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Abstract. The topological properties of the flat band states of a one-electron
Hamiltonian that describes a chain of atoms with s − p orbitals are explored.
This model is mapped onto a Kitaev-Creutz type model, providing a useful
framework to understand the topology through a nontrivial winding number and
the geometry introduced by the Fubini-Study (FS) metric. This metric allows us
to distinguish between pure states of systems with the same topology and thus
provides a suitable tool for obtaining the fingerprint of flat bands. Moreover,
it provides an appealing geometrical picture for describing flat bands as it can
be associated with a local conformal transformation over circles in a complex
plane. In addition, the presented model allows us to relate the topology with the
formation of Compact Localized States (CLS) and pseudo-Bogoliubov modes.
Also, the properties of the squared Hamiltonian are investigated in order to
provide a better understanding of the localization properties and the spectrum.
The presented model is equivalent to two coupled SSH chains under a change of
basis.
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1. Introduction

A flat band refers to a band with constant energy unaffected by the crystal momentum.
This property suppresses wave transport and makes it highly sensitive to perturbations
[1]. This has led to the exploration of partially flat bands, which have vanishing
dispersion along specific directions or near particular points in the Brillouin zone [2–4].

Due to their unique characteristics, flat band systems have been a subject of great
interest in several research fields [5–12], such as the generation of electronic correlations
in condensed matter [13–18]; among such phenomena include ferromagnetism [13,14],
superconductivity [15, 16], and Wigner crystal formation [17, 18], and in photonics
leading to slow-light realizations [19, 20] and coherent propagation free of quantum
dispersion [21,22]. Thus, the study of flat band systems is crucial because it provides
insight into the collective phenomena that govern the behavior of complex materials
[13, 23–26]. These materials are of great interest because they have the potential to
revolutionize many areas, such as electronics and possible applications to quantum
computing [27].

Historically, developing flat band models has been a long and arduous process. It
started with Sutherland’s discovery of a flat band in the dice lattice [28]. It continued
with Lieb’s work on the Hubbard model, demonstrating that certain bipartite lattices
with chiral flat bands exhibit ferromagnetism [29]. However, in recent years, there
has been a growing interest in the development of new topological flat band models
[2] that will allow for a better understanding of the properties of these materials
and their potential applications and which can support quantum Hall-like states,
including integer quantum Hall (QH) effect [30, 31], fractional quantum Hall (FQH)
effect [32–34], and the existence of electronic fractional Chern states [11,12,32,35].

Lastly, one of the challenges in studying flat band systems is distinguishing
between pure states of systems with the same topology. To overcome this challenge,
in previous work, the FS metric has been introduced as a tool, mainly to differentiate
quantum states in flat bands [36–39]. This metric enables the reliable identification
of flatness regions in topological systems.

This paper presents a non-superconducting one-dimensional tight-binding model
that can be mapped to a Kitaev chain Hamiltonian, preserving its topological
properties with a nontrivial winding number. The FS metric of the model allows for
the construction of a mapping f that can accurately distinguish between topological
and nontopological systems, as well as between topological systems with and without
flat bands. This model is inspired by recent experimental evidence of one-dimensional
flat bands along established directions in two-dimensional van der Waals structures
[40], as well as research that suggests that chains of elements such as boron [41],
gallium [42] and tellurium [43, 44] could be used to realize the proposed model
experimentally.

This paper is organized as follows. Section 2 introduces the atomic chain model
and the effective Hamiltonian. Section 3 discusses the formation of pseudo-Bogoliubov
modes and a regime with flat bands where compact localized states (CLS) exist.
These bands are characterized by relations similar to those found in Landau levels.
Additionally, we demonstrate a nontrivial topology phase transition and how the
geometry described by the FS metric enables the mapping f to be constructed to
differentiate between flat band regimes and other topological systems. Finally, Section
4 summarizes our findings.
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a)

b)

Figure 1. a) At each site of the atomic chain, there are two orbitals s and px,
denoted as ψs,n and ψp,n. The hopping integrals of the nearest-neighbor tpp and
tss have the opposite sign, while the nearest-neighbor tsp couplings alternate in
sign. Due to inversion symmetry, the on-site tsp coupling will be zero, just like in
an isolated atom. The tight-binding Hamiltonian is given by Eq. 1. b) This atomic
chain can be geometrically represented as an unbalanced Creutz ladder [10,45–48],
where the blue and red circles represent the sites A and B, respectively. The
orbitals s and p correspond to the sites A and B, and the hoppings follow the
rules tss → tAA (black lines), tpp → tBB (gray lines), tsp(ps) → tAB(BA) (dashed
black (gray) lines) and εs(p) → εA(B) (see Eq. 2).

2. Model and Methods

As explained in the introduction, our main motivation here is to find a model
with realistic features such that it contains a flat band susceptible of being treated
analytically in a simple way. Flat bands are associated with zero group velocity and
this requires destructive wave interference. Clearly, a model based only on pure s
orbitals is not able to produce such effect. The change of sign induced by p orbitals
when rotated by an angle of π induces such possibility as positive and negative
interactions of the same magnitude appear. Therefore, the most simple model is
to have a one-dimensional system with s − p orbitals (see Fig. 1 a) ). Notice that
here we do not introduce py and pz orbitals due to several reasons. The first is
that we want to keep the model simple to shine light in the Fubini-Study metric
topological study. But there are other physical reasons to proceed in such a way. One
is that such simple system can be implemented using quantum analogous systems
like in ultracold atom lattices [45] or simulate topological zero modes (flat bands) on
a qubit superconducting processor [49]. Having only one type of p orbitals simplify
considerably the complexity of the device. The second reason is that chalcogenide
elements as Se or Te form chains [44]. The bonds are directed along the chain direction
and thus are well described with only one type of p orbitals.

Under such considerations, our investigation is based on a tight-binding model
with only first-neighbors hopping, which yields a Hamiltonian that can be expressed
as
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∧H =
∑
rn

(
εs(rn)c

†
s,rn

cs,rn + εp(rn)c
†
p,rn

cp,rn

)
+
∑
rn

[
tss(rn)c

†
s,rn+1

cs,rn + tpp(rn)c
†
p,rn+1

cp,rn

+tsp(rn)c
†
p,rn+1

cs,rn
+ tps(rn)c

†
s,rn+1

cp,rn

]
+ h.c. (1)

The indices s and p refer to the respective orbitals, and rn is the position of the n− th
atom. The fermionic annihilation (creation) operator for orbital s and p is denoted by

c(s,p),rn
(c†(s,p),rn

), while ε(s,p)(rn) and tss(rn), tpp(rn), tsp(rn), tps(rn) are the energy

on-site and the hopping parameter to the first right neighbor, respectively. Assuming
that εα(rn) and tα,β(rn) are independent of the atomic position, the tight-binding
parameters tss, tpp, tsp, tps can be obtained.

We can think of the chain as a ladder, with each s and p orbital mapped to
different sites. As illustrated in Fig. 1 b), the ladder consists of two types of sites:
type A, which is derived from the s orbitals and type B, which is derived from the p
orbitals. This ladder is equivalent to a Creutz model, and its Hamiltonian is given by.

H =
∑
n

(
εAa

†
nan + εBb

†
nbn

)
+
∑
n

(
tAAa

†
n+1an + tBBb

†
n+1bn + tABb

†
n+1an + tBAa

†
n+1bn

)
+ h.c.(2)

The annihilation (creation) operators for sites A and B in the cell n are indicated by
an(a

†
n) and bn(b

†
n), respectively. It has been demonstrated that due to the symmetry

of the p orbitals, tps = −tsp and tpp = −tss [50]; consequently tAA = −tBB and
tAB = −tBA. In addition to this, we assume that εAA = −εBB , then the Hamiltonian
is given by

H = ε
∑
n

(
a†nan − b†nbn

)
+
∑
n

tAA

(
a†n+1an − b†n+1bn

)
+ tAB

(
b†n+1an − a†n+1bn

)
+ h.c. (3)

We then perform a lattice Fourier transformation using the operators

ak =
1√
N

∑
n

ane
ikxn and bk =

1√
N

∑
n

bne
ikxn , (4)

where xn = nl and l is the lattice constant. Finally, this allows us to rewrite the
Hamiltonian Eq. 3 in the standard Bogoliubov- de Gennes form.

H = tAA
∑
k

Ψ†
kH(k)Ψk, Ψk = (ak, bk)

T . (5)

where,

H(k) = n(k) · σ = nx(k)σx + ny(k)σy + nz(k)σz (6)

and the coefficients that accompany the Pauli matrices σx, σy, σz are nx(k) =
0, ny(k) = 2λ sin(kl), nz(k) = (ε + 2 cos(kl)). Here, ε and λ are dimensionless
parameters that capture the information of the parameters ε and tAB of the
Hamiltonian 3, respectively, and are defined as ε ≡ ε/tAA and λ ≡ tAB/tAA.
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3. Results

In this section, we explore the properties of the model proposed in Eq. 5. We examine
the emergence of Bogoulibov and Majorana pseudo modes, their equivalence with the
Kitaev Hamiltonian, their topological properties demonstrated by a nontrivial winding
number, and the presence of a regime with topological flat bands and similarities to
Landau levels. Additionally, we show that this system is equivalent to two coupled
SSH chains and two decoupled chains with the next-nearest neighbor hopping, and
we introduce a conformal transformation that allows us to identify topological and
nontopological regimes and between flat and dispersive bands.

3.1. Pseudo-Bogoliubov and Majorana modes

We can define two pseudo-Bogoliubov modes, γk and ρk, using the Hamiltonian in
Equation 5. These modes are a combination of a fermion at sites A and B and are
analogous to the Bogoliubov quasiparticles. They are expressed as

γk ≡ ukak + vkbk, ϱk ≡ −v∗kak + u∗kbk, (7)

where uk and vk are the coefficients that define the Bogoliubov modes. These pseudo-
Bogoulibov modes hybridize orbitals s and p, and satisfy the fermionic creation and
annihilation anti-commutation relations (see Appendix A).

{ϱk, ϱ†k′} = δkk′ ; {ϱ†k, ϱ
†
k′} = {ϱk, ϱk′} = 0;

{γk, γ†k′} = δkk′ ; {γ†k, γ
†
k′} = {γk, γk′} = 0 (8)

where uk and vk must meet the criteria of u2k + v2k = 1, u−k = uk and v−k = −vk. A
suitable selection of uk and vk will satisfy these conditions.

uk = cos
(ωk

2

)
, vk = −i sin

(ωk
2

)
, (9)

where we defined,

ωk = Arg{2iλ sin(kl) + (ε+ 2 cos(kl))} (10)

Here, Arg(z) refers to the principal value of z ∈ C. When substituting ak, bk into Eq.
5, we diagonalize the Hamiltonian to obtain

H = tAA
∑
k

ϵ(k)
(
γ†kγk − ϱ†kϱk

)
with ϵ(k) =

√
(ε+ 2 cos(kl))2 + (2λ sin(kl))2. (11)

Generally, these pseudo-Bogoliubov modes are associated with squeezed coherent
states [51] and, in a similar form, have recently been observed in twisted bilayer
graphene (TBLG) at magic angles [52].

In the long-wavelength limit, we can expand the Hamiltonian 5 at k = 0 to obtain

H = tAA
∑
k

Ψ†
kHD(k)Ψk with HD(k) = mσz + 2λklσy and m = (ε− εc). (12)

where εc = −2 and the energy dispersion is given by ϵ(k) = ±
√

(ε− εc)2 + 4λ2k2l2.
As shown in Figure 2, there is an energy gap of size ∆ = 2(ε − εc) that vanishes
when the critical value εc is reached, that is, when m is close to zero. At this point,
the energy dispersion follows the relation ϵ(k) = ±2λlk, implying that the pseudo-
Bogoliubov modes can be interpreted as pseudo-Majorana modes, and they can move
along the chain with a velocity of v = 2λl. As the mass approaches zero, the energy
of these eigenstates is equal.



Fubini-Study metric and topological properties 6

Figure 2. The band structure of the Kitaev-Creutz ladder model as a function
of kl, and for the set of values λ = 1, l = 1, and ε = −2 (dotted line), ε = −1
(dot-dashed line), and ε = 0 (solid line), respectively (see Eq. 11).

3.2. Topological properties I: Nontrivial winding number

The Hamiltonian 5 can be exactly mapped to a Kitaev Hamiltonian, extensively
studied by Leumer et al. [53]. Hence, our model is referred to as the Kitaev-Creutz
model and the correspondence is as follows

ε→ −µ/t, λ→ −∆/t, (13)

however, the physics interpretation is not the same. It has been demonstrated
in [53] that the Hamiltonian 5 is invariant under time-reversal symmetry for spinless
fermions T = 1K, with K being the complex conjugation and the chiral symmetry
T P = C = σx. Additionally, it anti-commutes with the particle-hole operator
P = σxK. Therefore, the particle-hole symmetry establishes that the band structure is
symmetric with respect to the zero energy. Note that the Kitaev Hamiltonian belongs
to the BDI class [54], where all square symmetries operators are the identity.

The chiral symmetry allows us to define the winding number as the topological
invariant [55], where the winding number is defined as [55,56]

ν =
1

2π

∫ π/l

−π/l
dk∂kωk, (14)

here ∂kωk is the winding number density [53, 55]. The phase diagram in Fig. 3 is
similar to that of a Kitaev chain with the appropriate parameters [53]. The dashed
black lines in Fig. 3 a) indicate the boundaries between the topological phases with
ε = ±2, which meet the condition ϵ(k) = 0 in kl = 0,±πd and λ ̸= 0. Figures 3 b)-c)
show the curves of parameterization (ny(k), nz(k)) (cf. Eq. 5) along the Brillouin zone
(BZ) with different values of ε and λ, with the winding number being the topological
invariant.
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a)

b) c)

Figure 3. The topological phase diagram of the Kitaev-Creutz ladder system
with Hamiltonian 5 is shown in Fig. a) using Eq. 14. The dashed black lines
indicate the boundaries between the topological phases, which are determined
by the condition ε = ±2. The curves in panels b) and c) correspond to the
parameterization (ny(k), nz(k)) (cf. Eq. 5), where k ∈ BZ. In Fig. b), the curves
for λ = −1 (gray circle), λ = 0 (blue line), λ = 1/2 (red ellipse), and λ = 1 (black
circle) are plotted with ε = 0. In Fig. c), the curves for ε = 2 (black circle) and
ε = 3 (blue dashed circle) are plotted with λ = 1. It is noteworthy that for the
blue line in Fig. b) and the black circle in Fig. c), the winding number is not well
defined since the curve passes through the origin.

3.3. Flat bands, Compact Localized States (CLS) and Analogous Landau Levels
Relations

When a flat band is present, the group velocity of the charge carriers is zero for all
momenta in the Brillouin zone, indicating that the charge carriers are localized. This
localization is caused by the presence of a particular localized eigenstate, known as
the compact localized state (CLS). This state has a finite amplitude within a finite
region in real space and is zero outside. It should be noted that CLS is not unique
and can be of multiple types, depending on the linear combinations of the smallest
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a)

b)

Figure 4. a) In this flat band regime, we observe that when two different closed
paths are followed, the fermions acquire a phase difference of ϕ and 3ϕ with ϕ = π,
resulting in a π− flux in the Kitaev-Creutz type ladder model in Eq. 5. b) The
two CSLs in the flat band regime are represented by filled regions, with the signs
of their component amplitudes indicated (see Eq. 16).

compact localized states centered at different positions [57].
The eigenvalues of the Hamiltonian, as demonstrated by Eq. 5, have two

topological flat bands (FB) with ϵ(k) = ±2 when ε = 0 and λ = ±1, in this regime
ν = ∓1 (see Fig. 3) . Furthermore, the electrons can obtain a phase difference of π
along closed trajectories (see Fig. 4 a)). The Bloch state creation operator for the FB
is expressed as

Ψ†
k,λ,± =

1

2

{(
eiλkl/2 ± e−iλkl/2

)
a†k +

(
eiλkl/2 ∓ e−iλkl/2

)
b†k

}
(15)

where the sign ± is for ϵ(k) = ±2, respectively.
The energy degeneracy means that any combination of the FB Bloch states is an

eigenstate. Furthermore, the Fourier transform of these states is also an eigenstate.
To illustrate this, let us calculate the Fourier transform of Eq. 15.

Ψ†
yn,λ,± = N

∫
BZ

dkeikynΨ†
k,λ,± =

1

2

(
a†n ± a†n−λ + b†n ∓ b†n−λ

)
(16)

where yn = xn − l/2 and N is a normalization constant. As shown in Fig. 4 b),
Ψyn,λ,± takes the form of a localized square plaquette centered yn, that is, between
cell n and n− 1.

One can verify that the sites of plaquettes obey the following relations, analogous
to Landau levels states relations [30],

∑
yn

(−1)nΨ
(1)
yn,λ,+

+Ψ
(2)
yn,λ,+

= 0 and
∑
yn

Ψ
(1)
yn,λ,− + (−1)nΨ

(2)
yn,λ,− = 0 (17)
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a) b)

c) d)

Figure 5. The electron density for sites A and B is shown in panels a),b) for the
conduction band and in panels c), d) for the valence band. The used parameters
were λ = 1 and ε = 0 (solid black curve), ε = 1 (dashed black curve), ε = 2
(solid gray curve) and ε = 3 (gray dots). In analogy to Eq. 16, at sites A and
B there is constructive and destructive interference in the conduction band case
and vice versa in the valence band case. Notice how as the system approaches the
flat band case (ε = 0) the peaks tend to be more pronounced.

with Ψ(1,2) as the first- and second- component of the FB Bloch state. A recent
study [58] has also demonstrated a connection between flat bands and Landau levels.
Due to destructive interference, the electron is confined within the plaquette, resulting
in a quenched kinetic energy that FB regulates.

Let us now write a Bloch state as

|u±k ⟩ =
1

2

(
eiωk/2 ± e−iωk/2, eiωk/2 ∓ e−iωk/2

)T
. (18)
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a)

b)

Figure 6. a) By transforming the basis (Eq. 22) of the Kitaev-Creutz model, we
obtain an equivalent ladder consisting of two SSH chains that are distinguished
by red and blue sites (see the online version). b)This equivalent ladder can be
divided into two chains with hopping of the first and second neighbors in Eq. 23.
Isolated atomic-like states, or CLS, are obtained at each site when λ → ±1 and
ε = 0 with τ1 = τ2 = 0.

Therefore, the eigenstates in the real space are

|ψ±(x)⟩ =
l

2π

∫ π/l

−π/l
dkeikx |u±k ⟩ ≡ (ψA,±(x), ψB,±(x))

T (19)

Fig. 5 shows the eigenfunction in real space for sites A and B with different
values of ε, keeping λ = 1. As can be seen in Fig. 5 a) and b), there is constructive
and destructive interference between sites A and B, respectively. This is contrary to
what is observed in Fig. 5 c) and d). This is in accordance with Eq. 16 due to the
change of sign when considering a conduction and valence bands. Furthermore, when
ε = 0, the electron density for the sites A and B is sharper than in any other of the
scenarios; however, in this case, the spectrum is also highly degenerate so as explained
in sec. 3.5, care must be taken in its interpretation.

3.4. Equivalent SSH model

We can observe a periodic chain with a two-sublattice structure in Fig. 1 b). Sites
on sublattice A have the diagonal hopping to the left, tAB , and right tBA, while
for sites belonging to the other sublattice, it is just the opposite. According to the
assumptions in Eq. 3, the time-independent Schrödinger equation can be transformed
into equivalent difference equation forms for any pair of sites. Therefore, the following
pairs of equations are valid for the given system.
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(E − ε)ψA,n = tAA (ψA,n−1 + ψA,n+1) + tAB (ψB,n+1 − ψB,n−1)

(E + ε)ψB,n = −tAA (ψB,n+1 + ψB,n−1) + tAB (ψA,n−1 − ψA,n+1) (20)

To facilitate the analysis, we introduce the following basis transformation(
ϕ1,n
ϕ2,n

)
=M

(
ψA,n
ψB,n

)
, M =

(
1 1
1 −1

)
(21)

Then, from Eqs. 20 and 21, we obtain the following equations

Eϕ1,n − εϕ2,n = (1− λ)ϕ2,n+1 + (1 + λ)ϕ2,n−1

Eϕ2,n − εϕ1,n = (1 + λ)ϕ1,n+1 + (1− λ)ϕ1,n−1 (22)

where E = E/tAA. This equation system corresponds to two coupled SSH chains, as
depicted in Fig. 6 a).

3.5. Supersymmetric transformation by squaring the Hamiltonian

In this subsection we will show that the square of the Hamiltonian decouples the
sublattices and renormalizes the hopping and on-site energies making it somewhat
analogous to a phonon problem and akin to a supersymmetric transformation [59–62].
To understand this, from Eq. 22, we use the second equation in the first and vice
versa. Then Eq. 22 can be rewritten as

(E
2 − µ)ϕj,n = τ1(ϕj,n−1 + ϕj,n+1) + τ2(ϕj,n+2 + ϕj,n−2), j = 1, 2. (23)

with µ = ε2 + 2(1 + λ2), τ1 = 2ε, and τ2 = (1− λ2).
Equation 23 is equivalent to square the Hamiltonian 3. It is also equivalent to

remove one of the bipartite sublattices [11, 63, 64], in this case for the Kitaev-Creutz
ladder leaving two decoupled periodic chains with nearest neighbour hoppings (τ1),
next-nearest hoppings (τ2) and with an effective on-site energy µ (See Fig. 6 b)).
The dispersion relations are obtained from Eq. 23 using a procedure similar to that
exposed in Eq. 11,

E
2
= µ+ 2τ1 cos(kl) + 2τ2 cos(2kl)

⇔ E± = ±
√
(ε+ 2 cos(kl))2 + 4λ2 sin2(kl) (24)

or in a simpler form, by taking the square of the Hamiltonian 6 which reduces to

H2(k) =

(
ϵ2(k) 0
0 ϵ2(k)

)
(25)

The eigenvalues of H2(k) are simply the square of those of H(k) explaining the hole-
particle symmetry of the spectrum seen in Fig. 2. We now observe that while any
eigenfunction of H(k) is also an eigenfunction of H2(k), the inverse in not necessarily
true. Thus, the eigenfunctions of H(k) are sublattice polarized while those of H2(k)
are not necessarily polarized.

In the flat band regime (ε = 0, |λ| = 1), and from Eq. 23, τ1 = τ2 = 0 indicating
the existence of localized atomic-like states that are equivalent to the CLS shown
in Sec 3.3 (see Fig. 6 b). Moreover, for the flat band H2(k) = (4) 12×2 and the
eigenfunctions are arbitrary linear combinations of the basis vectors (1, 0)T and (0, 1)T .



Fubini-Study metric and topological properties 12

This emphasizes the very peculiar localization properties of flat bands as seen in other
systems [12,58,65]. Therefore, the flat band now becomes a massive degenerate ground
state of H2(k). As in other systems, the squared Hamiltonian can be interpreted as
a massive vibrational band [11] quite similar to the protected electronic boundary
modes found in the QHE and topological insulators [66] and which are well-known in
the rigidity theory of glasses [67–70].

3.6. Topological properties II: Fubini-Study metric

The quantum geometry tensor is a key factor in understanding the behavior and
characteristics of physical systems at the quantum level. It is particularly useful
in the analysis of topological insulators and materials with flat bands. Moreover,
it can be used to gain insight into the electronic structure and properties of these
materials [36–39].

In general, we consider a quantum state |ψ(ξ)⟩ in the N -dimensional parameter
space, where ξ = (ξ1, ξ2, . . . , ξN ) is a set of parameters. Thus, this space can be
endowed with the geometric quantum tensor [71–76], given by

Qµν(ξ) ≡ ⟨∂µψ(ξ)|Pψ(ξ)|∂νψ(ξ)⟩ (26)

where Pψ(ξ) is the orthogonal complement projector,

Pψ(ξ) = 1− |ψ(ξ)⟩ ⟨ψ(ξ)| . (27)

Since Qµν can have complex values, this leads to the FS metric (gµν), which is the real
part of the quantum metric gµν(ξ) = Re[Qµν(ξ)]. The imaginary part is associated
with the Berry curvature Ωµν(ξ) and is given by

Im[Qµν ] = −Ωµν
2
. (28)

The FS metric measures the statistical distance between nearby pure quantum states
|ψ(ξ)⟩ and |ψ(ξ + dξ)⟩, providing a means of distinguishing them [77].

For calculating the FS metric, it is necessary to consider the Bloch states, which
are given by

|u+k ⟩ = (cos(ωk/2), i sin(ωk/2))
T , for conduction band

|u−k ⟩ = (i sin(ωk/2), cos(ωk/2))
T , for valence band. (29)

(30)

Then, the derivatives are

|∂ku+k ⟩ =
∂kωk
2

(− sin(ωk/2), i cos(ωk/2))
T , (31)

|∂ku−k ⟩ =
∂kωk
2

(i cos(ωk/2),− sin(ωk/2))
T . (32)

(33)

and following the formula for the FS metric, it can be proved that [77,78]

g±kk = ⟨∂ku±k |∂ku
±
k ⟩ − ⟨∂ku±k |u

±
k ⟩ ⟨u

±
k |∂ku

±
k ⟩ =

(
∂kωk
2

)2

. (34)
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Figure 7. The complex plane C1 under the relation ▷ (Eq. 39) can be interpreted
as each state z on a specific external ray is an element of the equivalence class, [z].
This leads to an isomorphism between C1 and S1 (blue circle), and the distance
between two equivalence classes [z1] and [z2] is given by the angular difference
between the respective external rays (cf. Eq. 38). In this space, the distance
between any two adjacent external rays depicted in the figure is the same.

The first observation is that from Eq. 34 it follows√
det(g±kk) =

|∂kωk|
2

. (35)

We define the quantities vol(BZ) and vol(S1) given by

vol(BZ) ≡
∫
BZ

√
det(g±kk)dk, Vol(S

1) ≡
∫
S1

dθ. (36)

In the case where the FS metric are nondegenerate, vol(BZ) and vol(S1) correspond to
the volumes of the Brillouin Zone (BZ) and the unitary circle S1, respectively. Thus,
we obtained from Eqs. (14, 35, 36) the following inequalities

π|ν| ≤ vol(BZ) ≤ 1

2
vol(S1). (37)

Therefore, the minimum value of the quantum volume is determined by the winding
number of the occupied Bloch bundle. In the 2D case, this is equivalent to the
result found by Ozawa and Mera, where the equalities are associated with a flat
Kähler structure [37–39, 79]. This 2D version has also been used in topological
superconductors to establish a relationship between the topological properties of the
system and the superfluid weight, as demonstrated in [80–85].

On the other hand, to understand the geometry related to the FS metric tensor,
g±kk, it is necessary to consider the FS arc element dsFS and the usual infinitesimal
line elements in S1, dsS1 , which are given by
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a) b)

Figure 8. The image of C1 (Fig. 7) under the mapping f (Eq. 40) with the
values |λ| = 1 and a) ε = 1.9, b)ε = 2.1 are shown. In the nontrivial topological
regime, |ε| ≤ 2, f maps rays and circles from C1 (Fig. 7) to rays and circles
with half the radius, respectively. On the other hand, in the trivial topological
regime, circles are transformed into arcs of circles, providing another geometrical
interpretation of Eq. 14. The inequality in Eq. 37 is visible in these figures. Thus,
vol(BZ) (cf. Eq. 36) corresponds to the perimeter of the blue circle (or the arc
circle), respectively; therefore, in the topological regime, the equality holds (a)),
while in the nontopological regime (b)) the strict inequality holds.

ds2FS = g±kkdk
2 =

(
1

2

)2

dω2
k, |k| ≤ π/l and ds2S1 = dθ2, |θ| ≤ π (38)

Thus, from Eq. 38, we show that there is a locally conformal transformation between
S1 and the FS manifold. Furthermore, we can conceive the space FS and S1 as
embeddings in the complex plane with an additional structure given by the equivalence
relation ▷ on C,

z1 ▷ z2 if |z1| = |R||z2| and Arg(z1) = Arg(z2) (39)

where |R| is a scale factor; i.e., z1 and z2 are on the same external ray. In addition,
let us consider the mapping f defined by

f : C1 → C2

z = reik 7→ w = f(z) =
r

2
eiωk (40)

where the indexes refer to the first and second copies of the complex plane, respectively.
Therefore, if we consider the usual infinitesimal line element on C

ds2C = dzdz∗ = dr2 + r2dθ2, z = reiθ (41)

where ∗ is the complex conjugate, we obtain that C1 and C2 under the relation ▷, are
isomorphic to S1 (see Fig. 7) and FS manifold (see Figs. 8, 9), respectively.
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a) b)

c) d)

Figure 9. The image of C1 (Fig. 7) under the mapping f (Eq. 40) with the
values ε = 0 and a) |λ| = 1, b)|λ| = 0.5 and c) |λ| = 3, and a contour plot of
the metric tensor g±kk given by Eq. 34 as a function of λ and k with ε = 0 (d)
are shown. As discussed, f preserves circles and external rays in the topological
regime (see Fig. 8); however, it deforms the distribution of rays, which is related
to the FS metric tensor, g±kk. For example, in the case of c) where |λ| = 3, the
external rays appear to separate near the angles k = 0,±π and correspond to the
maxima of g±kk as seen in d). This geometric representation reveals that although
all 3 systems have a nontrivial topology with ν = 1, the FS metric allows us to
distinguish between them. In particular, system a), corresponding to the regime
of flat bands, is the only system in which the distribution of rays is preserved
under f .
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Then, in Figs. 8 and 9 a)-c), we show the maps C1 onto C2 under f given by
Eq. 40 with different values ε and λ; a first observation is that f preserves circles and
external rays only in the nontrivial topological regime, but deforms circles onto arcs
of circles, given another geometrical perspective of Eq. 14. This mapping also allows
for a visual realization of the inequality Eq. 37, in which vol(BZ) corresponds to the
perimeter of the blue circle (or arc circle), respectively (see Fig. 8).

However, as we show in Fig. 9 a)-c), f deform the distribution of rays, which
is related to the FS metric tensor, g±kk. For example, in the case of Fig. 9 b) where
λ = 0.5, the external rays appear to separate near the angles k = ±π/2 and correspond
to the maxima of g±kk as shown in Fig. 9 d). In a similar form, in the case of
Fig. 9 c) where λ = |3| for k = 0,±π. Something noteworthy about this geometric
representation is that although all 3 systems have a nontrivial topology with |ν| = 1,
the FS metric allows us to establish differences between them. In particular, system
Fig. 9 a) corresponding to the regime of flat bands is the only system in which the
distribution of rays is not deformed under f .

This can be confirmed as in the FB regime, the FS metric is constant as,

∂kωk(λ = ±1) = ±l (cf. 9) (42)

and thus is equivalent to the usual metric over S1. Such equivalence is readily found
from the fact that an arc element ds of a geodesic in the FS manifold is given by,

ds2FS =

(
l

2

)2

dk2, |k| ≤ π/l (43)

equivalent to an arc element of a circle with a radius 1/2.

4. Conclusions

In conclusion, we have shown a mapping between a chain with s − p orbitals onto a
Kitaev- Creutz type model. With this map, we have found the existence of pseudo-
Bogoliubov modes and compact localized states in the flat band (FB) regime, which
obeys an analogous Landau relation (cf. Eq. 17). In addition, we obtained that there
is a nontrivial topological transition by condition ε = ±2 (see Fig. 3) that results in a
nontrivial winding number. Furthermore, our analysis reveals the fingerprint of the flat
bands with the FS metric that allows us to distinguish between pure states of systems
with the same topology; in particular, in this model, the FS metric is equivalent to
the usual metric over S1 in the FB regime. These findings could have implications
for developing simpler models that aid understanding of flat band formation and its
effects on many-body interactions.
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Appendix A. Bogoulibov transformation

We define the pseudo-Bogoulibov modes γk, ϱk as

γk ≡ ukak + vkbk and ϱk ≡ −v∗kak + u∗kbk (A.1)

and the anti-commutation relations for γk are

{γk, γ†k′} = (ukak + vkbk)
(
u∗k′a

†
k′ + v∗k′b

†
k′

)
+
(
u∗k′a

†
k′ + v∗k′b

†
k′

)
(ukak + vkbk)

= uku
∗
k′{ak, a

†
k′}+ vkv

∗
k′{bk, b

†
k′}+ ukv

∗
k′{ak, b

†
k′}+ u∗k′vk{bk, a

†
k′}

= (uku
∗
k′ + vkv

∗
k′) δkk′

= δkk′ , if |uk|2 + |vk|2 = 1 (A.2)

{γk, γk′} = (ukak + vkbk) (uk′ak′ + vk′bk′) + (uk′ak′ + vk′bk′) (ukak + vkbk)

= ukuk′{ak, ak′}+ vkvk′{bk, bk′}+ ukvk′{ak, bk′}+ uk′vk{bk, ak′} (A.3)

= 0 (A.4)

{γ†k, γ
†
k′} =

(
u∗ka

†
k + v∗kb

†
k

)(
u∗k′a

†
k′ + v∗k′b

†
k′

)
+

(
u∗k′a

†
k′ + v∗k′b

†
k′

)(
u∗ka

†
k + v∗kb

†
k

)
= u∗ku

∗
k′{a

†
k, a

†
k′}+ v∗kv

∗
k′{b

†
k, b

†
k′}+ u∗kv

∗
k′{a

†
k, b

†
k′}+ u∗k′v

∗
k{b

†
k, a

†
k′} (A.5)

= 0 (A.6)

and similar anticommutation relations for ϱk under the interchange of uk ↔ −v∗k and
vk ↔ u∗k. From the definition, A.1 we can obtain the following result

ϵ(k)
(
γ†kγk − ϱ†kϱk

)
= ϵ(k)

[
(u∗ka

†
k + v∗kb

†
k)(ukak + vkbk)− (−vka†k + ukb

†
k)(−v

∗
kak + u∗kbk)

]
= ϵ(k)

[(
|uk|2 − |vk|2

)
a†kak +−

(
|uk|2 − |vk|2

)
b†kbk + 2u∗kvka

†
kbk + 2ukv

∗
kb

†
kak

]
(A.7)

If we choose uk and vk as uk ≡ cos
(
ωk

2

)
, vk ≡ −i sin

(
ωk

2

)
where

sin(ωk) ≡
2λ sin(kl)

ϵ(k)
, cos(ωk) ≡

ε+ 2 cos(kl)

ϵ(k)
,

ϵ(k) =
√
(ε+ 2 cos(kl))2 + (2λ sin(kl))2. (A.8)

We recover the Hamiltonian form of Eq. 5. We note that only in the two cases
ε = 0, λ = ±1, the relation ωk with k is linear, that is, ωk = ±kl, if λ = ±1 and ε = 0.
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