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The presence of nearby conformal field theories (CFTs) hidden in the complex plane of the
tuning parameter was recently proposed as an elegant explanation for the ubiquity of “weakly
first-order” transitions in condensed matter and high-energy systems. In this work, we perform an
exact microscopic study of such a complex CFT (CCFT) in the two-dimensional O(n) loop model.
The well-known absence of symmetry-breaking of the O(n > 2) model is understood as arising from
the displacement of the non-trivial fixed points into the complex temperature plane. Thanks to a
numerical finite-size study of the transfer matrix, we confirm the presence of a CCFT in the complex
plane and extract the real and imaginary parts of the central charge and scaling dimensions. By
comparing those with the analytic continuation of predictions from Coulomb gas techniques, we
determine the range of validity of the analytic continuation to extend up to ng ≈ 12.34, beyond
which the CCFT gives way to a gapped state. Finally, we propose a beta function which reproduces
the main features of the phase diagram and which suggests an interpretation of the CCFT as a
liquid-gas critical point at the end of a first-order transition line.

Introduction— The notion of universality at continu-
ous phase transitions is central to our understanding of
most phases of matter. However, there are several exam-
ples of “weakly first-order” transitions in high-energy and
condensed matter physics which appear continuous at in-
termediate scales but eventually turn out to be first-order
at larger scales[1–15]. One example is 4D gauge theories
coupled to matter for which the gauge coupling is conjec-
tured to run slowly (“walking behavior”) at intermediate
energies but starts running fast again at low energies,
leading to confinement and chiral symmetry breaking
(“conformality loss”)[6]. Another example is the 2D clas-
sical Q-state Potts model, for which the ferromagnetic
phase transition is second-order for Q ≤ 4, but becomes
weakly first order for Q slightly above 4[1, 2, 10, 13].
Further, numerical studies of the transition between Neel
and valence bond solid states also point towards a weakly
first order scenario[7, 8, 12, 15].

Recently, it was proposed that fixed point annihila-
tion [7, 8], and more specifically the resulting presence
of complex conformal field theories (CCFTs) [9, 10] hid-
den in the complex plane of the tuning parameter, could
explain the widespread occurrence of weakly first-order
transitions. In this scenario, the slow RG flow on the real
axis is explained by the presence of a nearby CCFT in the
complex plane, and the properties of the approximately
conformal theory observed at intermediate scales can be
derived from the complex conformal data of the CCFT.
Complex CFTs are non-unitary CFTs with highly un-
usual behavior, since they have complex central charge
and scaling dimensions, and the RG flow around them
forms a spiral. Exploring complex CFTs is also rele-
vant from the perspective of understanding phase transi-

tions in dissipative quantum systems described by non-
Hermitian Hamiltonians [16–27].

The study of CCFTs is however challenging, and few
models and results exist [9, 10, 13, 14, 28–32]. First, since
the tuning parameter needs to be complexified, finding a
fixed point requires the tuning of at least two real param-
eters. Second, the study of CCFTs has so far relied on
holography [28, 32], perturbative methods [14], or on the
analytic continuation of real CFTs [10]. However, these
methods have their limitations: for example, the range
of validity of the analytic continuation is not known.

In this work, we propose instead to generalize the non-
perturbative numerical methods which exist for 2D CFTs
[33–35] to the case of complex CFTs. This enables us to
provide a complete characterization of microscopic mod-
els of 2D CCFTs, including the complex central charge
and scaling dimensions, the connection betweenscaling
operators and microscopic operators, and the finite-size
RG flow.

In order to demonstrate our approach, we work with
the O(n) loop model, which is closely related to the Q-
state Potts model in 2D and has the advantage of being
self-tuned to the Potts transition surface [36]. The tran-
sition surface, residing in the parameter space of the 2D
Potts model generalized to include vacancies, separates
the ferromagnetic and paramagnetic phases and contains
two fixed points. One of these fixed points belongs to
the Potts universality class and the other belongs to the
tricritical Potts universality [36] class. The two fixed
points collide and annihilate at Q = 4, resulting in a
weakly first-order transition for Q ≳ 4 which was re-
cently described in terms of CCFTs in Ref. [10]. Under
the mapping n =

√
Q, a finite (resp. diverging) corre-
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FIG. 1. (a) Example of a loop configuration on the hexagonal
lattice. (b) The location of the critical branches in the com-
plex x−1 plane as a function of n. The orange (resp. green)
line corresponds to xc,+ (resp. xc,−). RCFT stands for real
CFT.

lation length in the O(n) loop model corresponds to a
first-order (resp. second-order) transition for the Q-state
Potts model.

In this context, the first-order nature of the transition
in the Potts model for Q > 4 is related to the well-known
absence of a symmetry-breaking transition in the O(n >
2) model. This absence can be understood as arising
from the displacement of O(n) critical points into the
complex plane of the O(n) temperature parameter at n =
2[37]. This means the O(n) model actually still harbors
a critical point with a diverging correlation length for
n > 2, but for a complex value of the temperature. This
critical point is described by a CCFT and should lead to
a “walking” RG flow on the real axis for n ≳ 2. We note
that a generalization of the CCFT analysis to the O(n)
model was already proposed in Refs. [10, 31].

Model and CFT predictions— Starting from a trun-
cated high-temperature expansion of the O(n) model
on the honeycomb lattice, one obtains a model of non-
intersecting loops on the same lattice (see Fig. 1(a))
[38, 39]:

Z =
∑

i∈loop config

nNixli , (1)

where n of the O(n) model is reinterpreted as the loop
fugacity and x−1 is the loop tension (which corresponds
to the temperature of the O(n) model with x = βJ).
For each loop configuration i, Ni is the number of loops,
and li is the total length of all loops. Note that the loop
model is well defined even when n is not an integer.
This model was shown to be critical [33, 34, 38, 40]

for −2 ≤ n ≤ 2 if the loop tension sits on one of two
branches:

x = xc,± ≡
(
2± (2− n)1/2

)−1/2

. (2)

The xc,+ branch is the so-called dilute branch and sits at
the transition between the short-loop phase in the region

x < xc,+ (which is equivalent to the high-T paramagnetic
phase of the O(n) model) and the critical dense loop
phase in the region x > xc,+(see Fig.1(b)).
Both branches have a CFT description based on

Coulomb Gas (CG) [33, 34, 38, 40–42] techniques with
the following central charge:

c±(n) =
(
4− 7e(n)2 ± 3e(n)3

)
/
(
4− e(n)2

)
, (3)

where e(n) = (2/π) cos−1 (n/2) is the background
charge. A few notable examples are the Berezin-
skii–Kosterlitz–Thouless transition with c±(2) = 1, Ising
with c+(1) = 1/2, percolation with c−(1) = 0 and dense
polymers with c−(0) = −2.
A number of scaling dimensions are also known, like

the thermal and magnetic ones (corresponding in the
O(n) notation to the lowest singlet and vector operator,
respectively):

Xt± =16/g± − 2

Xh± =g±/32− (2/g±) (1− g±/4)
2

(4)

with g±(n) = 4 ± 2e(n). The thermal scaling dimen-
sion probes the response to a change the loop tension,
or equivalently to a change in temperature of the orig-
inal O(n) model. The magnetic exponent describes the
spin-spin correlations of the original O(n) model.
In order to extend the above CFT predictions to the

case of complex CFTs for n > 2, we follow Ref. [10], in
which an analytic continuation of known CFT predictions
for the Q ≤ 4 Potts model was continued to Q > 4. Since
the Q-state Potts model and the O(n) loop models realize
the same CFT branches for Q = n2, it is natural to use
the same analytic continuation here for the O(n > 2)
loop model. (Note however that the operator content is
different for these two theories, and that no equivalent of
Eq. 2 exists for the Potts model).
Based on Eq. 2, one finds that the two critical branches

meet at n = 2, and move to the complex plane for n >
2 (see Fig. 1(b)). Relatedly, one can easily see from
Eqs. 3 and 4 that the value of the central charge and of
the scaling dimensions becomes complex for n > 2 (see
continuous lines in Fig. 2 b-d). Note that, for n > 2,
the two branches are simply complex conjugates of each
other (xc,+ = x∗c,−, c+ = c∗−, and X+ = X∗

−), whereas
for n < 2 they correspond to very different physics.
Numerics at the fixed points— We now use transfer

matrix numerics to verify the predictions summarized in
Eqs 2, 3, and 4. We use periodic boundary conditions
(PBCs) along the horizontal direction such that the sys-
tem forms a long cylinder with a circumference of size L
(see Fig. 1(a)). Our implementation of the transfer ma-
trix generalizes the one of Ref. [33, 43] and is detailed in
the Supplemental Material(SM) [44].
If we order the eigenvalues of the transfer matrix by

their magnitude, |λL,0| ≥ |λL,1| ≥ . . . , the free energy
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FIG. 2. (a) Real part of the free energy vs system size
for various n. Solid line shows fit to FL = F∞ + πc

6L2 . The
fits were calculated using numerical data points starting from
L = 4 to L = 12. Real and imaginary parts of (b) the complex
central charge c± for the two branches, (c) the thermal scaling
dimension Xt±, and (d) the magnetic scaling dimension Xh±.
In (b)-(d), the solid lines are CFT predictions and the dots are
numerical results. All the results are calculated at x = xc,±.
The scaling dimensions Xt± (c) and Xh± (d) are obtained for
L = 11. (e) Magnitude of the largest three eigenvalues of the
transfer matrix (for L = 10), showing a transition for λ0 at
n = ng.

per site in the long cylinder limit is given by[33–35]:

FL =
2√
3L

log
(
λL,0

)
. (5)

An estimate for the central charge is then obtained by
finite-size scaling through FL = F∞ + πc

6L2 .
The finite-size estimate of the thermal scaling dimen-

sion is related to the gap between λL,0 and the subleading
eigenvalue λL,1:

Xt =
2π

L
log

(
λL,0

λL,1

)
. (6)

In order to calculate the magnetic scaling dimension,
it is necessary to define another Hilbert space sector (the
so-called magnetic sector) for which there is a single non-
contractible loop traversing the whole cylinder vertically.
Denoting the leading eigenvalue in that sector as λ̃L,0,
the estimate for Xh is:

Xh =
2π

L
log

(
λL,0

λ̃L,0

)
. (7)

The numerical results for the real and imaginary parts
of c, Xt andXh at x = xc,± are in perfect agreement with

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Re(x)

Im
(x
)

  

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Re(x)

Im
(x
)

  

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Re(x)

Im
(x
)

























































0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Re(x)

Im
(x
)

























































 

FIG. 3. Top: RG flow for the simple beta function βsim(x) =
−µ− (x− x0)

2 with x0 = 0.5 and with (a) µ = −0.05 or (b)
µ = 0.05. Bottom: RG flow for the generalized beta function
βgen(x) for (c) µ = −0.05 or for (d) µ = 0.05. The separatrix
is shown in blue. The red dots show the critical points and
the grey dot shows the gapped short loop fixed point at x = 0.

the CFT predictions for a broad range of loop fugacities
above n = 2. We show results up to n = 5 in Fig. 2, but
the agreement actually persists until n = ng ≃ 12.34. We
have thus confirmed the existence of CCFTs in the range
n ∈ [2, ng].

As shown in Fig. 2(e) (see also SM [44]), we find a level
crossing at n = ng [45] beyond which the transfer matrix
is gapped (i.e. log(|λL,0|/|λL,1|) ∼ O(1)), which means
the system has a finite correlation length. By inspection
of the dominant eigenstate for n > ng, it appears likely
that the corresponding phase is adiabatically connected
to the short loop phase obtained for x→ 0. We leave the
study of the range n > ng for future work and now focus
on n ∈ [2, ng].

RG flow and phase diagram— Now that we have es-
tablished the existence of CCFTs for n > 2, let us discuss
their broader significance for the phase diagram and the
RG flow. The standard scenario is that the presence of a
complex CFT right above the real axis leads to a slowing
down of the RG flow on the real axis, and hence the walk-
ing behavior. This is usually understood with the follow-
ing “simple” beta function: βsim(x) = −µ − (x − x0)

2,
where µ < 0 corresponds to real CFTs on the real axis,
and µ > 0 corresponds to complex CFTs located at
x = x0 ± i

√
µ (see Figs. 3(a) and (b)).

However, this beta function fails to capture several
properties of the flow. First of all, it predicts dδx

dl =
i
√
µδx + O(δx2), with δx = x − xc the distance from

the fixed point, which means the flow is actually cir-
cular around the CCFT until higher order terms in δx
are included. This is not the case for our model since
the linearized flow close to the fixed point is given by
the scaling dimension: dδx

dl = (2 −Xt)δx + O(δx2), and
Re(2−Xt) ̸= 0.
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FIG. 4. Top: Scaled gap Re(Xt) ≡ (2π/L) log(|λ0|/|λ1|) for
n = 8 and L = 9. Note that we restricted the calculation of
eigenvalues to the translation-invariant sector. The deep blue
lines indicate equimodular lines. One of them approaches the
predicted position of the CCFT xc(n), shown as a red dot.
The black dot is the location of the Q = 3 Potts transition
xP (n = 8) from Ref. [46]. Bottom: Phase diagram suggested
by the top panel. The inserts show pictorial representations
of the three phases.

Second, for any n, there should be an attractive fixed
point at x = 0 corresponding to the short loop phase
(high-T phase of the O(n) model). We thus expect most
of the trajectories emanating from the CCFT to reach
x = 0. However, since the flow around the CCFT is a
spiral, there needs to be a separatrix separating the tra-
jectories which pass to the right or the left of the CCFT
(see Fig. 3(d)). These features can be reproduced with
the following generalized beta function:

βgen (x) = x
(
−µ− (x− x0)

2
) (

−µ− (x+ x0)
2
)

(8)

where we added fixed points in the left plane which
should be there by x → −x symmetry since the num-
ber of loop strands is always even.

What is the origin of the separatrix shown in blue in
Fig. 3? A way to study this is to look at the thermal gap
Xt in the complex x plane (see Fig. 4 (top)). We find that
a line of Re(Xt) = 0 approaches the CCFT as L → ∞.
Such a line is called equimodular since it corresponds to
|λ0| = |λ1|, and it is expected to host a finite density
of zeros of the partition function in the thermodynamic

limit [47]. Following earlier work [48, 49], we propose
to identify this line of zeros with the separatrix of the
RG flow. This line should approach the fixed point as
L goes to infinity following the spiral RG flow. In the
Supplemental Material(SM [44]), we show a finite size
study of this flow based on the magnetic gap Xh. This
scenario is reminiscent of the Lee-Yang edge singularity
on the imaginary axis of the magnetic field for the Ising
model at T > Tc. There, a line of zeros on the imaginary
axis ends at a finite imaginary magnetic field ihc with
the non-unitary Lee-Yang CFT [50, 51]. Note that the
Lee-Yang CFT sits on the imaginary axis and its line
of zeros approaches the critical point as a straight line,
whereas here the line of zeros should actually approach
the CCFT following a spiral.

The equimodular line can also be understood as a first-
order transition line since it corresponds to a crossing
of the two dominant eigenvalues of the transfer matrix.
Based on an inspection of the corresponding eigenvectors
(see SM [44]), we interpret this first-order line as a transi-
tion between a gas phase to the left and a liquid phase to
the right. Pictorially, see Fig. 4 (bottom), the gas phase is
described as a dilute gas of single-hexagon loops, whereas
the liquid phase has a comparatively larger weight on
longer loops. In this context, the CCFT is thus inter-
preted as a liquid-gas critical point located at the end of
a first-order transition line.

Based on Fig. 3(d), we expect that all trajectories em-
anating from the CCFT end up at x = 0, except for the
separatrix. However, the question remains of where the
separatrix ends. Fig. 4 strongly suggests that it connects
to another critical point which was previously reported
to emanate from the x = ∞ point at n > 2 in the O(n)
loop model [46]. Indeed, at large x, another bifurcation
of critical points was observed at n = 2 in the O(n) loop
model: a repulsive fixed point at x−1 = 0 for n ≤ 2 (de-
scribing so-called fully packed loops [35]) splits at n = 2
into a repulsive fixed point at x=xP (n) and an attractive
gapped fixed point at x−1 = 0 which corresponds to a
hard hexagon solid with a three-fold breaking of trans-
lation invariance. The critical point at x = xP (n) was
studied numerically in Ref. [46] and was found to be con-
sistent with Q = 3 Potts criticality when n is sufficiently
large. Overall, this suggests a gas-liquid-solid phase dia-
gram with a liquid-gas first order line ending in a CCFT,
and a melting transition described by Q = 3 Potts. We
note that our conjectured beta function could be verified
through a numerical RG analysis [48].

Discussion— In conclusion, we have established nu-
merically the presence of CCFTs in the O(n) loop model
for 2 < n < ng, with ng ≈ 12.34. We have also proposed
a phenomenological beta function which reproduces the
main features of the model, including a line of zeros which
approaches the CCFT as L → ∞ and serves as a sep-
aratrix for the RG flow. We propose that this line of
zeros can be understood as a first-order line transition
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between a gas-like and a liquid-like phase. We hope our
results motivate further work on CCFTs in other con-
texts, like for non-Hermitian Hamiltonians or “strange
correlators” [52–54].

Regarding the abrupt disappearance of the CCFTs at
ng, an interesting observation is that Arg[xc,±(ng)] ≃
∓π/6. In the large-n limit, typical configurations are
dominated by the shortest loops, which are hexagons of
length 6. The fugacity of these loops is nx6 and the
partition function thus becomes real for Arg[x] = ±π/6,
which would explain why a CCFT cannot exist at that
angle of the complex x plane. This argument is however
only strictly correct in the large-n limit and its extension
to finite n is left for future work.

A final point of discussion is the relation between the
original O(n) model and its loop formulation. The main
difference between the two is that the former allows for
loop crossings [55]. Loop crossings correspond to 4−leg
watermelon operators with scaling dimension Xl=4 =
3g/8− 2/g + 1, which are irrelevant (i.e. Re(Xl=4) > 2)
for all n > 2, so the CCFTs should exist in the original
O(n) model as well.
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Supplemental material to “Hidden Critical Points in the Two-Dimensional O(n > 2)
model:

Exact Numerical Study of a Complex Conformal Field Theory ”

Appendix A: Numerical determination of ng

Numerically, we observe a level crossing at ng between the CFT ground state another state which appears gapped.
The value of ng has a finite-size scaling which can easily be deduced from the following argument. Denoting

fCFT (L, n) the free energy of the CFT ground state and fGapped(L, n) the free energy of the competing gapped state,
we identify ng(L) as the value of n for which

Re(fCFT (L, ng)) = Re(fGapped(L, ng)) (A1)

We will leave the real part of all further equations implicit to ease notation.
For large enough L, the gapped state should only have exponentially small deviations from the thermodynamic

limit: fGapped(L, n) ≃ fGapped(L = ∞, n). The CFT state, on the other hand, has the usual scaling: fCFT (L, n) ≃
fCFT (L = ∞, n) + πc

6L2 .
This leads to

fCFT (L = ∞, ng(L)) +
πc(ng(L))

6L2
= fGapped(L = ∞, ng(L)) (A2)

Now, using the Taylor expansion:

f(L = ∞, ng(L)) ≃ f(L = ∞, ng(L = ∞)) +

(
∂f(L = ∞, n)

∂n

)
n=ng(L=∞)

(ng(L)− ng(L = ∞)) (A3)

for both fCFT and fGapped and the expansion c(ng(L)) ≃ c(ng(L = ∞)) for the central charge, we find

fCFT (L = ∞, ng(L = ∞)) +

(
∂fCFT (L = ∞, n)

∂n

)
n=ng(L=∞)

(ng(L)− ng(L = ∞)) +
πc(ng(L = ∞))

6L2

= fGapped(L = ∞, ng(L = ∞)) +

(
∂fGapped(L = ∞, n)

∂n

)
n=ng(L=∞)

(ng(L)− ng(L = ∞))

(A4)

Using fGapped(L = ∞, ng(L = ∞)) = fCFT (L = ∞, ng(L = ∞)), we finally find(
∂fCFT (L = ∞, n)

∂n

)
n=ng(L=∞)

(ng(L)− ng(L = ∞)) +
πc(ng(L = ∞))

6L2

=

(
∂fGapped(L = ∞, n)

∂n

)
n=ng(L=∞)

(ng(L)− ng(L = ∞))

(A5)

which, after simplification, leads to

(ng(L)− ng(L = ∞)) =
πc(ng(L = ∞))

6L2

((
∂fGapped(L = ∞, n)

∂n

)
n=ng(L=∞)

−
(
∂fCFT (L = ∞, n)

∂n

)
n=ng(L=∞)

)−1

≡ α

L2

(A6)
Numerically, we can see that (

∂fGapped(L, n)

∂n

)
>

(
∂fCFT (L, n)

∂n

)
(A7)

for the relevant range of n around ng, which means that α > 0, i.e. that ng(L) approaches ng(L = ∞) from above
when L increases.
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FIG. 1. Breakdown of CCFT: (a)The magnitude of the largest three eigenvalues of the transfer matrix (for L = 10), showing
a transition of the groundstate at n = ng. (b) The phases of the largest three eigenvalues of the transfer matrix in radians.
(c)ng vs L and its fit with the theoretical prediction ng(L) = ng(∞) + α/L2

Appendix B: Analysis of the magnetic gap

The renormalization group flow is predicted to move away from the critical point following a spiral since

dδx

dl
= (2−Xt)δx+O(δx2) (B1)

with δx = x − xc and l the logarithmic scale. We can deduce that the dynamics of |δx| is controlled by 2 − Re(Xt)
and is repulsive for all n > 2, whereas the rotation of Arg(δx) is controlled by Im(Xt) and is clockwise (resp.
counterclockwise) around xc,− (resp xc,+).

In our finite-size numerics, we can obtain a proxy for the RG flow by tracking how a specific feature of the partition
function moves in the complex x plane as L is increased. Inspired by Ref. [47], we find it convenient to do so by
tracking points xd satisfying the following equimodular condition between the leading eigenvalues in the normal and
“magnetic” sector of the transfer matrix: |λL,0(xd)| = |λ̃L,0(xd)|. Equivalently, this corresponds to a zero of the real
part of the magnetic exponent Re(Xh(xd, L)) = 0. When L is large, we expect xd(L) to approach xc along the RG
flow lines, xd(L) − xc ∼ L−(2−Xt). It should thus spiral around xc for n > 2. In Fig 4, we show how xd(L) evolves
with L for various values of n. We can see a clear contrast between n < 2 and n > 2: in the former case, xd(L)
approaches xc from above following a straight line, whereas in the latter case, xd(L) exhibits a bent trajectory which
is suggestive of a spiral flow for larger L.

Appendix C: Transfer Matrix Construction

The lattice O(n) loop model we study lives on an infinitely long cylinder having L sites on the circumference. See
Fig. 1 in the main text for a representation of the lattice where the cylindrical geometry is imposed using periodic
boundary conditions (PBC) along the horizontal direction. The partition function for this cylindrical geometry is
given in Eq. 1 (main text), which we restate for convenience

Z =
∑

i∈loop config

nNixli . (C1)

The transfer matrix T provides a way to calculate the partition function Z for the infinitely long cylinder using loop
configurations defined on a cylindrical lattice of finite length M . The transfer matrix effectively adds a row of lattice
sites, one layer at a time, onto the top edge of the finite cylinder, thus building up towards the infinite cylinder from
bottom to top.
For this purpose, it is helpful to visualize the L lattice sites residing on the top edge of the finite cylinder with

partially drawn vertically dangling bonds (see Fig. 3(a)). Similarly, the lattice sites in the new layer to be added
will also carry partial dangling bonds with them. In this way, when a new layer is added to the edge of the finite
cylinder, the dangling bonds of the new lattice sites will connect to the existing partial dangling bonds to complete
the hexagons of the honeycomb lattice (see Fig. 3(b)).
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FIG. 2. Evolution of the real part of the magnetic exponent Re(Xh) in the complex x-plane for L = L− (left) and L = L+

(right). The loop fugacity is (a) n = 1.0, (b) n = 3.0 and (c) n = 4.0. A number of finite-size zeros of the magnetic gap (called
xd(L) in the text) are indicated with the numerals 1,2,. . . . Their flow towards the critical point xc (indicated with a filled
circle) as L increases is shown by the arrows in the right column, which point from xd(L−) to xd(L+).

The state of a row of dangling bonds, whether belonging to existing or new lattice sites, is described by non-
intersecting loop configurations. Specifically, each dangling bond can be occupied or unoccupied depending on
whether a loop passes over it. Two occupied bonds are considered to be matched if they are connected by the same
loop occurring in the previously added layers. An occupied bond can be unmatched or standalone if the bond is
visited by a non-contractible loop. An example of a non-contractible loop is a loop running along the length of the
infinitely long cylinder extending from one open boundary to another.

We can represent the above scenarios using the following notation: a dot “.” for an unoccupied bond, a left “{” or
right “}” brace for an occupied matched bond, and a vertical line “|” for an occupied unmatched bond. Therefore,
the collective state of a row of L dangling bonds, which we call connectivity, is represented by a length L string
comprising the four symbols “.”, “{”, “}”, “|”. However, not all 4L string possibilities are allowed. Since only
non-intersecting loop configurations are permitted, the string denoting a connectivity α must be a balanced braces
expression, where all opening and closing braces are correctly matched and nested while maintaining PBC. For
example, the connectivity “..” has three matched pairs of occupied bonds: one which connects bond 1 with bond
2, one which connects bond 4 with bond 8, and one which connects bond 5 with bond 7. Bonds 3 and 6 are unoccupied.

Defining connectivity allows us to identify a “conditional” partition function Z
(M)
α [38, 39] for the finite cylinder of

length M , which sums over loop configurations matching the connectivity α for the top dangling bonds, i.e.,

Z(M)
α =

∑
i|α

nNixli . (C2)

Using Z
(M)
α , the role of the transfer matrix T can be stated precisely. The transfer matrix obtains the partition
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FIG. 3. Construction of the transfer matrix. (a) The transfer matrix adds a new layer of lattice sites with dangling bonds
to the top layer of the finite cylindrical lattice. (b) The dangling bonds from the new layer attach to dangling bonds of the
existing cylinder to complete the hexagons of the honeycomb lattice. The length of the cylinder increases by one layer in the
process. (c) Loop configurations appearing on the existing cylinder gets extended or propagated upward to the new layer by
the application of the transfer matrix.

function of the cylinder with the added layer as a weighted sum over Z
(M)
α [38, 39]

Z
(M+1)
β =

∑
α

TβαZ
(M)
α . (C3)

Here, α and β are elements from the set of connectivities, each represented by balanced braces expression as discussed
earlier. The element Tβα of the transfer matrix, indexed by the connectivities α and β, is given by

Tβα =
∑

m∈{α→β}

nnlx2L−nv , (C4)

where m iterates over all possible ways the loop configurations in connectivity α can be extended to reach configura-
tions in β when adding a new layer (see Fig. 3(c)). While performing the actual computation of Tβα, we were able to
list out these ways using a combinatorial approach of applying a set of finite moves to the connectivity α that allows
us to reach β. The remaining symbols in Eq. C4 denote the number of empty (or unoccupied) bonds added nv and
the number of loops closed nl by appending the new layer.

In the asymptotic limit M → ∞, the partition function Z (Eq. C1) can be related to Z
(M)
α (Eq. C2) by appropriately

tracing over the connectivities α, and as a consequence of Eq. C3, the partition function Z is determined by the
spectrum of T. Using Eq. C4 and generating the table of all possible connectivities for a layer with L sites, we
compute and populate only the non-zero elements Tβα of the transfer matrix. We diagonalize the final matrix
using standard linear algebra subroutines provided by packages such as ARPACK to obtain the first few dominant
eigenvalues of the transfer matrix.

Appendix D: Characterization of the gas and liquid phases

In the main text, we give an interpretation for the equimodular line approaching the CCFT as a line of first-order
transition between a gas phase on the left and a liquid phase on the right. In this appendix, we give evidence for this
interpretation based on an observable which is a proxy for the average loop length, and which jumps abruptly from
a small value in the gas phase to a larger value in the liquid phase.

Average loop length— We calculate D, which is a proxy for the average loop length, and is defined as:

D =

∑′
α |ψα|2D(α)∑′

α |ψα|2
(D1)

where
∑′

α is a sum over all connectivities except the empty one (i.e. except the one for which all bonds are inoccupied),
where ψ(α) is the right eigenvector of the transfer matrix corresponding to the eigenvalue with largest magnitude
λ0, and where D(α) is the average distance between connected loop strands in connectivity α. For example, for
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the connectivity α = {}.{{.}}, the distance between matched braces is 1 for the pair connecting bonds 1 and 2, the
distance is 4 for the pair connecting bonds 4 and 8, and the distance is 2 for the pair connecting bonds 5 and 7. This
leads to an average of D(α) = (1 + 4 + 2)/3 = 7/3. Note that because we use periodic boundary conditions, the
distance between bonds i and j with i < j is defined as min(j − i, |j − i− L|).

In the gas phase, we expect to be dominated by the shortest loops and thus by connectivities of the type {}..{}.{}..
This predicts a value of D close to 1. In the liquid phase, we expect to have D substantially larger than 1 since
there should be a comparatively larger weight on longer loops, and thus on connectivities with larger distances, like
{...}.{..}.
This is confirmed by Fig. 4, which shows that D ≃ 1 in the gas phase, and that D jumps abruptly to a larger value

when crossing the first-order transition line located above the CCFT. On the other hand, when going from left to
right below the CCFT, the value of D is seen to change continuously in analogy with a supercritical fluid.
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FIG. 4. Map of average distance between connected bonds (D) for n = 8 and L = 9. The gas (left) and liquid (right) phases
are separated by a first-order transition line which approaches the CCFT from above (the red dot shown the prediction for the
CCFT location). Below the CCFT, the gas and liquid phases are smoothly connected, in analogy with a supercritical fluid.
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