 = −28.326. The relation (10) is actually the

equation of state for the equilibrium liquid phase of the
two-dimensional Yukawa system, from which we find

gm =
−a2(κ) +

√

a22(κ)− 4a1(κ)a3(κ) + 4a3(κ)Γ

2a3(κ)
. (11)

Thus, the value of x2 for a particular (Γ, κ)-state is
determined by solving the system of Equations (7), (9),
and (11).
The RDF is included in microscopic expressions for

many physical characteristics. Thus, the excess internal
energy Uex of a two-dimensional Yukawa fluid (in units
of kBT ) is [14–18]

Uex = Γ

∫

∞

0

exp(−κx)g(x) dx. (12)

Taking into account the approximation (6), from the
expression (12) we obtain

U (2st)
ex =

Γgm
κ

[

exp(−κx1)−
gm − 1

gm
exp(−κx2)

]

. (13)

Further, for the excess internal pressure Pex of a two-
dimensional Yukawa fluid (in units of ρkBT ), we have:
[14–18]

Pex =
Γ

2

∫

∞

0

(

κx+ 1
)

exp(−κx)g(x) dx . (14)

Hence, taking into account the approximation (6), we
find

P (2st)
ex =

Γgm
2κ

[

κx1 + 2

exp(−κx1)
−

gm − 1

gm

κx2 + 2

exp(κx2)

]

. (15)

The microscopic expression for the excess entropy Sex2

in units of ρkB in the two-particle approximation does
not explicitly contain the interaction potential u(r), and
for a two-dimensional isotropic system has the form [19]:

Sex2 = −

∫

∞

0

[g(x) ln g(x) + 1− g(x)]x dx. (16)

Then, within the approximation (6), from the expres-
sion (16), we obtain

S
(2st)
ex2 = −

1

2(gm − 1)

[

x2
1gm ln gm − (gm ln gm + 1− gm)

]

.

(17)

Knowing the RDF using the QLCA model, for a two-
dimensional Yukawa fluid, one can calculate the longi-
tudinal sound velocity cL (in units of thermal velocity
vth =

√

kBT/m) [17]:

c2L =
Γ

8

∫

∞

0

(

3(κx)2 + 5κx+ 5
)

exp(−κx)g(x) dx. (18)

Within the framework of the approximation (6), from
the expression (18), we obtain

c
2(2st)
L =

Γgm
8κ

[

3(κx1)
2 + 11κx1 + 16

exp(κx1)

−

(

gm − 1

gm

)

3(κx2)
2 + 11κx2 + 16

exp(κx2)

]

.

(19)

As can be seen from the expressions (13), (15), (17), and
(19), the values Uex, Pex, Sex2, and cL can be directly
calculated for a given (Γ, κ)-state. On the other hand, if
the true function g(x) is known, then the quantities can
be estimated using microscopic expressions (12), (14),
(16), and (18).
The results of the numerical calculations of the reduced

excess internal energy Uex, the reduced excess internal
pressure Pex, and the reduced excess entropy Sex2 per-
formed within the (6) approximation for g(x), as well as
using the true g(x) from the MD simulation, are pre-
sented in Table I. This table also shows the relative
correspondences between the theoretical results and sim-
ulation results. For most (Γ, κ)-states, the differences
between the theoretical results and simulation data for
Uex and Pex do not exceed 2 %. The largest discrepan-
cies corresponding to 3.818 % for Uex and 2.912 % for
Pex are observed for states with maximum κ = 2, which
can be explained by violation of the charge neutrality
condition (8) in the case of states with this value of the
screening parameter κ. Further, the entropy Sex2 is very
structure sensitive. This may explain the weak agree-
ment between the results of theoretical calculations and
the data of the MD simulation.
Figure 1 shows the dependence of the reduced excess

internal energy Uex and reduced excess internal pressure
Pex on the coupling parameter Γ for the values of the
screening parameter κ outside the range that was used to
construct a two-step approximation for RDF (6). Here,
we also show the data from the work [20], in which the en-
ergy and pressure values of the two-dimensional Yukawa
fluid were calculated in a wide range of changes in the
value of the Γ and κ. It can be seen that, even at these
κ values, the analytical formulas obtained in this work
for the direct calculation of reduced excess internal en-
ergy and pressure of two-dimensional Yukawa fluids are
in good agreement with the simulation data.
Table II shows the results of the numerical calculations

of the reduced longitudinal sound velocity cL, performed
within the approximation (6) for g(x), as well as using the
true g(x) from MD modeling. This table also shows the
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TABLE I: Reduced excess internal energy Uex, reduced excess internal pressure Pex, and reduced excess entropy Sex2 of a

2D Yukawa fluid found using g(x) from MD simulations. The same quantities (U
(2st)
ex , P

(2st)
ex , and S

(2st)
ex2 ) are calculated based

on the expressions (6), (15), and (17). The relative correspondences δUex
, δPex

, and δSex2
of these quantities in % between

theoretical results and simulation results.

κ Γ Uex U
(2st)
ex δUex

Pex P
(2st)
ex δPex

Sex2 S
(2st)
ex2 δSex2

1 20 6.762 6.767 0.072 10.554 10.536 0.165 −0.643 −0.782 21.576
1 50 15.901 15.951 0.319 25.518 25.461 0.225 −1.111 −1.068 3.883
1 100 30.943 30.641 0.977 50.294 49.719 1.142 −1.803 −1.348 25.226
1.5 20 2.732 2.708 0.871 4.958 4.919 0.797 −0.542 −0.679 25.377
1.5 50 5.963 6.068 1.751 11.403 11.470 0.591 −0.897 −0.941 4.927
1.5 100 11.165 11.266 0.910 21.912 21.853 0.267 −1.402 −1.190 15.117
2 20 1.336 1.285 3.818 2.697 2.619 2.912 −0.454 −0.581 27.931
2 50 2.647 2.699 1.982 5.766 5.823 0.986 −0.716 −0.808 12.893
2 100 4.665 4.815 3.225 10.601 10.756 1.468 −1.053 −1.026 2.562

FIG. 1: Dependence of the reduced excess internal energy
Uex and the reduced excess internal pressure Pex on the

coupled parameter Γ for the values of the screening
parameter κ = 0.5 (a) and κ = 2.4 (b), which are

constructed using expressions (13) and (15). Symbols show
data from work [20].

relative correspondences between theoretical results and
simulation results. The greatest discrepancy is observed
for the state of the two-dimensional Yukawa liquid with
Γ = 20 and κ = 2, which is the closest of all those consid-
ered to the gas phase. This feature is related to the fact

that the approximation of a quasi-localized charge better
describes the collective properties of a Yukawa liquid with
states close to crystalline, i.e., with large Γ and small κ
[25].

TABLE II: Longitudinal sound velocity in units of thermal
velocity cL of a 2D Yukawa fluid, found using g(x) from MD

simulations. The same value c
(2st)
L

calculated based on the
expression (19). The relative correspondences δcL of this
value in % between theoretical and simulation results are

also provided.

κ Γ cL c
(2st)
L

δcL

1 20 5.196 5.189 0.139
1 50 8.145 8.13 0.184
1 100 11.475 11.422 0.465
1.5 20 3.777 3.761 0.434
1.5 50 5.831 5.827 0.077
1.5 100 8.156 8.122 0.422
2 20 2.917 2.881 1.266
2 50 4.391 4.392 0.030
2 100 6.051 6.055 0.063

In order to check the validity of the relation (19) in the
case of values of the coupling and screening parameters
outside the range used in this work when constructing the
two-step approximation for the g(x), we calculated the
longitudinal sound velocity for the gamma–kappa states
collected from [17]. The results are presented in Table
III. It can be seen that, even at Γ = 1033 and κ = 3,
formula (19) provides a deviation of less than 4% from
the value of s calculated using the true g(x).

TABLE III: The same as in Table 2, except for the third
column; here are the data from work [17].

κ Γ cL c
(2st)
L

δcL

1 163 14.62 14.51 0.75
2 362 11.25 11.02 2.04
3 1033 10.23 9.87 3.52

The results of this work indicate the following. The
thermodynamic characteristics and the sound velocity for
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a two-dimensional Yukawa fluid can be theoretically cal-
culated from microscopic expressions, where the charac-
teristic parameters of the Yukawa system (coupling pa-
rameter and screening parameter) are used as input pa-
rameters. The two-step approximation proposed in this
work for the RDF provides a good agreement with the
simulation results for such quantities as the internal en-
ergy, internal pressure, and longitudinal sound velocity.
If we compare the results for the two-dimensional Yukawa
fluid with the three-dimensional case [28], we can see
that the obtained analytical expressions (13) and (15)
are simpler and that, at the same time, they provide
the same accuracy when reproducing the simulations re-
sults. In addition, as in the case of the three-dimensional
Yukawa fluid in the two-dimensional case, to correctly
calculate the excess entropy, it is necessary to use a more
accurate model for g(r).
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ful to S.A. Khrapak for helpful discussions.
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