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Tissue growth underpins a wide array of biological and developmental processes, and numerical
modeling of growing systems has been shown to be a useful tool for understanding these processes.
However, the phenomena that can be captured are often limited by the size of systems that can be
modeled. Here, we address this limitation by introducing a Lattice-Boltzmann method (LBM) for a
growing system that is able to efficiently model hydrodynamic length-scales. The model incorporates
a novel approach to describing the growing front of a tissue, which we use to investigate the dynamics
of the interface of growing model tissues. We find that the interface grows with scaling in agreement
with the Kardar-Parisi-Zhang (KPZ) universality class when growth in the system is bulk driven.
Interestingly, we also find the emergence of a previously unreported hydrodynamic instability when
proliferation is restricted to the tissue edge. We then develop an analytical theory to show that
the instability arises due to a coupling between the number of cells actively proliferating and the
position of the interface.

I. INTRODUCTION

Many biological processes, from cancer metastasis to
morphogenesis, rely on the integration of cell prolifera-
tion and collective cell movement. While cell prolifera-
tion is known to be regulated by the mechanical proper-
ties of the tissue [1], it is also becoming increasingly clear
that proliferation alters the properties, and consequently
the dynamics, of the tissue in return [2–4]. Whereas the
forces generated during cell division events are well un-
derstood [5], our understanding of how these affect dy-
namics at the collective level is comparatively more lim-
ited [6]. This is due to the difficulty in determining how
cellular scale processes, such as cell division, manifest
themselves as macroscopic dynamics [7].
Numerical models offer a fruitful avenue for exploring

growing and collectively migrating biological systems [8].
Cell based simulations have shown how cell division af-
fects the structure of, and fluidizes, epithelial tissues [9–
12]. They have also delineated the effect of cell division
on different macroscopic dynamics, such as on coherent
angular motion in morphogenesis [13] and how the in-
terplay of mechanical stresses and cell proliferation can
drive fronts of growing cells [14]. However, due to the in-
crease in computational complexity as the number of cells
increase, cell based models are limited in the length-scale
of system they can model, leading to a need for methods
that can describe these growing systems in the hydrody-
namic limit.
Continuum models have been employed to study grow-

ing bacterial colonies in two [15, 16] and three dimensions
[17], while multiple studies have described growing bio-
logical systems in 2D using a hybrid lattice-Boltzmann

∗ t.bertrand@imperial.ac.uk
† c.lee@imperial.ac.uk

method (LBM) [2, 18, 19]. LBMs are an incredibly effi-
cient means of coarse-grained modeling. Well established
as an efficient means of simulating passive fluids, more
recently active nematic [20] and polar [21] systems have
been described using LBMs. Previous LBM studies of ac-
tive systems have either used periodic domains in which
the entire system is active, or have described the bound-
ary of the active material using a phase separating system
with a phase field [2]. These approaches are valid if the
phenomena under study relate to behavior in the bulk
or if the system is not completely phase separated, i.e.
the ‘vapor’ phase has a non-vanishing, albeit low, den-
sity. However, they are not appropriate in systems with
well-defined boundaries and areas completely devoid of
cells, such as expanding tissue layers or densely packed
bacterial biofilms.

In such systems, properly capturing the interface is
critical to an accurate description of important physiolog-
ical processes. As such, in recent years, numerous studies
have sought to characterize the dynamics of the interface.
This has been done by examining the stability of growing
tissue fronts under different conditions [22–25] or by as-
certaining the scaling behavior of the interface roughness
to determine the universality class to which the growth
process belongs [26–31]. Importantly, these studies led
to conflicting results, leaving the question of the dynam-
ics of growing tissue fronts and their stability unsettled.
The observed disagreements are likely due to the diffi-
culty in simulating large enough systems; to address this
outstanding issue, we here develop a methodology able
to overcome these computational challenges.

In this article, we address these issues by introduc-
ing a novel LBM for growing biological tissues capable
of describing faithfully the dynamics of growing fronts.
Crucially, our method for modeling the interface of our
tissue ensures there is no low density vapor phase and
our tissue has a sharp edge. Using this model, we study
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FIG. 1. A LBM for a growing biological system. (a) We discretize our system (left) onto a hexagonal lattice (middle), with
each lattice point representing a number of cells. There is a growing front beyond which the distribution function fi is zero in
all lattice directions, (white sites in right). (b) Each time-step is subdivided into a streaming step and redistribution step. In
the streaming step, fi is advanced by one time-step to get an intermediate distribution f∗

i . A steady-state distribution fss
i is

then calculated using f∗
i and fi is redistributed such that it relaxes towards fss

i . (c) The growing periphery is enforced using
a ‘bounce-back’ condition during the redistribution step. When the density at a site is below a critical density ρc, instead
of relaxing fi towards the steady state distribution fss

i , the directions of the distribution function are reversed such that the
mass that would next stream to an empty site is now bounced back in the opposite direction (dashed arrow). The mass just
streamed from an empty site, which would be zero, is then set to stream back out instead (dotted arrow).

the dynamics and stability of a growth front. Specifi-
cally we find that the interface of a tissue growing due
to bulk driven cell proliferation pertains to the Kardar-
Parisi-Zhang (KPZ) universality class. We then con-
sider tissue growth with a density dependent prolifera-
tion regime where proliferation occurs around the grow-
ing front, where we again find KPZ scaling in the inter-
face width for small system sizes. However, we also find
a previously unreported mechanical instability at larger
system sizes, which we explain using a linear stability
analysis. These findings demonstrate the efficacy of us-
ing this LBM, as its mesoscopic scale and efficiency made
it possible to simulate large enough systems to observe
this instability and allow us to clearly exhibit KPZ scal-
ing.

The paper is organized as follows. In section II, we in-
troduce our novel LBM for a growing system with a fluc-
tuating interface. In section III, we characterize the scal-
ing behavior of the interface using a bulk driven growth
regime. In section IV, we then study interface fluctu-
ations using a density dependent growth regime, before
examining the emergent instability and how it forms. We
then discuss our model and conclusions in section V.

II. LATTICE BOLTZMANN METHOD

The key development of our LBM is the inclusion of
cell proliferation and a growing interface that properly
captures the behaviour of tissue interfaces by having a
sharp boundary, beyond which is completely devoid of
any mass. However, for context, we first give an overview
of the LBM.

As the starting point for our present model we take a
recently developed LBM for a dry active fluid system [21].
The efficiency of the LBM stems from solving, instead of
the hydrodynamic equations of motion (EOM), a simpli-
fied system that obeys the same hydrodynamic symme-
tries as the real system, leading to identical behavior in
the hydrodynamic limit [32, 33]. This is done by calcu-
lating the dynamics of a discretized distribution function
fi(t, r), which represents the distribution of mass at time
t and position r, where i corresponds to directions on the
lattice on which our system is discretized. We use a two-
dimensional triangular lattice [Fig. 1(a)], termed D2Q7
in standard LBM notation, meaning mass moves along
lattice vectors ei = cos [(i− 1)π/6]x̂ + sin [(i− 1)π/6]ŷ
for i ∈ {1, 2, ...6} and e0 = 0, corresponding to mass
which is at rest. The lattice speed c is the ratio of our
grid spacing ∆x to time-step ∆t, which we choose to be
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1. The hydrodynamic variables of interest, cell density ρ
and velocity u can then be calculated from fi using

ρ(t, r) =

6
∑

i=0

fi(t, r) , u(t, r) =

∑6

i=0 fi(t, r) cei
ρ(t, r)

. (1)

We then evolve fi according to fi(t+∆t, r+ cei∆t) =
fi(t, r) + Ωi, where Ωi is a collision operator that ensures
matter in our system interacts whiles obeying the same
symmetries as the system we wish to model. While there
are many choices for Ωi, we use the Bhatnagar-Gross-
Krook collision operator [34] with additional fluctuations
ηi, meaning fi evolves according to:

fi(t+∆t, r+ei) = fi(t, r)−
1

τ

[

fi(t, r) − fSS
i (t, r)

]

+ηi(t, r) ,

(2)
where we use r + ei for brevity, as r + ei = r +∆xei =
r+ cei∆t. Our relaxation parameter is τ , ηi are random
fluctuations and fSS

i is a steady state distribution which
respects the same symmetries as our system, meaning
our system obeys the correct symmetries as it relaxes
towards fSS

i . While ‘steady state’ implies a quantity that
does not change, fSS

i refers to the distribution function
the system would have were it in steady state given the
current density and velocity fields, and so it changes as
these quantities change. We define fSS

i as

fSS
i = wiρ

(

1 + 4
ei · u

∗

c
+ 8

(ei · u
∗)2

c2
− 2

|u∗|2

c2

)

, (3)

where wi are lattice direction weights, with w0 = 1/2 and
wi6=0 = 1/12, and u∗ is our steady-state velocity that de-
pends on the system we are modeling. We define fSS

i in
this way because, if u∗ = u, Eq. (3) would be the equi-
librium distribution used to model passive fluids in 2D
with a triangular lattice, as it conserves mass and mo-
mentum [33]. However, as active systems do not require
the conservation of momentum, we can choose u∗ to be
any function of u and ρ that respects the symmetries of
the system of interest. As our focus here is to study the
effects of proliferation and not motility, here we choose
u∗ = (1 − µ)u, where µ encodes dissipation arising from
friction with the substrate, although different forms of u∗

can be used to model active self-propulsion [21]. As we
have defined it, Eq. (2) always conserves mass regardless
of our choice of u∗, which is obviously not the case in
a growing system. However, choosing fSS

i so as to con-
serve mass allows easier control over precisely how mass
is added to our system and so how cell proliferation is
modeled.
The fluctuations ηi in Eq. (2) are defined as

ηi(t, r) = η̃i(t, r)−
1

7

6
∑

i=0

η̃i(t, r) , (4)

where η̃i is an uncorrelated random variable that is uni-
formly distributed between [−σ, σ]. This form of noise

is chosen so as to conserve mass, for reasons discussed
previously.
We evolve Eq. (2) in two steps: a streaming step and

a redistribution step [Fig. 1(b)]. In the streaming step
fi is evolved by one time-step to give an intermediate
distribution f∗

i (t+∆t, r+ ei) = fi. In the redistribution
step, fSS

i is then calculated at each point by calculating
the hydrodynamic variables based on f∗

i . We then relax
f∗
i towards fSS

i using Eq. (2) by replacing fi(t, r) with
f∗
i (t+∆t, r+ ei) on the right hand side. Fluctuations ηi
are then added to give the final distribution at the next
time-step fi(t+∆t, r+ ei).
From this model, we incorporate both cell proliferation

and a growing tissue boundary. To model cell prolifer-
ation, inbetween the streaming and redistribution steps,
we add mass at a chosen a site by increasing fi of two
opposite lattice vectors, for example f1 and f4, by ρcell/2.
Here ρcell corresponds to the mass of one cell. The di-
rection in which mass is injected is chosen at random
and replicates the extensile nematic nature of cell di-
vision [2]. We determine the number of sites at which
we inject mass by setting growth to be at a constant
rate g. The number of sites to be randomly selected is
then ns = g mtot/ρcell, where mtot is the total cell mass,
found by summing ρ over all lattice points. Proliferation
sites are then selected, with replacement, at random un-
til enough mass has been added to the system. Time or
position dependant proliferation rates can then be imple-
mented depending on the probability distribution from
which proliferation sites are selected.
Here, we look at two growth regimes. Initially, we se-

lect proliferation sites from a uniform distribution, mean-
ing proliferation in the active portion of our tissue is
equally likely in any occupied site in the bulk or at the
interface, meaning the majority occurs in the bulk. We
use the phrase ‘active portion’ because, as the tissue
grows and the interface advances, we advance the rear
wall of the model with it. This greatly improves effi-
ciency and reflects the fact that biological tissues typ-
ically have a section towards the front that is actively
proliferating, with cells far from the boundary becoming
quiescent. Secondly, we implement a more biologically
relevant growth regime where the local proliferation rate
is dependent on the local density in the system, which
concentrates proliferation to the interfacial region. This
is motivated by increased cell density causing increases
in tissue pressure away from the tissue boundary, [35],
which can inhibit cell proliferation [36]. Now, when a
lattice site is randomly selected, cell division occurs with
probability pdiv(r), which decays linearly with the local
density according to

pdiv(r) =

{

1− ρ(r)/ρ0 , if ρ(r) > ρc
0 otherwise

(5)

where ρ0 the critical density above which proliferation
ceases. This regime models a scenario where crowd-
ing suppresses proliferation due to increased compressive
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FIG. 2. KPZ scaling. (a) Time evolution of the interface width w for systems of different length L. (b) Curves collapse when

rescaled by KPZ exponents. The dashed line showing scaling t1/3 highlights the corresponding KPZ growth exponent. KPZ
scaling of (c) w∞ and (d) t∞ with L. The dashed line is a guide showing KPZ scaling for (c) the roughness exponent α,

w∞ ∼ L1/2 and (d) the dynamic exponent z, t∞ ∼ L3/2.

stresses, such as in epithelial layers [37], meaning the bulk
of the tissue becomes quiescent.

Moving growth front: a two-step bounce-back

method

While growth in the form of mass injection can be
readily implemented within the LBM framework, a key
difficulty in applying it to a growing system is how the
interfacial dynamics should be captured. Here, our key
innovation is to use a two step thresholding method to
accomplish this task. Specifically, our method ensures
that the ‘vapor’ phase is completely devoid of any mass,
which also distinguishes our method from existing LBMs
applied to phase separating systems. This allows the
proper modeling of the tissue layer’s boundaries using
a LBM for the first time. We achieve this by developing
a type of freely moving bounce-back method. In the re-
distribution step, if the density at a given site is below a
threshold value ρc, instead of relaxing towards fSS

i , the
directions of f∗

i are reversed such that f∗
i = f∗

j where
ej is the reverse direction of ei (1 ↔ 4, 2 ↔ 5, 3 ↔ 6).
This means the mass just streamed to a given node in
the stream step is reflected such that it now travels back
in the direction it came from [Fig 1(c)]. This ensures
that any mass that would be streamed ‘out’ of the sys-
tem in the next time-step is rebounded back in and the
lattice site it would be streamed to remains empty. This
ensures that at the edge of the tissue there is one lattice
site with ρ < ρc and beyond this the system is devoid
of mass. This mimics a surface tension like force and al-
lows our LBM to easily model sharp interfaces such as
an epithelial tissue edge.

III. BULK DRIVEN GROWTH

To demonstrate the efficacy of our model, and the util-
ity of our method for capturing the dynamics of the in-
terface, we use our model to study the dynamics of the
tissue boundary, or interface, initially in a regime where
proliferation is taken to happen uniformly across the ac-
tive portion of the tissue, meaning the majority of it oc-
curs in the bulk. Growing interfaces are characterized
by calculating how the roughness of the interface — or
interface width — scales with space and time. Calcu-
lating the scaling behavior of the interface width allows
one to determine critical exponents and hence the uni-
versality class to which the system belongs [38, 39]. As
we are dealing with a nonequilibrium, growing system,
we would generically expect that it belongs to the KPZ
universality class [38].

Interface growth in biological systems has been studied
experimentally [28, 40–42] and numerically [26, 27, 43,
44] and, although KPZ scaling has been observed [26, 28,
43, 44], there is some debate as to what the proper scaling
is. Scaling in agreement with the molecular beam epitaxy
universality class has also been reported [40, 41], along
with scaling inconsistent with either class [42, 45]. This
debate often stems from the difficulty in simulating large
enough systems or subtleties in the models used, such
as heterogeneity in the surrounding environment [27]. It
can also arise from the difficulty of using experimental
data to perform the scaling analysis [46]. Using a model
as generic and efficient as our LBM allows for insight into
how cell proliferation manifests itself in interface growth
without these subtleties.

To examine how the interface evolves, we calculate the
interface width w, defined as the standard deviation of
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(c)(a) (b)

FIG. 3. A system spanning instability causes divergence from KPZ scaling. (a) Interface growth curves for systems with
L < 320 collapse when rescaled by KPZ exponents, but diverge for L > 320. (b) Examples of steady-state profiles of the
interface position h shifted by the average interface position h̄ for systems with L = 320 (light blue), L = 640 (dark blue) and
L = 1280 (black). (c) Probability distributions for the difference between the number of cell divisions ∆ρcell around hmax and
hmin for L = 40 (light blue) and L = 640 (dark blue). (inset) Schematic of the proposed instability mechanism, proliferative
regions are shown in dark blue. The more advanced sections of the interface are more proliferative.

the interface height h(y, t)

w(t) =

√

1

L

∫ L

0

[

h(y, t)− h̄(t)
]2

dy , (6)

where L is the width of the domain. How the interface
scales in time and space can be completely described by
two scaling exponents α and β. The growth exponent β
describes how w grows before it reaches its steady-state,
saturation value w∞ at time t∞, that is w ∼ tβ (t ≪ t∞).
The roughness exponent α describes how w∞ scales with
the system size L, wsat ∼ Lα (t ≫ t∞). The time for the
system to reach steady-state then scales according to the
dynamic exponent z = α/β, meaning t∞ ∼ Lz. For KPZ
scaling one would expect α = 1/2 and β = 1/3, leading
to z = 3/2.

To investigate this, we implement our LBM, with pro-
liferation uniform throughout the non-quiescent region.
We implement it on rectangular domains of different
widths L, with periodic boundary conditions at the top
and bottom boundaries, and a bounce-back condition at
the rear wall. A full description of the implementation,
along with a complete list of parameter values used, can
be found in Appendix A.

Fig. 2(a) shows the time evolution of w for different
system sizes, showing, as anticipated, that each systems
interface grows at the same rate but that larger systems
permit rougher interfaces. Upon rescaling w and t by the
appropriate KPZ exponents, L1/2 and L3/2 respectively,
we find a very good curve collapse, indicating the system
is exhibiting KPZ scaling [Fig. 2(b)]. This is underlined
in Fig. 2(c) and (d), which show the appropriate scaling
of w∞ and t∞ with L.

IV. DENSITY DEPENDENT GROWTH

Interface growth

We now implement a more realistic scenario, where
proliferation is concentrated towards the boundary of the
system. We do this by implementing a density dependent
growth regime following Eq. (5), keeping other parame-
ters the same. Upon studying the growth of the interface
in this regime, we again see KPZ scaling for systems with
L < 640, however, for larger system sizes KPZ scaling is
not observed and the interface width appears to diverge
[Fig. 3(a)].

To investigate the cause of this divergence, we plot
the steady-state profile of the boundary for systems of
different sizes [Fig. 3(b)]. Surprisingly, upon doing this
we see that, for sufficiently large L, the interface is sub-
ject to a system-spanning instability, at the largest wave-
length permitted by the system. To gain an insight into
the cause of the instability, we studied proliferation in
the tissue in the area around the most advanced (hmax)
and least advanced (hmin) positions of the interface. We
define these areas as rectangular regions extending 10
lattice sites above and below hmax or hmin, and 20 lat-
tice sites into the bulk. We find that, for larger system
sizes, there were more proliferation events around hmax

than hmin, although this pronounced bias was not seen
for smaller system sizes [Fig. 3(c)]. This led us to hypoth-
esize that a local increase in the proliferation rate around
protrusions to the interface could lead to an increase in
the local interface velocity, thus driving the instability
[Fig. 3(c) inset]. To understand the mechanism driving
the instability further we now develop a minimal model
of interface growth in our system.
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Linear stability analysis

The mechanism driving the instability is unclear as,
while instabilities in active systems arising from motility
have been previously reported [22–25], instabilities aris-
ing from cell proliferation have been less well studied.
Cell proliferation has been found to induce an instability
at a boundary between two tissues [47, 48], or when a tis-
sue is growing into another viscous medium [49, 50], but
an instability arising from a purely proliferative system
expanding into a void has not been reported in the lit-
erature. To understand the mechanism at play, we write
down an equation of motion for the interface position
h. Our numerical results suggest that for the instabil-
ity to occur we require the growth rate of the interface to
increase as we move from hmin to hmax, and so be propor-
tional to h. This can be understood by considering what
happens when the boundary locally advances. Any local
increase in h will necessarily have a lower density than
the area preceding it and so a higher likelihood of cell
division. Due to friction, and the limits on how quickly
information can propagate in the system, the effect of
these changes in density can only propagate back into
the bulk at a finite speed. Consequently, if the timescale
for cell proliferation is shorter than that of this propa-
gation, areas where the interface is more advanced grow
faster. Along with this, surface tension, coming from the
bounceback condition in our LBM, also clearly has an ef-
fect on interface dynamics. The dynamics of h are thus,
to lowest order, governed by

∂th(y, t) = kh(y, t) + γ∂2
yh(y, t) , (7)

where k is the growth rate and γ the surface tension. We
note that this equation is far more general than our LBM
and applies to any system in which the growth rate of the
interface depends on its position. To probe the stability
of this system, we perform linear stability analysis on
Eq. (7). We add a small amplitude perturbation of the
form δh = h0e

ωt+iqy, where |δh| ≪ 1 and ω describes the
growth rate of each wave number q, to a flat interface in
a frame of reference comoving with the mean interface
height. Doing so yields the dispersion relation

ω(q) = k − γq2 , (8)

which can be seen plotted in Fig. 4. From Fig. 4 it is
clear that the fastest growing mode will always be the
largest one permitted by the system, the system size, and
that the growth rate can be positive if wave numbers less
than

√

k/γ are permitted, corresponding to system sizes

L >
√

γ/k. This is why the instability is only seen at
sufficiently large system sizes, as the system only becomes
unstable at a critical length Lc =

√

γ/k. However, we
note that Lc is dependent on system parameters and so
may not be very large if the growth rate is sufficiently
fast or the surface tension weak.
To demonstrate that this is indeed the instability

mechanism, we implement a different growth regime

FIG. 4. Growth rate of perturbations of different wave num-
bers. Perturbations only become unstable at wave numbers
q <

√

k/γ, corresponding to lengths L >
√

γ/k. Beyond
this threshold, the fastest growing mode is always the longest
wavelength permitted by the system.

while keeping the overall growth rate constant. We re-
strict growth to being in a specified section of lattice sites
in the bulk, far from the interface. We do this in a system
of size L = 640, where the instability was previously ob-
served. While the biological plausibility of this scenario
is debatable, introducing this type of growth removes the
purported instability mechanism as the width of prolifer-
ating region is constant across the entire domain length
L and so independent of the interface position. As can
be seen in Appendix B, introducing this growth regime
eliminates the instability. These results suggest that any
growing system, where the number of constituents that
are able to proliferate increases locally where the inter-
face advances, could be susceptible to this system span-
ning instability.

V. DISCUSSION & OUTLOOK

We present a novel LBM for modeling growing, ac-
tive systems. Our bounce-back method for the interfacial
dynamics ensures well-defined, freely moving boundaries
that, for the first time, allows for the proper physics of
growing tissues to be captured using a LBM. Using this
model, we demonstrate that the growth of the boundary
driven purely by proliferation displays KPZ-like scaling,
but also displays an instability in physiologically relevant
proliferation regimes where proliferation is concentrated
at the boundary. We formulate an analytical theory to
demonstrate this instability arises due to a proliferation
rate dependant on the position of the interface. This
theory is far more general than the particular model in
which we observed the instability, and asserts that any
system where the local growth rate is dependant on the
interface position will be susceptible to this instability.
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The results presented here are for a single value of the
friction coefficient µ. However, we note that for very
high values of µ the system appears to undergo a rough-
ening transition where the steady-state interface width
becomes independent of the system size L. Roughening
transitions are known to occur when fluctuations on the
system are sufficiently suppressed [38] and an interest-
ing avenue of future work would be to investigate this
transition, and the impact of friction on the system more
generally, in more detail.
Also, here the only activity in the system is due to cell

proliferation, focusing our study on systems where the
dynamics are dominated by growth processes. However,
there are many biological contexts where cell motility,
which can be included in the model due to its flexibility
[24], plays an important role in the collective behavior of
the system. Exploring the effect of motility, its interplay
with cell division, and the impact this has on the dynam-
ics of the boundary and the onset of instability, presents
an interesting avenue for future work.
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Appendix A: LBM Implementation

We initialise our system by setting the initial veloc-
ity field to 0 everywhere and generating an initial den-
sity distribution with a flat interface, centered around
some initial average density ρinit, uniformly distributed
on [0.9ρinit, 1.1ρinit]. From these initial distributions we
calculate an initial fSS

i , which we set as our initial fi.
The algorithm then proceeds in the following steps:

1. Streaming step to generate intermediate distribu-
tion f∗

i (t+∆t, r+ cei∆t) = fi.

2. Calculate ρ and u from f∗
i .

3. Add mass from cell proliferation.

4. Calculate u∗ and hence fSS
i .

5. Redistribution step:

• If ρ(r) ≥ ρc: redistribute fi = f∗
i −

[

f∗
i − fSS

i

]

/ τ .

• If ρ(r) < ρc: set fi = fj where ej is the reverse
direction of ei (1 ↔ 4, 2 ↔ 5, 3 ↔ 6).

6. Add noise: fi → fi + ηi, provided ρ > ρc.

7. Correct any negative values of fi that arise from
adding noise:

• If f0 < 0: set f0 = 0. This will change the
density, so rescale each direction according to
fi → ρfi/Σjfj .

• If fi < 0 for i > 0: for i > 0, set fj = fj + |fi|
where ej is the reverse direction of ei (1 ↔
4, 2 ↔ 5, 3 ↔ 6) and set fi = 0.

As our tissue grows we advance the rear wall such that
it is always at least max(50, 10w) lattice units behind
h̄. We use system parameters c = 1, ρc = 0.05, τ = 1,
ρinit = 0.1, σ = 0.01, µ = 0.001, g = 0.001 and ρcell =
0.01. For the density dependent growth regime we use
ρ0 = 0.15.

Appendix B: Suppressing the instability

To test the purported instability mechanism, we com-
pare the density dependant growth regime at L = 640,
where we see the instability, with a growth regime where
proliferation is restricted to the first 30 columns of lattice
sites from the rear wall, but uniform within this region
[Fig. B.1]. We can see that introducing this regime with
growth restricted to the bulk suppresses the instability,
in agreement with our theory.
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