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Similar to radiation pressure, photothermal effects connect the optical path length to an in-
tracavity field, resulting in nonlinear behavior of the resonator due to thermal effects. Here, we
theoretically investigate the nonlinear optics that emerge as a result of photothermal effects in a
multimode optical system composed of two cavity modes coupled via hopping coefficient and with
two mechanical modes through coupling rates. We report single to double photothermally-induced
transparency (PTIT) dips, and a single sharp photothermally-induced absorption (PTIA) peak,
and demonstrate that photothermal and strong coupling coefficients can suppress this phenomenon.
Moreover, we observe Fano resonances in the absorption profile by monitoring probe transmission in
the off-resonant configuration of the transparency phenomenon. The dynamics of group delay or ad-
vance are investigated in the range of transparency such that a sharp dip can assist in achieving slow
light for a longer time. Using appropriate experimental parameters, our proposed work can pave
the way for future practical applications in quantum information processing based on multimode
interactions.

PACS numbers:

I. INTRODUCTION

Various phenomena related to radiation pressure has
been investigated for many years within the framework of
mechanically compatible optical cavities for damping of
micromechanical dynamics [1, 2], actuation [3] and sens-
ing [4]. A variety of optical cavity designs are utilized for
this purpose, including Fabry-Perot cavities with mov-
able end mirrors, whispering-gallery glass microtoroids,
and nanoscale guided-wave devices. The interaction of
optical beams with the mechanical oscillation of a mir-
ror in an optical cavity via radiation pressure assists in
the investigation of various physical phenomena, includ-
ing optomechanically induced transparency (OMIT) [5–
7], squeezing of light [8], modulation of light [9, 10], quan-
tum knowledge [11, 12], precision measurement [13, 14],
and heavy coupling physics [15].
In addition to radiation pressure effects, photother-

mal effects also provide highly effective optomechani-
cal interaction between cavity photons and the mechan-
ical degrees of freedom [16]. In photothermal effects,
the mechanical oscillator absorbs cavity photons, caus-
ing thermo-elastic distortion and displacement of the os-
cillator. Depending on the interaction, these photother-
mal effects may reduce or extend the cavity’s optical
path [17–19]. Since photothermal pressure is several or-
ders of magnitude higher than radiation pressure [20], it
is of great interest to investigate photothermal effects in
various optical systems. On the one hand, it has the po-
tential to reduce the accuracy of high-sensitivity interfer-
ometer displacement measurements [21, 22], from micro-
scopic cantilever optical cavities [23] to kilometer-scale
gravitational-wave detectors such as LIGO [21, 24, 25].
In extreme situations, the shot noise of absorbed light
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could place a basic limit on measuring sensitivity [26, 27]
and the production of low-frequency squeezing [28]. Pho-
tothermal effects, on the other hand, have been demon-
strated to be useful in decreasing mechanical oscillator
Brownian noise [29, 30] and may even be capable of cool-
ing a mechanical resonator close to its quantum ground
state [31].

Recently, there has been a growing interest in mul-
timode interactions in optical systems [32–34], which
are common in quantum physics and have been inves-
tigated in a variety of physical systems. For exam-
ple, phonon-photon-phonon [35–37] and photon-phonon-
photon [38–41] are two common multimode interactions
in optomechanical systems. Until now, radiation pres-
sure has only been explored mainly for the purpose of
investigating multimode interactions in optomechanical
systems. For example, fast and robust quantum con-
trol [42], three-pathway electromagnetic induced trans-
parency (EIT) [34], and dynamical multistability [32]
play an important role in justifying the feasibility of
multimode interactions in practical applications of quan-
tum information processing [11], multiple pathways in-
terference phenomena, and have applications in memory
storage [36] and insensitive force or displacement detec-
tions [43]. Thus, it is worth to investigate multimode in-
teractions in an optical system that includes photother-
mal effects, which, like radiation pressure, connect the
optical length to an intracavity field, heating the res-
onator and causing it to behave nonlinearly.

Here, we aim to investigate the nonlinear optics medi-
ated by photothermal effects in a multimode optical sys-
tem composed of two cavities and two mechanical modes.
On the left and right sides of the cavity, external probe
and control laser fields act via a waveguide. We observed
single to double photothermally-induced transparency
(PTIT) dips, one is sharp, and a single photothermally-
induced absorption (PTIA) peak, and noticed that in-
creasing the photothermal and coupling coefficients sup-
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pressed the amplitude of the dips. This sharp PTIT dip
and PTIA peak are similar to previous work, which ob-
served a sharp EIT dip [34] and electromagnetic induced
absorption (EIA) peak [44] via radiation pressure in a
coupled-cavity system. Here, in the presence of pho-
tothermal effects, the PTIT dip is formed by destructive
interference between the probe field and anti-Stokes side-
bands of the control field, rather than the interference of
quantum paths like the EIT or OMIT [45]. Moreover,
we analyze the phenomenon of Fano resonances in the
absorption profile that occurs in an off-resonant configu-
ration of PTIT. The asymmetric Fano resonance is a sig-
nature of interacting quantum systems, though its spec-
tral shape may vary significantly in different symmetric
resonance curves scenarios such as symmetry in EIT win-
dows [44] or a Lorentzian resonance [46]. Several schemes
have been proposed in literature where group delay and
advance can be transformed to each other. However, for
appropriate and compact device manufacturing for ve-
locity control analysis, both group delay and advance in
the same medium at different frequencies are required.
In our proposed scheme, we examine the dynamics of the
group delay or advance in the region comprising the two
photothermally-induced windows and observe that the
sharp PTIT dip provides us with a slow and fast light at
two different frequencies simultaneously.
The paper is structured as follows. In Sec. II we present

our theoretical model, the Hamiltonian description of
the system, and derive the quantum Langevin equations
(QLEs) from the Heisenberg equation of motion. Follow-
ing the standard input-output relation, a mathematical
representation of the outgoing field is constructed, which
is then employed to calculate the transmission of the
group delay. In Sec. III, we present numerical findings
and discussions about the multimode single to double
PTIT, Fano resonances, and the dynamics of the group
delay. In Sec. IV, we end with conclusions and sugges-
tions for further work.

II. THEORETICAL MODEL

In this section, we present a theoretical model of our
system for the purpose of investigating photothermal ef-
fects in optomechanical cavity settings. We consider an
optical system composed of two microcavity modes a1
and a2 that are linearly coupled with two mechanical
modes b1 and b2 (see Fig. 1). The optical modes in the
two cavities are connected with each other through the
coupling coefficient J , while they are coupled with me-
chanical modes via the coupling constants gı. Moreover,
the cavity modes are connected to two external waveg-
uides, which transmit weak probe and strong control field
signals along the right and left sides, respectively. In a
manner similar to the problem of radiation pressure, pho-
tothermal effects couple the cavity optical path length to
the intracavity power. This is due to the absorption of
photons by the cavity mirrors resulting in thermal ex-

FIG. 1: Schematic of an optical system composed of two cav-
ity modes, a1 and a2, and two mechanical modes, b1 and b2.
The cavity modes are linearly coupled through hopping co-
efficient J , and with mechanical modes via coefficient rates
gı, for ı ∈ {1, 2} and  ∈ {1, 2}. Here, κ1(κ2) and γ1(γ2) are
the decay and damping rates of the cavity mode a1(a2) and
mechanical mode b1(b2), respectively. The probe (Fp) and
control (Fl) fields are applied via waveguides on the left and
right sides of the cavity mode, respectively.

pansion and refractive index change of the mirror coat-
ing and substrate. These photothermal effects can either
decrease or increase the optical path length of the cav-
ity depending on the interaction. Just as with radiation
pressure, a modulation of cavity length caused by the
photothermal process can lead to nontrivial feedback in-
terrelations between intracavity power and cavity length.
Under the dipole and rotating wave approximations, we
can write the total Hamiltonian of the system as

H =

2
∑

ı=1

[

p2ı
2mı

+
1

2
mıω

2
mı

x2
ı + h̄∆ıa

†
ıaı

]

−
2
∑

ı,=1

h̄gıa
†
ıaıx − h̄J

[

a†1a2 + a1a
†
2

]

+ih̄
[

Fpe
−i∆pta†1 − F ∗

p e
i∆pta1

]

+ ih̄Fl

[

a†2 − a2

]

, (1)

where the first term describes the unperturbed part of the
Hamiltonian of the mechanical modes and cavity field. In
Eq. (1), m signifies the mass of the mechanical mode, ωm

is the frequency of the mechanical mode, x and p are the
position and momentum of the mechanical mode, a† (a)
represents the creation (annihilation) operator, respec-
tively, while, ∆ı = ωı − ωp,l defines the detuning of the
cavity field frequency and ∆p = ωp − ωl the detuning of
the probe field frequency. The second term in the Hamil-
tonian describes the interaction between cavity modes
and mechanical modes with coupling rate gı. The third
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term denotes the interaction of two optical cavities with
a coupling coefficient J . The last two terms in Eq. (1)
refer to the probe and control fields applied to the left
and right optical cavities, respectively. The amplitude of
the probe field is given by

|Fp| =
√

2κ1Pp

h̄ωp

, (2)

and amplitude of control field

|Fp| =
√

2κ1Pp

h̄ωp

, (3)

where κ1,2 denotes the cavity decay rate, Pp (Pl) repre-
sents the power of probe (control) field, and ωp,l is the
frequency of the external field.

Next, we employ the Heisenberg equation of motion in
order to describe the dynamics of the system. For any
generic operatorO, the stochastic equation of motion can
be expressed as follows:

dO
dt

= − i

h̄
[O, H ]− γO +N , (4)

where γ denotes the decay rate associated with the cav-
ity photon and mechanical modes, while N signifies the
Brownian and input vacuum noise operator relevant to
the cavity field. Before exploring the system’s dynam-
ics, we first address the issue of the photothermal effects
caused by cavity photons, which heat up the mirror and
cause photothermal displacement. Such changes in opti-
cal field displacement cause nonlinearity in optical sys-
tems, which we intend to investigate here. We assume
that the photothermal displacement is linearly dependent
on the temperature around the equilibrium [47]. From
this it follows that the photothermal displacement can
be expressed as [45]

ẋth
ı = −γı

(

xth
ı + β

2
∑

=1

gıa
†
ıaı

)

, (5)

ı ∈ {1, 2}, where xth denotes photothermal displacement,
γı represents the effective photothermal relaxation rate,
and β is the effective photothermal coefficient with unit
m/W.

After introducing the photothermal displacement and
by inserting the Hamiltonian (1) into the Heisenberg
equation of motion (4), we can express the quantum
Langevin equations (QLEs) derived based on (5) as fol-

lows:

ȧ1 =−
(κ1

2
+ i∆1

)

a1 + ia1
(

g11x
th
1 + g12x

th
2

)

+iJa2 + Fpe
−i∆pt +N1, (6)

ȧ2 =−
(κ2

2
+ i∆2

)

a2 + ia2
(

g21x
th
1 + g22x

th
2

)

+iJa1 + Fl +N2, (7)

ẋth
1 =− γ1

(

xth
1 + βg11a

†
1a1 + βg12a

†
2a2

)

, (8)

ẋth
2 =− γ2

(

xth
2 + βg21a

†
1a1 + βg22a

†
2a2

)

, (9)

where κ1 (κ2) and N1 (N2) are the decay rate and
quantum noise operator associated with cavity mode one
(two), respectively. It is important to note that the mean
values of quantum noise, Brownian noise, and the input
operator are equal to zero [44].

Furthermore, in order to solve the above non-linear
QLEs, we operate with a considerably weaker probe field
than the control field. Thus, we can write each operator
as a sum of the mean value and the first order quantum
fluctuation term, i.e.,

a1 =a1s + δa1, (10)

a2 =a2s + δa2, (11)

xth
1 =xth

1s + δxth
1 , (12)

xth
2 =xth

2s + δxth
2 . (13)

The steady-state solution of the above equations can be
obtained by setting the time derivative equal to zero.
This procedure results in the following set of formulas:

a1s =
iJa2s

κ1

2
+ i∆′

1

, (14)

a2s =
iJa1s + Fl

κ2

2
+ i∆′

2

, (15)

xth
1s =− β

(

g11|a1s|2 + g12|a2s|2
)

, (16)

xth
2s =− β

(

g21|a1s|2 + g22|a2s|2
)

, (17)

where

∆′
1 = ∆1 − g11x

th
1s − g12x

th
2s,

and

∆′
2 = ∆2 − g21x

th
1s − g22x

th
2s,

are the effective detuning values of the cavity field. The
linearized QLEs of motion can be put into the following
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form:

δȧ1 =−
(κ1

2
+ i∆1

)

δa1 + iG11δx
th
1 + iG12δx

th
2

+iJδa2 + Fpe
−i∆pt, (18)

δȧ2 =−
(κ2

2
+ i∆2

)

δa2 + iG21δx
th
1 + iG22δx

th
2

+iJδa1 + Fl (19)

δẋth
1 =− γ1

(

xth
1 + βG11 [δa

∗
1 + δa1]

+ βG12 [δa
∗
2 + δa2]) , (20)

δẋth
2 =− γ2

(

xth
2 + βG21 [δa

∗
1 + δa1]

+ βG22 [δa
∗
2 + δa2]) , (21)

where Gı = gıaıs describes the effective coupling rate,
for ı ∈ {1, 2} and  ∈ {1, 2}. Both cavity modes are
assumed to have equal effective photothermal relaxation
rate, i.e., γ = γ1 = γ2. Now, we solve the above lin-
earized equations of motion perturbatively by consider-
ing the ansatzs [48]

δO =
∑

n→{−,+}

One
in∆pt, (22)

where O = {a1, a2, xth
1 , xth

2 }. Using these ansatzs, we
obtain the first order solution for the outgoing probe field
as

a1− =
X
Y , (23)

where the perturbative calculations lead to

X =α1Fp

[

−1 + 2α2
3α

∗
1 (α

∗
2 − α2) (G12G21 −G11G22)

2 − iα3

[

2α∗
1

(

G2
11 +G12G21

)

+ (α∗
2 − α2)

(

G12G21 +G2
22

)]

+α3α
∗
1 [α2G21 − α∗

2 (2G12 +G21)] (G11 +G22)J1 − α∗
2α

∗
1J

2
1

]

,

Y =−
(

1 + α∗
2α

∗
1J

2
1

) (

1 + α1α2J
2
1

)

+ α2
3 (G12G21 −G11G22)

2 (

(α1 − α∗
1) (−α∗

2 + α2) + 4α∗
2α1α

∗
1α2J

2
1

)

+ α3

[

i
(

(α1 − α∗
1)
(

G2
11 +G12G21

)

− (α∗
1 − α2)(G12G21 +G2

22)
)

− (α∗
2α1 + α1α2) (G12 +G22)J1

+i
[

−α1α
∗
1α2

(

G2
11 +G12G22

)

+ α∗
2

(

α1α
∗
1

(

G2
11G12G21

)

− α1α2

(

G12G21 +G2
22

)

+ α∗
1α2

(

G12G21 +G2
22

))]

J2
1

−2α∗
2α1α

∗
1α2

(

G12 +G21 (G11 +G22)J
3
1

)]

,

and

α1 =
1

κ1

2
+ i (∆1 −∆p)

,

α2 =
1

κ2

2
+ i (∆2 −∆p)

,

α3 =
γβ

(γ − i∆p)
.

Next, we can write the standard input-output relation
for the cavity field as [49]

Eout(t) + Fpe
−i∆pt + Fl =

√
2κ1a1, (24)

where

Eout (t) = E0
out + E−

out Fpe
−i∆pt + E+

outFpe
i∆pt. (25)

By solving (24) and (25) simultaneously, we arrive at

E−
out =

√
2κ1a1−
Fp

− 1, (26)

or

E−
out + 1 =

√
2κ1a1−
Fp

= FT, (27)

where the relation (27) is obtained by using the homo-
dyne technique [49]. FT have real and imaginary parts
which are expressed by

up =
κ1

(

a1− + a∗1−
)

2Fp

, (28)

and

vp =
κ1

(

a1− − a∗1−
)

2Fp

, (29)

where up defines absorption and vp depicts the dispersion
of the probe field. Similarly, we can express the phase
dispersion of the outgoing probe field as

Φt (∆p) = arg [FT (∆p)] , (30)

which may cause transmission group delay in the vicin-
ity of a narrow transparency window. The transmission
group delay is given by

τg =
dΦt (∆p)

d∆p

=
d {arg [FT (∆p)]}

d∆p

. (31)

The sign of τg determines the property of light, with
positive and negative signs indicating slow and fast light
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propagation, respectively. Following the introduction of
a theoretical model for the multimode optical system,
its dynamical equations of motion, and a linearization
of the QLEs, we present some of the key findings and
discussions of the proposed system.

III. RESULTS AND DISCUSSION

The photothermal effect within the optical cavity is in-
duced by the external probe and control fields, which give
rise to nonlinearity. In this section, we discuss some of
our key findings regarding the importance of the above
model in various processes such as nonlinear phenom-
ena, e.g., PTIT, Fano resonances, and slow and fast light
propagation. Our numerical results are based on exper-
imentally realized parameters [45]. Furthermore, for a
practical analysis of the proposed scheme, we take into
account realistic parameters where it is assumed that
both cavity mirrors are composed of fused-silica sub-
strates coated for high reflectivity at operational wave-
length of λ = 1064 nm. A high finesse cavity with low
optical loss is also considered. The finesse of the cav-
ity is calculated using the relation F = 2π/τκ, where
τ = 2Lc/c is the time taken by the photon to escape
the cavity, Lc is the length of the cavity and κ shows
the cavity decay rate. Thus, the finesse of the cav-
ity in the proposed system is F = 6000. Also, the
quality factor has a relation with high finesse given by
Q = 2FLc/λ = 564 × 106. Therefore, we assume high
finesse with good quality factor, allowing us to design
photothermal cavity devices with low optical loss and
wide bandwidth.

A. Multimode photothermally-induced
transparency and absorption (PTIT and PTIA)

The EIT and EIA phenomena have been observed
in coupled systems that account for radiation pressure
forces [34, 44]; this is not the case in the proposed system,
where PTIT and PTIA arise as a result of photothermal
forces. The photothermal effect significantly reduces the
Brownian fluctuation of mechanical oscillators [29, 52].
Additionally, photothermal parameters such as the pho-
tothermal relaxation rate and photothermal coefficient
can be defined by modulating the frequency of the input
laser or expanding the photothermal effect, which results
in a change in cavity length. The PTIT phenomenon is
easily accessible experimentally, which opens the door to
applications in traditional signal processing such as filter-
ing and optical amplification. Another distinct charac-
teristic of this scheme is its compact and versatile design,
which allows for quick and precise characterization of
photothermal effects. Furthermore, photothermal effects
have been associated with a variety of other phenomena,
including self-sustaining oscillations [53], chaos [54], the
production of squeezed light [28], and so on. All of these

aspects contribute to the development of photothermal
optics. In this subsection, we present results for trans-
parency and absorption phenomena induced due to the
photothermal effects in this multimode optical system.

We display in Fig. 2 the absorption up (28) and dis-
persion vp (29) profile of the outgoing probe field versus
normalized ∆p/κ1. First, we consider the case when the
two optical cavities are only coupled through hopping
coefficient J and have no connection with the mechan-
ical modes because due to the absence of photothermal
effects, i.e, β = 0. In this case, we get only one trans-
parency dips which arises due to the hopping coefficient
J , see Fig. 2(a). Consider the opposite case, where the
hopping coefficient J is set to zero and the photother-
mal coefficient is non-zero. In this scenario, the inter-
action of the optical cavity with the mechanical mode
via photothermal effects results in a sharp transparency
dip and absorption peak, as depicted in Fig. 2(b), where
PTIT and PTIA stand for photothermally-induced trans-
parency and absorption, respectively. The inset depicts
a broader perspective, disclosing that the sharp trans-
parency dip is positioned at ∆p = 0. Following that, the
hopping and photothermal coefficients are both set to
non-zero values, specifically J = 0.5κ1 and β = −1.8
pm/W. In this case, we see double transparency dips
and single absorption peaks caused by hopping and pho-
tothermal coefficients, demonstrating that when optical
cavities are connected with mechanical modes via pho-
tothermal effects and with each other, we observe double
transparency dips. Therefore we would like to investi-
gate how single to double transparency dips occur in the
considered optical system when photothermal effects are
taken into account. This discussion lays the groundwork
for delving deeper into how the control parameters influ-
ence the amplitude and width of transparency dips, to
be further explored below.

We turn now to an investigation of the role played
by the control parameters that affect the amplitude and
width of the transparency dips of this multimode opti-
cal system. First, it is highly desirable to examine how
the photothermal effect, as represented by the photother-
mal coefficient β, impacts the transparency phenomenon.
Fig. 3 (a-d) shows the absorption profile of the out-
going field plotted as a function of ∆p/κ1 for different
values of β ∈ −{0.8, 2.8, 4.8, 6.8} pm/W. In each panel,
we observe two sharp transparency dips and a single ab-
sorption peak. The first transparency dip is located at
∆p ≈ −0.1κ1, whereas the second at ∆p = 0. Moreover,
increasing the value of β reduces the amplitude of the
first (from the left side) transparency dip, demonstrating
that the photothermal effect suppresses the transparency
phenomenon. Thus, the coupling between two optical
cavities weakens as the magnitude of photothermal ef-
fects increases.

The absorption profile of the outgoing field can also be
affected by the coupling rates between the optical cavities
and mechanical modes. Fig. 4 illustrates the absorption
profile of outgoing field for different values of coupling
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FIG. 2: Absorption profile up of FT versus normalized ∆p/κ1 for (a) J = 0.5κ1, β = 0, (b) J = 0, β = −1.8 pm/W
and J = 0.3κ1, β = −1.8 pm/W, whereas (d-f) represent their corresponding dispersion profile vp. Here, J signifies the
coupling strength between optical modes, and β is the effective photothermal coefficient. The insets in panels (b) and (e)
represent a broader perspective of the absorption and dispersion profiles of FT at ∆p ≈ 0, respectively. The other parameters
are, κ1/2π = 0.6MHz, γ/2π = 15.4 Hz, κ1/2π = 530 KHz, κ2/2π = 430 KHz, ∆1 = ∆2 = 0, G11/2π = 220κ1 and
G11 = G12 = G21 = G22. Where PTIT and PTIA stand for photothermal induced transparency and absorption, respectively.

rates. In the first case, we vary the coupling rates G11

and G12 while keeping the other coupling rates fixed. For
G11 = G12 = 2π × 120κ1 (black-solid curve), we report
double transparency dips positioned at ∆p ≈ −0.1κ1 (left
dip) and ∆p = 0 (right dip), see Fig. 4(a). In addition,
increasing the values of the coupling rates reduces the
amplitudes of the both transparency dips, as described
for G11 = G12 = 2π × 320κ1 (red-dashed curve) and
G11 = G12 = 2π × 520κ1 (blue-dotted curve). Also, the
sharpness and width of the second transparency dip at
∆p = 0 is reduced with increase in the coupling rates,
whereas the absorption peak is enhanced at ∆p = 0.

In the second case, we fix the coupling rates which con-
nect a1 to b1 and b2, i.e., G11 and G12, and change the
coupling rates that connect a2 to b1 and b2, i.e., G21 and
G22. Fig. 4(b) represents the absorption profile of the
outgoing field for various values of coupling rates, i.e, G21

and G22. For G21 = G22 = 2π×120κ1, we observe double
transparency dips as indicated by the black-solid curve
in Fig. 4(b). In such case, all the coupling rates are equal
to each other, i.e, G11 = G12 = G21 = G22 = 2π×120κ1.
However, as G21 = G22 are increased, only a single trans-

parency dip is obtained at ∆p = 0, while the trans-
parency observed in the first case at ∆p ≈ −0.1κ1 van-
ishes, see red-dashed and blue-dotted curves in Fig. 4(b).
Moreover, the sharpness of the transparency also increase
here, which is the converse behavior with respect to the
previous scenario, where the amplitude was found to de-
crease.

So far in this section, we have been analyzing the PTIT
and PTIA phenomena in a multimode optical system
with two optical modes associated with a hopping coef-
ficient J and mechanical modes connected by photother-
mal effects. The single to double transparency dips and
a single absorption peak caused by hopping, as well as
the photothermal coefficient, are illustrated. Such in-
creases in the photothermal coefficient can reduce the
transparency phenomenon. Furthermore, we examine
the characteristics of outgoing field via the first cavity
mode, noticing double transparency when a1 interacts
with mechanical modes more strongly than a2. How-
ever, if a2 has a stronger interaction with the mechani-
cal modes than a1, a single transparency dip can be ob-
tained. Thus, it appears that the PTIT phenomenon can
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FIG. 3: Absorption profile up of FT versus normalized ∆p/κ1

for (a) β = −0.8 pm/W, (b) β = −2.8 pm/W, (c) β = −4.8
pm/W and (d) β = −6.8 pm/W. Where β is the photothermal
coefficient. The remaining parameters are same as given in
Fig. 2.

be tuned by adjusting the control parameters, namely the
photothermal coefficient β, the hopping coefficient J , and
the coupling rates Gı that connect the optical and me-
chanical modes. In the following, we present the results
for the Fano profile of the outgoing field in a multimode
optical system.

B. Multimode Fano resonances

Numerous fascinating physical phenomena, such as
Fano resonances, have been observed in a variety of phys-
ical systems as a result of quantum interference between
various transition pathways, which results in an absorp-
tion profile featuring minima or zero. Recently, Fano res-
onances have been extensively investigated theoretically
in optomechanical systems, including whispering gallery
modes [50], double cavities [44], BEC [46], and two-level
atoms (qubits) [51]. In this subsection, we investigate
Fano resonances in a multimode optical system exploit-
ing photothermal effects, which has never been done be-
fore. Fano resonance is a nonlinear quantum interference
phenomenon similar to EIT. However, it appears in an
off-resonant configuration of EIT. Here, we explore the
dynamics of the Fano resonances in the proposed multi-
mode optical system by monitoring probe transmission
in off-resonant cavity detuning with respect to the PTIT
spectrum.
In what follows, we examine quantitative aspects of

Fano resonances induced by photothermal effects in the
multimode optical system considered in this paper. Fig.
5 shows the Fano resonances in an absorption profile plot-
ted as a function of normalized ∆p/κ1 for different val-
ues of off-resonant cavity field detuning, namely, ∆1 = 0
(black-solid), ∆1 = 0.03κ1 (red-dashed), ∆1 = 0.06κ1

(blue-dotted) and ∆1 = 0.09κ1 (green-dashed-dotted
curves). At first, in the resonant condition ∆1 = 0, we get

FIG. 4: Absorption profile up of FT versus normalized ∆p/κ1

for different values of coupling rates: (a) G11 = G12 =
2π × 120κ1 (black-solid), G11 = G12 = 2π × 320κ1 (red-
dashed) and G11 = G12 = 2π × 520κ1 (blue-dotted curves);
(b) G21 = G22 = 2π × 120κ1 (black-solid), G21 = G22 =
2π × 320κ1 (red-dashed) and G21 = G22 = 2π × 520κ1 (blue-
dotted curves). Where G11, G12, G21 and G22 are the cou-
pling rates that connect the optical and mechanical modes.
Rest of parameters are given in Fig. 2.

two symmetric absorption peaks located at ∆p ≈ −0.5κ1

and ∆p ≈ 0.5κ1, as shown by black-solid curve in Fig. 5.
But the two peaks become asymmetric when we con-
sider the off-resonant condition. For ∆1 = 0.03κ1 (red-
dashed curve), the absorption peak at ∆p ≈ 0.5κ1 have
greater amplitude than the peak at ∆p ≈ −0.5κ1. This
asymmetry behavior becomes more apparent as the cav-
ity field detuning is increased, as illustrated in the cases
of ∆1 = 0.06κ1 (blue-dotted) and ∆1 = 0.09κ1 (green-
dashed-dotted curves). Furthermore, as the cavity detun-
ing increases, the position of the absorption peaks shifts
towards positive probe detuning (∆p > 0).
Following that, we look into Fano resonances in the

absorption profile, first in the case where the detuning of
the cavity field ∆2 changes while ∆1 remains constant.
For ∆2 = 0 (black-solid curve in Fig. 6), we get two
symmetric absorption peaks positioned at ∆p ≈ −0.5κ1

and ∆p ≈ 0.5κ1, which is similar to the previous case
(see Fig. 5). However, with the off-resonance condition
∆2 = 0.3κ1, the absorption peaks reveal an asymmetric
behavior, as can be seen in the red-dashed curve in Fig. 6.
The amplitude of the absorption peak positioned at ∆p ≈
−0.5κ1 is greater than that of the peak at ∆p ≈ 0.5κ1.
This asymmetric behavior can be enhanced by increasing
the detuning of the cavity field, e.g., ∆2 = 0.6κ1 (blue-
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FIG. 5: Fano profile in Absorption up spectra versus normal-
ized ∆p/κ1 for different values of detuning of the cavity field
∆1 = 0 (black-solid), ∆1 = 0.03κ1 (red-dashed), ∆1 = 0.06κ1

(blue-dotted) and ∆1 = 0.09κ1 (green-dashed-dotted curves).
The detuning of the cavity field ∆2 = 0 remains constant. All
other parameters are same as given in Fig. 2.

FIG. 6: Fano profile in Absorption up spectra versus normal-
ized ∆p/κ1 for different values of detuning ∆2 = 0 (black-
solid), ∆2 = 0.03κ1 (red-dashed), ∆2 = 0.06κ1 (blue-dotted)
and ∆2 = 0.09κ1 (green-dashed-dotted curves). The detun-
ing of the cavity field ∆1 = 0 remains constant. Remaining
parameters are similar to those given in Fig. 2.

dotted) and ∆2 = 0.9κ1 (green-dashed-dotted curves) as
shown in Fig. 6.

Finally, we examine the Fano resonances profile in ab-
sorption spectra, which is tuned by controlling the detun-
ing of the cavity field. First, we provide a quantitative
analysis of the Fano profile by considering two different
scenarios, namely when the detuning of the cavity field
∆1 changes for fixed ∆2 in the first case and vice versa in
the second. Physically, in this optical system the cavity
field is generated by two coherent processes. The first is
the direct building up caused by the use of strong control
and a weak probe fields, while the second is the scenario
caused by the formation of nonlinear frequency conver-
sion processes mediating between the optical and me-
chanical modes. The two paths described above provide

FIG. 7: Dynamics of group delay τg versus normalized ∆p/κ1

for different values of coupling rates: (a) G11 = G12 =
2π × 220κ1 (black-solid), G11 = G12 = 2π × 250κ1 (red-
dashed) and G11 = G12 = 2π × 280κ1 (blue-dotted curves);
(b) G21 = G22 = 2π × 220κ1 (black-solid), G21 = G22 =
2π × 250κ1 (red-dashed) and G21 = G22 = 2π × 280κ1 (blue-
dotted curves). Where G11, G12, G21 and G22 are the cou-
pling rates that connect the optical with mechanical modes.
Remaining parameters are similar to those given in Fig. 2.

a significant contribution to interference processes that
resulted in the emergence of Fano profiles in a hybrid
system. Furthermore, Fano resonances observed under
off-resonant condition differ from the EIT profiles and
the more typical Lorentzian resonance. In the following
subsection, we investigate the fast and slow light dynam-
ics of the group delay induced by the photothermal effects
in an optical system.

C. Dynamics of slow and fast light

In the previous sections it was noted that there exists a
steep dispersion behavior corresponding to PTIT at dif-
ferent frequencies. As the steep normal dispersion leads
to group delay, steep anomalous dispersion leads to ad-
vance (fast light propagation) in the PTIT cavity system.
Therefore it is constructive to study probe field transmis-
sion probability in such a setup, which has applications
in optical storage and information retrieval. In this sub-
section, we explore the phase response of the intracavity
probe field that can give rise to group delay (slow light)
or advance (fast light) in the presence of photothermal
effects. In Figs. 2 and 3, we reported rapid phase dis-
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persion during the transparency windows of the probe
field for different values of control parameters, namely,
for hopping and photothermal coefficients, resulting in a
sharp decrease in the group velocity. In fact, group de-
lay may be utilized to explain the optical response of the
system to the weak probe field.

To provide a quantitative analysis, we present the re-
sults of group delay or advance in the presence of pho-
tothermal effects for different values of the coupling rates
while keeping the other parameters constant. Fig. 7
shows the dynamics of the group delay (τg) versus nor-
malized ∆p/κ1 for different values of coupling rates,
namely, G11, G12, G21 and G22. Here, it is more im-
portant to analyze the group delay in the range where
the two transparency dips occur, see Fig. 4. First, we
consider the case where the coupling rates (G11 and
G12) that couple the cavity mode a1 to the mechani-
cal modes are changed, i.e, G11 = G12 = 2π × 220κ1

(black-solid), G11 = G12 = 2π × 250κ1 (red-dashed) and
G11 = G12 = 2π × 280κ1 (blue-dotted curves) while
the rest of the coupling rates are fixed (G21 = G22 =
2π × 220κ1). The group delay exhibits two amplitude
peaks that equate to the two transparency dips depicted
in the Fig. 4(a), with the first peak relating to the first
transparency dip and the second peak corresponding to
the second transparency dip. The sharp transparency dip
in Fig. 4(a) produces a large amplitude peak in group de-
lay, as shown in Fig. 7, indicating that we can slow down
the light for a longer time. The group delay is negative at
∆p ≈ −0.002κ1 (PTIA peak), which is not noticeable in
the figure due to scale, implying fast light. Furthermore,
increasing the values of coupling rates, i.e., G11 and G12,
reduces the group delay, as depicted in Fig. 7(a). There-
fore, the value of group delay decreases when the optical
cavity is strongly coupled with the mechanical modes.

In the second case, the coupling rates (G21 and G22)
that couple the cavity mode a2 to the mechanical modes
are changed, i.e, G21 = G22 = 2π × 220κ1 (black-solid),
G21 = G22 = 2π × 250κ1 (red-dashed) and G21 = G22 =
2π × 280κ1 (blue-dotted curves) and the rest of the cou-
pling rates are fixed (G11 = G12 = 2π × 220κ1). Again,
we find two amplitude peaks in the group delay (see
Fig. 7(b)) that correspond to the two transparency dips
shown in Fig. 4(b), and the group delay decreases as the
coupling rate values increase.

In this section, we explored various physical phenom-
ena, notably PTIT, Fano resonances, and the dynam-
ics of slow and fast light in a multimode optical sys-
tem in the presence of photothermal effects. Physically,
the PTIT phenomenon is caused by destructive inter-
ference between a probe field and the anti-Stokes side-
band of light scattered from a control field. Further-
more, nonlinear optical phenomena are observed in op-
tical resonators (mechanical modes) as a result of the
heating of the optical system caused by photothermal
effects, which include PTIT, Fano resonances, and the
dynamics of slow and fast light are briefly explored. Ad-
justing the controlling parameters, including the hopping

and photothermal coefficients, produces single to double
transparency dips. We also examine the effect of coupling
rates on transparency and Fano resonances, which illus-
trate the strength of optical modes coupled with mechan-
ical modes. Furthermore, the dynamics of group delay
are examined in the range where the two transparency
dips are observed, and it is demonstrated that a sharp
transparency dip produces slow light for a longer time.

D. Experimental realization of the proposed model:

In this subsection, we present a possible experimen-
tal realization of our proposed model, along with perti-
nent experimental work references to facilitate the empir-
ical analysis of such a setup. Nonreciprocal transmission
across multimode systems has recently been experimen-
tally examined using a superconducting optomechanical
system with mechanical motion coupled to a multimode
microwave circuit via radiation pressure [55]. Both cav-
ity modes are linked to the same vacuum-gap capacitor
in the circuit. The device operates at 200 mK in the
mixing chamber of a dilution refrigerator, and all four
incoming pump tones are carefully filtered and muted to
remove Johnson and phase noise. One then may intro-
duce four microwave pumps with frequencies somewhat
detuned from the lower motional sidebands of the reso-
nances in order to create a parametric coupling between
the two electromagnetic and two mechanical modes. A
vector network analyzer is then used to measure the
reflection of an inserted probe signal around the lower
(higher) frequency microwave mode. Ma et al. [45] re-
cently demonstrated by an experiment the phenomenon
of transparency caused by photothermal effects in an op-
tical cavity composed of a single cavity and a mechan-
ical mode. Since, controlling multimode interaction is
a significant task for several potential quantum system
implementations in QIP, including entanglement genera-
tion [38, 41] and quantum state transfer [40, 56]. There-
fore, more research into photothermal effects in optical
systems based on multimode interactions is highly desir-
able.

IV. CONCLUSIONS

We theoretically investigated photothermally-induced
nonlinear optical phenomena in a framework where the
optical field interacts with a photothermal resonator,
hence leading to photothermally-induced transparency
(PTIT) and absorption (PTIA), Fano resonances, and
the dynamics of slow and fast light in an optical system.
Based on our analytical and numerical results, we ob-
served single to double PTIT dips, one being sharp, and
a single PTIA peak. We demonstrated how photother-
mal effects can suppress the transparency phenomenon
by detuning the photothermal coefficient and the rates
of the processes that couple the optical cavity modes to



10

mechanical modes. We analyzed the Fano resonances
profile in the presence of photothermal effects that occur
in an off-resonant configuration of PTIT. Furthermore,
we could achieve slow or fast light by varying the rate of
the coupling between the cavity and mechanical modes.
We believe that investigating the photothermal effects

that are convenient for suppressing the Brownian fluc-
tuations of the microlever [29, 52] and quantum ground
state cooling of a mechanical resonator [31] can facilitate
the development of cavity-based experiments that rely on
high sensitivity. Recent advances in the development of a
photothermal effects-based all-optical switch with ultra-
high tuning efficiency [57] may result in a functionally
integrated component that can be employed in a broad
range of efficient all-optical control applications. More-
over, despite the fact that photothermal forces are dissi-
pative forces, it has been shown that a strong coupling
strength can improve optomechanical entanglement [58].

Thus, the various coupling strengths that connect cav-
ity modes with mechanical modes in a multimode optical
system via photothermal effects could help to improve
cooling results and thus enhance entanglement, which
has practical applications in quantum information pro-
cessing.
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