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Convergence extension, the simultaneous elongation of tissue along one axis while narrowing along
a perpendicular axis, occurs during embryonic development. A fundamental process that contributes
to shaping the organism, it happens in many different species and tissue types. Here we present a
minimal continuum model, that can be directly linked to the controlling microscopic biochemistry,
which shows spontaneous convergence extension. It is comprised of a 2D viscoelastic active material
with a mechano-chemical active feedback mechanism coupled to a substrate via friction. Robust
convergent extension behaviour emerges beyond a critical value of the activity parameter and is
controlled by the boundary conditions and the coupling to the substrate. Oscillations and spatial
patterns emerge in this model when internal dissipation dominates over friction, as well as in the
active elastic limit.

INTRODUCTION

Convergent extension (CE) is a morphogenetic process
that occurs during development. It is conserved across
many different species, types of tissues and stages of de-
velopment [1–4]. During convergent extension, a region
of sheet-like tissue (an epithelium) elongates in one di-
rection (the long-axis) and contracts perpendicular to the
long-axis. Convergent-extension plays a key role in a va-
riety of developmental processes, such as primitive streak
formation in chick embryos [5, 6] and drosophila germ
band extension [7, 8]. The formation of the primitive
streak is an important part of gastrulation, the topolog-
ical inversion process shared by nearly all multicellular
animals and some plants [9] that leads to cells taking up
their correct positions within the embryo.

CE in epithelia is driven by cell intercalations [2, 10],
i.e. local cell rearrangements akin to the well-known
topological T1 transitions of two-dimensional (passive)
foams [11, 12]. Such T1s in passive systems relax stresses
that build up from external driving and underlie the rhe-
ology of foams, which are typically yield stress materials
[13]. However in epithelia, active T1 transitions [7, 8, 14]
can generate stresses locally even in the absence of ex-
ternal driving and can even develop local stresses that
oppose external boundary forces. These are only pos-
sible due to motor-driven contractile stress generation,
i.e. because the epithelial tissue is active. To obtain
macroscopic strain against applied tension instead of a
disordered response, the question then becomes how such
events coordinate orientations with each other.

Until recently, the accepted answer has been a pre-
existing morphogenetic gene expression pattern that bias
local mechanical properties [10, 15, 16]. However, the
actomyosin fibres of the cytoskeleton are themselves sus-
ceptible to mechanical feedback [17], and in e.g. the chick
embryo there is no evidence for pre-patterning. There-
fore, more recent work has begun to include active feed-
back into models of one or several coupled junctions [18–

FIG. 1. Schematic of a 2D sheet of tissue. The cell junctions
are coloured purple/yellow/orange, to indicate the concentra-
tion of ActoMyosin: darker colour means less ActoMyosin.
The active stress βM quantifies the concentration of and
anisotropy of distribution of ActoMyosin in cells. The tis-
sue is viscoelastic with a viscous relaxation time τv link to
the bulk/shear viscosities ηp and ηs, and the bulk and shear
moduli B and µ via τv = ηp/B = ηs/µ.

20], and the response in tissues without T1s has also been
investigated [21, 22].

Then it becomes paramount to construct models of
active tissue rheology with such feedback. While active
models of cell sheets have a long tradition and include ac-
tive gel theory [23] and active nematic theories [24], the
focus there has been on active instabilities and topologi-
cal defect motion, including in in-vitro experiments [25],
but not on the response of the full tissue. Spatial patterns
or direction of such feedback can be imposed [26–29] and
the flow quantified, but so far a broader understanding of
the emergent active relation between applied stress and
strain rate, i.e. the tissue rheology, is missing.

In this letter, we present and analyse a continuum
description of an epithelium with an active feedback
mechanism where motor-driven contractile stress builds
up, rather than relaxes, in response to applied tension
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as in e.g. a catch-bond [30, 31]. This model is the
continuum counterpart to a microscopic cell junction
model [32] driven by stresses generated by molecular
motors (myosin-II) and cytoskeletal filaments (F-actin)
which is able to generate active T1s and limited C-E
flow in a tissue patch. We formulate the model in terms
of the distribution of ActoMyosin (myosin-II bound to
F-actin) within cells, passive viscoelastic stress and the
velocity via momentum balance with a substrate (see Fig.
1). Numerically solving the continuum equations shows
that above a critical activity C-E states appear, char-
acterised by flow against externally applied stress which
acts like a mechanical signal (Fig. 2). We explain this
using a steady-state approximation of the feedback dy-
namics, where high (low) boundary stresses select a high
(low) ActoMyosin fixed point in the interior, and then
build up a spatial gradient leading to flow. Separately,
we find oscillating and patterned states in this model in
the active elastic and low substrate friction limits. To
linear order, we are able to show that our equations de-
scribe an active nematic coupled to a stress field above a
critical activity, but an isotropic material below it.

Model. We write down continuum equations for the
epithelium as a 2D viscoelastic material that generates
active stresses internally, and is coupled to a substrate
via friction. The fundamental quantity of our framework
is the anisotropic spatiotemporal distribution of Acto-
Myosin within cells, quantified by the 2nd rank tensor
M(r, t) (see Fig. 1). It is symmetric but not traceless,
i.e. for cells with isotropic ActoMyosin distributions, M
is proportional to the identity I. ActoMyosin, which in
real tissues is distributed on the apical surface and along
cell junctions, generates the stresses needed for cell-cell
junction remodelling, which allows for active T1 tran-
sitions to occur. The other fields that characterise the
material are local velocity v(r, t) and the local passive
stress π(r, t). The total stress σ(r, t) in the material is
the sum of the passive stress and an active stress pro-
portional to M : σ = π + β(M −m0I), where β is the
activity parameter and m0 is the reference concentration
for ActoMyosin. We use m0 = 1/2 throughout.

The dynamics of M(r, t) is based on a model for a
single contractile active junction that can remodel itself
(see [32] and SI eq. S1-4). In this model, the myosin
dissociation constant decreases exponentially with ten-
sion, controlled by the susceptibility k0. Changing the
precise functional form does not affect behaviour quali-
tatively. In addition, the ActoMyosin tensor is convected
and rotated by the flow and we write

τm
◦
M = I − (I + e−k0σ) ·M +D∇2M . (1)

The over circle represents the corotational derivative
◦
A =

∂tA+v·∇A+ω·A−A·ω, where ω = (1/2)(∇v−(∇v)T )
is the vorticity tensor. We also include ActoMyosin dif-
fusion with diffusion constant D.
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FIG. 2. A: Steady state convergence extension velocity field
at β = 0.7, σs = 0.08, and τm = λ = 20.0. B: Pure shear
strain as a function of pure shear stress at the boundary for
various values of activity. C: xx component and D: yy com-
ponent of the ActoMyosin tensor in the same convergence
extension steady state as panel A.

The cell-cell junctions within the tissue are viscoelas-
tic [33], as is the tissue as a whole, with a time scale
of stress relaxation [34]. We use a convected compress-
ible Maxwell model for the passive stress, superimposing
separate Maxwell models for compression and shear de-
formations,

π + τv
◦
π =

1

2
ηpTr(γ̇)I + ηs

(
γ̇ − 1

2
Tr(γ̇)I

)
, (2)

where τv is the viscous relaxation time scale, ηp is the
bulk viscosity, ηs is the shear viscosity, and the strain rate
tensor is related to the velocity field via γ̇ = (1/2)(∇v+
(∇v)T ). The bulk and shear moduli of the system are
related to the relaxation time scale and the viscosities via
τv = ηp/B = ηs/µ. The tissue is coupled to a substrate
with friction coefficient ζ via momentum balance in the
over-damped limit,

ζv = ∇ · σ. (3)

Results. We integrated the equations in time using
the forwards Euler method, and approximated spatial
derivatives using second order accurate finite difference
on a square grid. The unit of time is set by the substrate
elastic relaxation time scale τel = ζ/B, with both ζ = 1
and bulk modulus B = 1, and we use a shear modulus
µ = 0.5. The myosin feedback strength is set by k0 = 8,
with the exponential form of eq. (1) limiting the compo-
nents of M to the range 0− 1; then the active coupling
β sets the active stress scale. We use a system size of
L = 50 cell units with a linear grid spacing of 0.25 and
we fix D = 1.



3

0.0 0.2 0.6 1.00.4 0.8

0.2

0.6 0.6

0.4 0.4

0.0

0.8

1.0

0.0

0

de
ca

y 
le

ng
th

20-20

0.1

-0.1

-0.2

-0.2

0.2

0.8

FIG. 3. A: Pitchfork bifurcation of the mean field ActoMyosin concentration obtained via παα(Mαα) = 0 as function of

activity. B: Mean field nullcline of Ṁ , παα(Mαα) (red) and corresponding simulation data, with blue dots for πxx(Mxx) along
y = 0, green dots for πyy(Myy) along x = 0. The central (boundary) points are marked with a triangle (stars), and the three
παα(Mαα) = 0 solutions with circles. C: xx and yy components of the simulated (solid) and mean-field (dashed) M tensor for
the same parameters as fig. 2C. D: Simulated vx velocity profiles in the C-E state as a function of viscous time scale and for
ratio R = τv/τm ∈ [0.4− 0.5], showing decay length. E: Decay length and F: pure strain rate in the C-E phase as a function
of λ together with mean field prediction (dashed).

We simulate a patch inside a larger tissue by imposing
a constant total stress σext on the boundary while ma-
terial flows through freely. Note that our model is nei-
ther incompressible nor density conserving as cells can
reshape in the 3rd dimension, and also can divide or
be extruded [5]. We complement this with the equilib-

rium value M = (1 + e−k0σ
ext

)−1 of the ActoMyosin
tensor at the boundary and invert for the passive stress
π = σ − β(M − m0I). To study C-E, we impose
pure shear boundary conditions with simultaneous ten-
sion along x and compression along y as shown in Fig. 1,
i.e. σext

xx = −σext
yy and σext

xy = 0, resulting in a pure shear
stress σs ≡ σext

xx − σext
yy .

Figure 2 summarises our findings. We measure tissue
response using the spatially averaged pure shear strain
rate γ̇s ≡ 〈γ̇xx − γ̇yy〉 of the steady state. We can see in
Fig. 2B that at zero activity, γ̇s = σs/ηs i.e. the tissue
indeed behaves as a viscous liquid. Below a threshold
activity βc = 0.5, the tissue continues to flow in the di-
rection of applied stress, and the effective viscosity stays
positive. However, ActoMyosin is built up by active ten-
sion feedback and eventually overwhelms pulling when
β > βc. Fig. 2C-D show how Mxx builds up in the
tension direction, while Myy symmetrically drops in the
compression direction. Above βc, the tissue then shows
convergence extension (Fig. 2A) with the axis of elon-
gation along the direction of compression, i.e. the tissue
flows against the applied force. ActoMyosin gradients
and hence tissue flow is strongest near the boundary and
decays into the bulk. The C-E rheological curves above
βc in Fig. 2B are highly unusual: the tissue responds
to σs → 0 with a strongly symmetry broken C-E, show-

ing that the applied stress acts like a mechanical signal.
When σs increases, the C-E response diminishes, until at
a β-dependent value the tissue flow reverses into the di-
rection of pulling. For pure stretch / compression bound-
ary conditions, the tissue also contracts / expands above
βc (see SI Fig. 1-4 for full spatial profiles).
Analysis. We can understand the observed sponta-

neous CE by approximating the steady-state solutions

of eq. (1-3). From setting
◦
M = 0, we can derive the

ActoMyosin nullcline equations

παα = − 1

k0
log
(
M−1
αα − 1

)
− β(Mαα −m0), (4)

where α = x, y and the off-diagonal components decay to
zero (Fig. 3B). The only fixed point of the viscoelastic
passive stress is παα = 0, resulting in the transcendental
equation παα(Mαα) = 0. Below βc = 0.5, this equation
has one stable solution, Mαα = m0. Above the critical
activity, there is a pitchfork bifurcation with two stable
branches Mαα = m+ > m0 and Mαα = m− < m0, while
the Mαα = m0 branch becomes unstable (Fig. 3A).

During C-E, the equal and opposite imposed bound-
ary stresses select a pair of points (stars) on the nullcline
that break symmetry, and at the center of the tissue,
we find Mxx = m+ and Myy = m−. The boundary
conditions determine the branches in the sense that if
we reverse tension and compression directions, we have
Mxx = m− and Myy = m+ instead. Convergence exten-
sion flows are generated by the spatial gradients in stress
between boundary and centre via eq. (3). We empirically
observe that the values of these stresses interpolate be-
tween boundary and centre points along the παα(Mαα)



4

nullcline (Fig. 3B).
We can derive an approximate solution for the C-

E steady state by linearly expanding around the sta-
ble παα(m±) = 0 fixed points and write πxx(Mxx) =
π′(m+)mx, πyy(Myy) = π′(m−)my where mx = Mxx −
m+,my = Myy − m−, and set the off diagonal compo-
nents to zero. We thus eliminate the ActoMyosin equa-
tion and once we use (3) to write the strain rate, the
stress equation to linear order in mx and my becomes

π′(m+)(mx + τv∂tmx) = A+∂
2
xmx +A−∂

2
ymy,

π′(m−)(my + τv∂tmy) = B+∂
2
ymy +B−∂

2
xmx, (5)

0 = ∂x∂y(C+mx + C−my)

where constants A±, B±, C± are given by SI eq. S9. If we
work in the limit t� τv, we can neglect the time deriva-
tive resulting in coupled PDEs in x and y for mx(x, y)
and my(x, y). The final solution takes the form of a hy-
perbolic cosine in x and in y,

mx = Cx cosh

[
x

Λ+

]
+ Cy cosh

[
y

Λ±

]
, (6)

with the full solution and derivation given in SI eq.
S10-S12 and where the prefactors of each term are set
by the boundary conditions. The length scale Λ+ ∼√

(ηs + ηp)/ζ, and we can derive the precise decay length
(eq. SI S14) Λd ∼

√
τv, independent of τm of the Mαα

profiles. Fig. 3C shows that the analytic approxima-
tion closely matches the numerical solution, and Fig. 3E
shows that both the value of Λd and the fact that it is
τm-independent are good prediction. The same ratio of
viscosity to substrate friction then determines the pene-
tration length of the gradient and therefore the extent of
C-E flow, as can be seen in the numerical velocity pro-
files in Fig. 3D. We can derive an analytical prediction
for the C-E strain rate γ̇s, SI eq. S15, shown as a dashed
line together with the numerics in Fig. 3F, showing the
same scaling.

Broader context. In phase diagram Figure 4A-B, we
show that other solutions than C-E emerge in our model
when we strongly increase either τv or τm. For very small
τv if τm is large, the solution as expected localises near
the boundaries - however the state is expanding as M
drops to the m− solution throughout (Fig. S7). If we
instead take the limit τv → ∞ at small τm, we observe
pattern formation and regular oscillations in the system,
including for the first time a significant Mxy component
(Fig. 4C-D). This is the active elastic limit where our
system behaves as an elastic solid with moduli B and
µ coupled to the substrate with friction ζ. It has re-
cently been shown that active instabilities and odd (off-
diagonal) responses are a characteristic feature of active
elastic systems with feedback [35, 36] and that they also
formally arise in viscoelastic systems [37]. Here we show
that they arise in a model for a biological tissue, rais-
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FIG. 4. Phases observed for other time scale ratios. A: Ob-
served phases as a function of viscous relaxation time scale
λ and myosin time scale τm, in units of elastic substrate re-
laxation time scale τel = ζ/B = 1. B: Characteristic veloc-
ity fields of convergent-extension (C-E), instability, oscillating
and localised expanding states. C-D: ActoMyosin wave pat-
tern excited in the oscillating state for the Mxx (top) and
off-diagonal Mxy (bottom) components.

ing the intriguing possibility that pattern formation in
development could make use of such mechanisms.

In the limit of where τm, τv � τel (corresponding to the
‘wet’ limit where substrate friction can be neglected), we
observe a spatial destabilisation of the C-E pattern with
slow dynamics that we have yet to fully explore (Fig. S6).

Our governing equations bear some similarities to (and
differences from) the equations of active nematic sys-
tems. However unlike in those systems, we do not find the
generic instabilities usually observed. We observe instead
robust and steady CE flows which is clearly very useful
for biological functionality and control. While the fric-
tion with the substrate and the viscoelasticity act as sta-
bilisers on short times and lengthscales, the key feature
that keeps robust control is the interplay between the
non-zero stress boundary conditions and the mechano-
chemical feedback of the ActoMyosin dynamics:

To explore this nice feature of the model and to com-
pare with the equations of classical nematodynamics, it
is helpful to consider the dynamics of the traceless part
of the ActoMyosin tensor, Q, i.e. M = Q + 1

2Tr(M)I.
By expanding the matrix exponential in equation (1) to
linear order in Q, one can show that (see SI eq. S16-S27)

◦
Q = aQ+ bπ̃+ cπ̃ ·Q+ dQ̃ · π+D∇2Q+O(Q2), (7)

where π̃ is the traceless part of π, π̃ ·Q is the traceless

part of π · Q, Q̃ · π is the traceless part of Q · π,
a = 1

2βk0 − 2, b = (k0/2)(1 − (1/2)βk0Tr(Q2)),
c = k0(1 − βk0/4), and d = βk2

0/4. The first term
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shows that there is an isotropic to nematic transition at
β = 1/2, the critical activity derived from our theory.
For β < 1/2, we have a stable isotropic material. For
β > 1/2, we have a nematic, however the second term
coming from the feedback from the passive stress at
leading order resembles an applied field that will depend
on the boundary conditions. This field will in general
suppresses instabilities. The higher order terms will
decorate this base state and can lead to a variety of
interesting dynamical states, and consistent with the
simulations.
In summary, here we have introduced a continuum model
of developmental tissues where convergence-extension
flows arise wholly from mechanical feedback. We find
robust C-E flows where applied tension acts like an
external field to determine the flow direction, based
on breaking the symmetry of spontaneous ActoMyosin
polarisation. C-E then arises from the active stress
profile between a central fixed point solution and the
imposed boundaries. Our model also shows pattern
formation and spontaneous oscillations in the active
elastic limit.
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FIG. S1. Convergence extension phase with parameters β = 0.7, σext
xx = 0.04, σext

yy = −0.04, τm = 20.0, τv = 20.0. Tension is
applied to the patch of the tissue parallel to the x axis, and compression parallel to the y axis. The top row has the components
of the ActoMyosin tensor: Mxx,Myy,Mxy, the middle row has the components of the passive stress tensor: πxx, πyy, πxy, and
the bottom row has components of velocity and the xx component of the strain rate tensor: vx, vy, γ̇xx.
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FIG. S2. Convergence extension phase with parameters β = 0.7, σext
xx = −0.04, σext

yy = 0.04, τm = 20.0, τv = 20.0. Compression
is applied to the patch of the tissue parallel to the x axis, and tension parallel to the y axis. The top row has the components
of the ActoMyosin tensor: Mxx,Myy,Mxy, the middle row has the components of the passive stress tensor: πxx, πyy, πxy, and
the bottom row has components of velocity and the xx component of the strain rate tensor: vx, vy, γ̇xx.
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FIG. S3. Convergence extension phase with parameters β = 0.7, σext
xx = 0.04, σext

yy = 0.04, τm = 20.0, τv = 20.0. The patch
of tissue is being pulled uniformly. The top row has the components of the ActoMyosin tensor: Mxx,Myy,Mxy, the middle
row has the components of the passive stress tensor: πxx, πyy, πxy, and the bottom row has components of velocity and the xx
component of the strain rate tensor: vx, vy, γ̇xx.
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FIG. S4. Convergence extension phase with parameters β = 0.7, σext
xx = −0.04, σext

yy = −0.04, τm = 20.0, τv = 20.0. The
patch of tissue is being compressed uniformly. The top row has the components of the ActoMyosin tensor: Mxx,Myy,Mxy, the
middle row has the components of the passive stress tensor: πxx, πyy, πxy, and the bottom row has components of velocity and
the xx component of the strain rate tensor: vx, vy, γ̇xx.
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FIG. S5. Oscillating phase with parameters β = 0.7, σext
xx = 0.04, σext

yy = −0.04, τm = 5.0, τv = 40.0. Tension is applied to
the patch of the tissue parallel to the x axis, and compression parallel to the y axis. The top row has the components of the
ActoMyosin tensor: Mxx,Myy,Mxy, the middle row has the components of the passive stress tensor: πxx, πyy, πxy, and the
bottom row has components of velocity and the xx component of the strain rate tensor: vx, vy, γ̇xx.
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FIG. S6. Complex spatial pattern phase with parameters β = 0.7, σext
xx = 0.04, σext

yy = −0.04, τm = 200.0, τv = 500.0. Tension is
applied to the patch of the tissue parallel to the x axis, and compression parallel to the y axis. The top row has the components
of the ActoMyosin tensor: Mxx,Myy,Mxy, the middle row has the components of the passive stress tensor: πxx, πyy, πxy, and
the bottom row has components of velocity and the xx component of the strain rate tensor: vx, vy, γ̇xx.
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FIG. S7. Local expansion phase with parameters β = 0.7, σext
xx = 0.04, σext

yy = −0.04, τm = 20.0, τv = 20.0. Tension is applied
to the patch of the tissue parallel to the x axis, and compression parallel to the y axis. The top row has the components of
the ActoMyosin tensor: Mxx,Myy,Mxy, the middle row has the components of the passive stress tensor: πxx, πyy, πxy, and the
bottom row has components of velocity and the xx component of the strain rate tensor: vx, vy, γ̇xx.
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FIG. S8. Spatial average of Mxx as a function of simulation time for an oscillating phase with parameters β = 0.7, σext = 0.04,
τm = 5.0, τv = 40.0.

SINGLE JUNCTION MODEL

The mechano-chemical feedback in the ActoMyosin equation is inspired by a model for a contractile active junction
wirtten down by SH and colleagues. Let us consider a single junction of length l and rest length l0. The junction is
contractile and has myosin concentration m, and is subject to an external pulling force σext. Assuming the passive
mechanical and active component of the junction are acting in parallel, the equation of motion is

ζl̇ = −k(l − l0)− β(m−m0) + σext, (S1)

where β is the activity, ζ is the friction between the junction and the surrounding medium, k is the stiffness of the
junction, and m0 is the reference value for m. The rest length l0 of the junction undergoes viscous relaxation

λl̇0 = −(l0 − l), (S2)

where λ is the viscous relaxation time of the junction. Finally, we include active feedback by making the unbinding
rate of myosin decrease with tension

τmṁ = 1−mf(σ), (S3)

where τ−1
m is the myosin binding rate, f(σ)/τm is the myosin unbinding rate, and one-dimensional stress σ = k(l −

l0) + β(m−m0). The myosin unbinding rate decreases exponentially with tension as

f(σ) = 1 + e−k0σ. (S4)

APPROXIMATE SOLUTION FOR CONVERGENCE EXTENSION

We have derived an approximate solution for the convergence extension steady state by expanding around the fixed
points παα(Mαα) = 0 of the mean field to linear order. We write

Mxx(r, t) = m+ +mx(r, t), (S5a)

Myy(r, t) = m− +my(r, t), (S5b)

and expand

πxx(Mxx(r, t)) = π′xx(m+)mx(r, t), (S6a)

πyy(Myy(r, t)) = π′yy(m−)my(r, t), (S6b)
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where we have used the fact that παα(m±) = 0. From equation (3), the velocity is given by

vx =

(
π′xx(m+) + β

ζ

)
∂xmx,

vy =

(
π′yy(m−) + β

ζ

)
∂ymy.

(S7)

We set the off diagonal components of active and passive stress equal to zero. We look at times long compared to the
myosin unbinding time τm. We write equation (2) to linear order in mx and my, which means that we can ignore the
term v · ∇παα because its lowest order terms are proportional to m2

x,m
2
y,mxmy. The other terms in the corotational

derivative vanish because the off diagonal components of the passive stress are zero. This leaves us with

π′xx(m+)(mx + λ∂tmx) = A+∂
2
xmx +A−∂

2
ymy, (S8a)

π′yy(m−)(my + λ∂tmy) = B+∂
2
ymy +B−∂

2
xmx, (S8b)

0 = ∂x∂y(C+mx + C−my), (S8c)

where we have used equation (3) to write the strain rate, and where

A+ =
ηp + ηs

2ζ
(π′xx(m+) + β), A− =

ηp − ηs
2ζ

(π′yy(m−) + β),

B+ =
ηp + ηs

2ζ
(π′yy(m−) + β), B− =

ηp − ηs
2ζ

(π′xx(m+) + β), (S9)

C+ =
ηs
2ζ

(π′xx(m+) + β), C− =
ηs
2ζ

(π′yy(m−) + β).

If we work in the limit t � λ, then we can neglect the time derivative since λ∂tmx, λ∂tmy → 0. This gives coupled
partial differential equations in x and y for mx(x, y) and my(x, y). Equation (S8c) suggests that we looks for solu-
tions of the form mx(x, y) = X1(x) + Y1(y), mx(x, y) = X2(x) + Y2(y). Plugging this into (S8a) and (S8b), it is
straightforward to show that

X1(x) ∼ e±x/Λ+ , Y1(y) ∼ e±y/Λ± ,

X2(x) ∼ e±x/Λ∓ , Y2(y) ∼ e±y/Λ− ,

where

Λ+ =

√(
ηp + ηs

2ζ

)(
π′xx(m+) + β

π′xx(m+)

)
, (S10a)

Λ± =

√(
ηp − ηs

2ζ

)(
π′yy(m−) + β

π′xx(m+)

)
, (S10b)

Λ∓ =

√(
ηp − ηs

2ζ

)(
π′xx(m+) + β

π′yy(m−)

)
, (S10c)

Λ− =

√(
ηp + ηs

2ζ

)(
π′yy(m−) + β

π′yy(m−)

)
. (S10d)

We approximate π′xx(m+) and π′yy(m−) by differentiating equation (4) with respect to Mαα and evaluating at m+ and
m−. This solution is not compatible with constant ActoMyosin on the boundary, however there is good agreement with
simulations (figure 3C and 3D compared to 2C and 2D) if we apply the boundary conditions like so: Mxx(±L/2, 0) =
MB
xx, Mxx(0,±L/2) = MB

xx, Myy(±L/2, 0) = MB
yy, and Myy(0,±L/2) = MB

yy, where MB
xx and MB

yy are the isotropic
equilibrium components of of the ActoMyosin tensor consistent with our chosen value σext at the boundary:

MB
xx =

1

1 + e−k0σext
, MB

yy =
1

1 + e+k0σext
.
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We find that

mx(x, y) = αxx

[
cosh

(
x

Λ+

)[
1− cosh

(
L

2Λ±

)]
+ cosh

(
y

Λ±

)[
1− cosh

(
L

2Λ+

)]]
, (S11a)

my(x, y) = αyy

[
cosh

(
x

Λ∓

)[
1− cosh

(
L

2Λ−

)]
+ cosh

(
y

Λ−

)[
1− cosh

(
L

2Λ∓

)]]
, (S11b)

where

αxx =
MB
xx −m+

1− cosh

(
L

2Λ+

)
cosh

(
L

2Λ±

) , αyy =
MB
yy −m−

1− cosh

(
L

2Λ−

)
cosh

(
L

2Λ∓

) .
The gradients of the passive stress are obtained by differentiating (4)

π′xx(m+) =
1

k0m+(1−m+)
− β, (S12a)

π′yy(m−) =
1

k0m−(1−m−)
− β. (S12b)

This solution depends on the viscous time scale via ηp = λB and ηs = λµ, where B and µ are the bulk and shear
moduli of the material. The velocities and strain rates are given by

vx =
αxx
Λ+

(
π′xx(m+) + β

ζ

)[
1− cosh

(
L

2Λ±

)]
sinh

(
x

Λ+

)
, (S13a)

vy =
αyy
Λ−

(
π′yy(m−) + β

ζ

)[
1− cosh

(
L

2Λ∓

)]
sinh

(
y

Λ−

)
, (S13b)

γ̇xx =
αxx
Λ2

+

(
π′xx(m+) + β

ζ

)[
1− cosh

(
L

2Λ±

)]
cosh

(
x

Λ+

)
, (S13c)

γ̇yy =
αyy
Λ2
−

(
π′yy(m−) + β

ζ

)[
1− cosh

(
L

2Λ∓

)]
cosh

(
y

Λ−

)
. (S13d)

We can calculate the length Λd over which, say, Myy drops to 1/e of its boundary value via Myy(0, xd) =
e−1Myy(0, L/2), where Λd = L/2− xd. We find

xd = Λ− cosh−1

cosh

(
L

2Λ−

)
− 1 + 1

αyy

(
e−1

[
m− + αyy

(
1− cosh

(
L

2Λ−

)
cosh

(
L

2λ±

))]
−m−

)
1− cosh

(
L

2Λ∓

)
 . (S14)

The spatially averaged pure shear strain is

〈γ̇xx − γ̇yy〉 =
2αxx
LΛ+

(
π′xx(m+) + β

ζ

)[
1− cosh

(
L

2Λ±

)]
sinh

(
L

2Λ+

)
− 2αyy
LΛ−

(
π′yy(m−) + β

ζ

)[
1− cosh

(
L

2Λ∓

)]
sinh

(
L

2Λ−

)
.

(S15)

DYNAMICS OF THE TRACELESS PART OF THE ACTOMYOSIN TENSOR

The ActoMyosin tensor can be written as the sum of the traceless part Q and a part proportional to the identity
matrix

M =

(
M1 M2

M2 −M1

)
+

1

2

(
Tr(M) 0

0 Tr(M)

)
= Q+

Tr(M)

2
I, (S16)
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where Tr(M) = Mxx + Myy, M1 = (Mxx −Myy)/2, and M2 = Mxy. We get the dynamics of the trace by adding
together the diagonal components of the ActoMyosin tensor equation (1):

τm(∂tTr(M) + v · ∇Tr(M)) = 2− Tr(M)− 1

2
Tr(M)Tr(e−k0σ)−M1([e−k0σ]xx − [e−k0σ]yy)

− 2M2[e−k0σ]xy +D∇2Tr(M),
(S17)

where σ is the total stress. We can get the dynamics for Q by taking the traceless part of (1)

τm

(
∂tM + v · ∇M + ω ·M −M · ω − 1

2
[∂tTr(M) + v · ∇Tr(M)]I

)
= I − (I + e−k0σ) ·M +D∇2M − 1

2
Tr(I − (I + e−k0σ) ·M)I − 1

2
D∇2Tr(M)I,

(S18)

where ω = (∇u− (∇u)T)/2 is the anti-symmetric vorticity tensor. Writing this in terms of Q, we have

∂tQ+ v · ∇Q+ ω ·Q−Q · ω

= −(I + e−k0σ) ·Q− 1

2
Tr(M)e−k0σ +

1

2

(
Tr(e−k0σ ·Q) +

1

2
Tr(M)Tr(e−k0σ)

)
+D∇2Q.

(S19)

Expanding the matrix exponential in powers of Q

The matrix exponential is

e−k0σ =

∞∑
k=0

(−k0σ)k

k!
= I − k0σ +

k2
0σ

2

2
+O(σ3)

= I − k0(π + β(Q+ (1/2)Tr(M)I −m0I)) +
k2

0

2
(π + β(Q+ (1/2)Tr(M)I −m0I))2

= I − k0(π + β(Q+ m̃0I)) +
k2

0

2
(π + β(Q+ m̃0I))2

= I − k0(π + β(Q+ m̃0I)) +
k2

0

2
(π2 + βπ · (Q+ m̃0I) + β(Q+ m̃0I) · π + β2(Q+ m̃0I)2),

(S20)

where

m̃0 =
1

2
Tr(M)−m0. (S21)

From here, we will use the fact that

Q2 = (M2
1 +M2

2 )I =
1

2
Tr(Q2)I. (S22)

Rearranging terms slightly, and using equation (S22), we have

e−k0σ = I − k0(π + β(Q+ m̃0I))

+
k2

0

2

[
π2 + β(π ·Q+Q · π) + 2βm̃0π + β2

(
2m̃0Q+

1

2
Tr(Q2)I + m̃2

0I

)]
+O(Q3)

(S23)

The quantity e−k0σ ·Q is also useful:

e−k0σ ·Q = Q− k0(π ·Q+ β(Q2 + m̃0Q))

+
k2

0

2

[
π2 ·Q+ β(π ·Q2 +Q · π ·Q) + 2βm̃0π ·Q+ β2

(
2m̃0Q

2 + m̃2
0Q

)]
+O(Q3)

= Q− k0(π ·Q+ β(
1

2
Tr(Q2)I + m̃0Q))

+
k2

0

2

[
π2 ·Q+ β(

1

2
Tr(Q2)π +Q · π ·Q) + 2βm̃0π ·Q+ β2

(
m̃0Tr(Q2)I + m̃2

0Q

)]
+O(Q3)

(S24)
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We can rearrange the terms on the RHS of equation (S19):

∂tQ+ v · ∇Q+ ω ·Q−Q · ω

= −Q−
[
e−k0σ ·Q+

1

2
Tr(M)e−k0σ)

]
+

1

2
Tr

[
e−k0σ ·Q+

1

2
Tr(M)e−k0σ)

]
I.

(S25)

The terms proportional to the identity vanish:

aI − 1

2
Tr(aI) = 0.

Using (S21) to replace Tr(M), and grouping the lowest order terms, which are proportional to Q, π, π ·Q, and Q ·π,
we have

∂tQ+ v · ∇Q+ ω ·Q−Q · ω

=

[
− 2 + βk0

(
2m̃0 +m0 − βk0

(
3

2
m̃2

0 + m̃0m0

))]
Q

+

[
k0(m̃0 +m0)− βk0

(
k0m̃0(m̃0 +m0) +

1

4
k0Tr(Q2)

)](
π − 1

2
Tr(π)

)
+

[
k0 −

1

2
βk2

0(3m̃0 +m0)

](
π ·Q− 1

2
Tr(π ·Q)

)
+

[
1

2
βk2

0(m̃0 +m0)

](
Q · π − 1

2
Tr(Q · π)

)
+ · · ·

(S26)

Taking m̃0 to be zero, and setting m0 = 1/2 gives

∂tQ+ v · ∇Q+ ω ·Q−Q · ω

=

[
βk0

2
− 2

]
Q+

k0

2

[
1− βk0

2
Tr(Q2)

](
π − 1

2
Tr(π)

)
+ k0

[
1− βk0

4

](
π ·Q− 1

2
Tr(π ·Q)

)
+
βk2

0

4

(
Q · π − 1

2
Tr(Q · π)

)
+ · · ·

(S27)
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