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UNIVERSAL CONSTANTS, LAW OF INERTIA AND EMERGENT GEOMETRY

ZHI HU, MULIN YAN, AND RUNHONG ZONG

ABSTRACT. In this paper, we only treat the law of inertia as the first principle, then a nontrivial geometry emerges by introducing more universal

constants, in which the main ideas appearing in deformed special relativity (DSR), (Anti-)de Sitter special relativity [(A)dSSR] and bimetric gravity

(BMG) have been contexture.

1. INTRODUCTION

The de Sitter and anti-de Sitter spacetimes are of the most symmetric solutions of Einstein’s field equations including the cosmological

constant. For this reason, they are important for general relativity. After 1998, these spacetimes have drawn attention of high energy

physicists due to the conjectured (anti-)de Sitter space/conformal field theory [(A)dS/CFT] correspondence. In this letter, we propose a

new mechanism to produce de Sitter and anti-de Sitter spacetimes from the law of inertia of massive free particles.

Our initial motivation is to consider a fundamental theory of relativity that admits more universal constants. In Galilei relativity there

is no observer-independent scale, and Einstein’s special relativity (SR) introduced the first observer-independent relativistic scale: the

velocity scale c identified with the speed of light. Naturally, the second observer-independent scale could be considered as length. It

is clear that there is an inevitable price to pay for admitting at the same time relativity principle and the observer-independent scale of

length. That is, analogous to the Galilei→Einstein transition, one should deform Poincaré group which has already deformed Galilean

group through the contraction limit of infinity c.

There are two possible scenarios: in order to describe ultra-short-distance or ultra-large-distance physics, we might have to set aside

SR and replace it with a new relativity theory with two characteristic invariant scales. The extra universal constant with dimension of

length is denoted by ℓ.

– ℓ is very small identified with the Planck length ∼ 10−35m, therefore the modified theory, called deformed special relativity or

doubly special relativity (DSR), may be rooted in quantum gravity
21,112,le,lee
[1, 2, 3, 4]. The best developed approach to DSR is realized based on

the so-called ℓ-Poincaré algebra and ℓ-Minkowski spacetime. Here, the usual Poincaré algebra has been deformed into a quantum Hopf

algebra which can be understood as the symmetry algebra of a noncommutative deformation of usual Minkowski spacetime
jk,jkk
[5, 6]. In

the low-energy limit, i.e. ℓ tending to zero, everything returns to the standard SR.

– ℓ is very large identified with the radius of (observable) universe ∼ 1026m, then things could turn into relatively easy. At hand,

we have the (Anti)-de Sitter group, which is interpreted as a particular deformation of the Poincaré group through the contraction limit

of infinity ℓ. Hence, conceptually, one should establish special relativity with invariance under (Anti)-de Sitter group [(A)dSSR]. To

our knowledge, this theory was first suggested by Dyson in his famous paper
dy
[7] and independently by the authors of

5
[8], and was was

further developed in
51,52,53,54,55,56,57
[9, 10, 11, 12, 13, 14, 15].

– The above two scenarios can be combined together to construct an extension of SR characterized by three invariant scales: in

addition to c, two universal constants ℓ1, ℓ2 with dimensions of length are included, which are identifies with Planck length and radius

of universe, respectively. Such theory will reduce to DSR when ℓ2 goes to infinity and reduce to (A)dSSR when ℓ1 tends to zero. A

proposal called triply special relativity has been described by a new nonlinear deformation of Poincaré algebra in
sm
[16].

Our method is very different. More precisely, we start with the usual spacetime R
4 equipped with the Minkowski metric (ηµν) =

diag(−1, 1, 1, 1), then we allow extra universal constant ℓ to appear in the dynamical part of theory. If the background is fixed to be

Minkowski spacetime without any modification, it seems that it is the unique approach to introduce the new universal constants. We will

show a nontrivial geometry emerges from the dynamical structure. For simplicity, we only work within the single particle sector of the

theory. Analogous to the standard action for a free particle with mass m in SR

S = −m

∫
dt

√
|ηµνvµvν |. (1.1)

where c = 1 is set, and vµ = dxµ

dt
, we write a new action

S = −m

∫
dt

√
|Bµνvµvν |, (1.2) 0

1
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where the symmetric second-order tensor Bµν is not chosen a priori to be equal to ηµν . In other words, the geometry of the background

and the dynamics of matter are separately considered, and described by two different (but maybe relevant) symmetric second-order

tensors ηµν and Bµν , respectively. Actually, this idea is similar with the theory of bimetric gravity (BMG). That theory also consists of

two metric-like symmetric second-order tensors which play different roles
tu
[17]. The first one is surely the dynamical metric that describe

the geometry of spacetime and thus the gravitational field, and the second one can be non-dynamical or dynamical. For example, in

Rosen-type theory, the second metric refers to the Minkowski metric and describes the inertial forces
rn
[18], and in Hassan-Rosen-type

theory which is free from the Boulware-Deser ghost and propagates seven degrees of freedom, the introduction of the second metric

nonlinearly coupled to the spacetime metric allows for a description of a massive spin-2 field
r,rr,rrr
[19, 20, 21].

Coming back to our theory, now Bµν does not arise from background geometry any more, but is still tied down by dynamics.

Specifically speaking, the dynamical content of the massive free particle in Minkowski spacetime is just the law of inertia, hence, if

the action (
0
1.2) correctly produces the dynamics of massive free particle according to the least action principle, the law of inertia will

continue to hold true. This provides a constraint on the form of Bµν . We will see that under some suitable domain in Minkowski

spacetime, Bµν can be exactly viewed as a “metric" on the maximally symmetric spacetime with nonzero curvature (cosmological

constant), i.e. (A)dS spacetime such that at the level of practice, this dynamics is equivalent to (A)dSSR. In this sense, we say that a

nontrivial geometry [i.e. (A)dS geometry (or (A)dSSR) in the present case] emerges from the dynamics of massive free particles – the

law of inertia. We can call such emergent metric the inertial metric, analogous to inertial force.

It is noteworthy that the above process is only valid for the large scale ℓ, namely the theory makes no sense if ℓ goes to zero. On the

other hand, in principle, the choice of our action for a massive free particle has a lot of freedom, as long as it produces the right law

of inertia. This reveals that considering more general action would allow us to introduce more universal constants, in particular, those

involved the small scale. Of course, some dynamical symmetries will disappear.

An effortless manner is using the pair (ηµν , Bµν) to construct the following bipartite-Finsler-like action

S = −m

∫
dt(
√
|ηµνvµvν |+ ξ

√
|Bµνvµvν |). (1.3) 41

Now ξ is a dimensionless constant such that to kill the dimension we can simultaneity introduce more universal constants with the

same dimension. For example, we can puts ξ = ℓ1
ℓ2

, where ℓ1, ℓ2 are the universal constants identified with Planck length and radius of

universe, respectively. Now the theory returns to the usual one when ℓ1 tend to zero or ℓ2 tends to infinity. If one picks Bµν as the inertial

metric mentioned previously, it is obvious that this action can also describe the massive free particle in physical domains in the sense

of preserving the law of inertia. The emergent geometry from the action (
41
1.3) can be described by the Finsler metric, which is exactly

the second-order derivative of the corresponding Lagrangian with respect to the 4-velocity. Then the dynamical effects can be studied

under the framework of Finsler geometry
baa
[22]. It’s also worth mentioning that the action of type (

41
1.3) has been used to investigate the

Lorentz violation in
z1,z2,z3
[23, 24, 25], and Finsler geometry also provides a geometric tool in some modified special relativity theories (DSR

ggg,mi,gf
[26, 27, 28], very special relativity (VSR)

gg,gg1
[29, 30]).

In conclusion, we only treat the law of inertia as the first principle, then a nontrivial geometry emerges by introducing more universal

constants, in which the main ideas appearing in DSR, (A)dSSR and BMG have been contexture.

2. SOLUTIONS OF LAW OF INERTIA WITH TWO UNIVERSAL CONSTANTS

We need to determine the general form of Bµν based on some reasonable assumptions. Firstly, according to our target, Bµν should

involve the universal constants c and ℓ. Secondly, when ℓ tends to infinity or zero, Bµν should revert to ηµν . Then, taking into account

the dimension, we pick the following very general ansatz

Bµν = A0ηµν +

d∑

I=1

AI

(x · v)aI−2(v · v)bIηµαηνβxαxβ

ℓaI
, (2.1) nj

where for the two 4-vectors Θµ,Ξν , one defines

Θ · Ξ = ηµαΘ
αΞµ,

and the integers aI , bI satisfy

• aI + 2bI = 2,

• aI 6= 0,

• all aI have the same sign.
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The above action is recognized to be Finsler-like, and the corresponding Finsler function
baa
[22] is exactly the Lagrangian given by

L(t, xi, vi)

= −m

√√√√|A0v · v +
d∑

I=1

AI(x · v)aI (v · v)bI |, (2.2) 1

where as before, we put ℓ = 1 for convenience.

Note that Bµν generally dose not only depend on the coordinates on R
4, even is not necessary to be well-defined over the entire R

4.

The domain lying R
4 such that Bµν makes sense (for example, well-defined, non-degenerate and has the suitable signature) is called the

physical domain.

If a massive free particle is assumed to be subject to our new action (
0
1.2), then the corresponding Euler-Lagrange equation should

imply the the law of inertia, that is the acceleration of particle has to vanish. The Euler-Lagrange equation reads

∂L

∂xi
=

∂2L

∂t∂vi
+ vj

∂2L

∂xj∂vi
+

dvj

dt

∂2L

∂vjvi
, (2.3)

therefore we must have

∂L

∂xi
− ∂2L

∂t∂vi
− vj

∂2L

∂xj∂vi
= 0, (2.4) 2

det(
∂2L

∂vj∂vi
) 6= 0. (2.5)

Substituting the expression (
1
2.2) into the equation (

2
2.4) gives rises to

2[∂iA0(v · v) +
d∑

I=1

∂iAI(x · v)aI (v · v)bI ][A0(v · v) +
d∑

I=1

AI(x · v)aI (v · v)bI ]

= 2[2(v · ∂A0)v
i +

d∑

I=1

(v · ∂AI)aI(x · v)aI−1(v · v)bIxi

+
d∑

I=1

AIaI(aI − 1)(x · v)aI−2(v · v)bI+1xi + 2
d∑

I=1

(v · ∂AI)bI(x · v)aI (v · v)bI−1vi

+ 2

d∑

I=1

AIaIbI(x · v)aI−1(v · v)bIvi][A0(v · v) +
d∑

I=1

AI(x · v)aI (v · v)bI ]

− [2A0v
i +

d∑

I=1

AIaI(x · v)aI−1(v · v)bIxi + 2

d∑

I=1

AIbI(x · v)aI (v · v)bI−1vi]

× [(v · ∂A0)(v · v) +
d∑

I=1

(v · ∂AI)(x · v)aI (v · v)bI +
d∑

I=1

AIaI(x · v)aI−1(v · v)bI+1], (2.6) sss

where the following notations are employed

∂iA =
∂A

∂xi
,

∂A = (−∂A

∂t
,
∂A

∂x1
,
∂A

∂x2
,
∂A

∂x3
),

and Ξµ = ηµαΞ
α for a 4-vector Ξµ. Comparing the monomials of the both sides of the equation (

sss
2.6) with the same type, we find that

only one index I can survive such that (
sss
2.6) is simplified to the following equations on A0, A1 with a1 = 2, b1 = 0:

∂iA0 = 2A1xi,

(2A2
1xi + ∂iA1A0)(x · v) = [2(v · ∂A1)A0 − (v · ∂A0)A1]xi,

∂iA1(x · v) = (v · ∂A1)xi,

2(v · ∂A0)A1 = 4A2
1(x · v) = (v · ∂A1)A0.

These equations leads to

∂A0 = 2A1x, (2.7) s

∂A1A0 = 4A2
1x. (2.8) ss
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whose general solutions are given by

A0 =
A

B + Cηµνxµxν
, (2.9)

A1 = − AC

(B + Cηµνxµxν)2
(2.10)

for constants A,B,C. Consequently, we obtain

Bµν =
A

B + C
ηγδxγxδ

ℓ2

ηµν − AC

(B + C
ηγδxγxδ

ℓ2
)2

ηµαηνβx
αxβ

ℓ2
, (2.11) 33

where the universal constant ℓ is restored.

A useful observation is that Bµν can be written in terms of the combination of two projection operators as

Bµν =
A

B + C
ηµνxµxν

ℓ2

Φµν +
AB

(B + C
ηµνxµxν

ℓ2
)2
Ψµν , (2.12) 333

where

Φµν = ηµν − xµxν

ηαβxαxβ
, (2.13)

Ψµν =
xµxν

ηαβxαxβ
(2.14)

satisfy the projection relations

ηναΦµνΦαβ = Φµβ , (2.15)

ηναΨµνΨαβ = Ψµβ, (2.16)

ηναΦµνΨαβ = 0. (2.17) 344

Since it is required that Bµν is non-degenerate and it tends to ηµν up to an insignificant constant conformal scalars when ℓ goes to

infinity, we have

• A 6= 0, B 6= 0,

• AB > 0.

To check the condition (
2
2.4), we only need to show that under the limit l → ∞, which is straightforward calculated as

lim
ℓ→∞

det(
∂2L

∂vj∂vi
) = m3 (A

B
)

3

2

(|v · v|) 5

2

6= 0.

Obviously, if C = 0 everything essentially goes back to the classical theory with Bµν = ηµν . Therefore, we consider C 6= 0, and it can

be assumed to be 1.

To determined the signature of Bµν , we need to consider the signs of

B00 = − A(B + x · x)
(B − t2 + x · x)2 ,

B̃11 =
A(B + (x2)2 + (x3)2)

(B − t2 + x · x)(B + x · x) ,

det

(
B̃11 B̃12

B̃12 B̃22

)

=
A2(B + (x3)2)

(B − t2 + x · x)2(B + x · x) ,

det




B̃11 B̃12 B̃13

B̃12 B̃22 B̃23

B̃13 B̃23 B̃33




=
A3B

(B − t2 + x · x)3(B + x · x) ,

where B̃ij = Bij − B0iB0j

B00

, x · x = (x1)2 + (x2)2 + (x3)2. One easily finds
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TABLE 1. Signature of Bµνl

Condition Signature

A > 0, B > 0, B − t2 + x · x > 0 (1, 3)

A > 0, B > 0, B − t2 + x · x < 0 (4, 0)

A < 0, B < 0, B + x · x < 0 (1, 3)

A < 0, B < 0, B − t2 + x · x > 0 (2, 2)

A < 0, B < 0, B − t2 + x · x < 0, B + x · x > 0 (1, 3)

,

where for a nondegenrate symmetric matrix, we denote its signature by (n−, n+) if it has n− negative eigenvalues and n+ positive

eigenvalues, respectively. In particular, if Bµν is required to have the the signature (1, 3) as a spacetime-metric, we pick the physical

domains

• (I): B − t2 + x · x > 0 for A > 0, B > 0 ,m

• (II): B − t2 + x · x < 0 for A < 0, B < 0 .mm

3. EMERGENT (A)dS4 GEOMETRY

Now we explain why (A)dS4 geometry emerges from the above framework. It is known that (A)dS4 is defined by a hypersurface

in 5-dimensional space R
5 with the Minkowski metric η(5) = diag(−1, 1, 1, 1, 1) (or the metric η̃(5) = diag(−1,−1, 1, 1, 1)) via the

following equation
ll
[31]

−T 2 +X2 + Y 2 + Z2 + bW 2 = 1(b > 0),

or

−T 2 − bW 2 +X2 + Y 2 + Z2 = −1(b > 0).

Define the following coordinates which cover the half domain {W > 0} or {W < 0} in (A)dS4

x0 =
T

W
, x1 =

X

W
,x2 =

Y

W
, x3 =

Z

W
, (3.1) t

Then the induced metric from −dT 2 + dX2 + dY 2 + dZ2 ± bdW 2on this hypersurface is given by in terms of the coordinate system

{x0, x1, x2, x3}

gµν =
ηµν

b+ ηαβxαxβ
− ηµαηνβx

αxβ

(b + ηαβxαxβ)2
, (3.2) c

or

g′µν =
ηµν

b− ηαβxαxβ
+

ηµαηνβx
αxβ

(b − ηαβxαxβ)2
. (3.3)

They exactly coincide with our Bµν over physical domains (I) and (II), respectively, up to constant conformal scalars, in other words,

the physical domains equipped with Bµν can be viewed as the model of (A)dS4-geometry. In some literature
52,55
[10, 13], Bµν is called the

Beltrami metric for (A)dS4-geometry.

From this viewpoint, we immediately conclude that the coordinate transformations preserve Bµν form the group O(1, 4) or O(2, 3).

By contrast, this group is a dynamical symmetry group other than geometric symmetry group as in (A)dSSR. For our theory, Poincáre

group ISO(1, 3) is still the geometric symmetry group, and the overlap of these two classes of symmetry groups is exactly Lorentz

group O(1, 3). Then we can call Lorentz group the inertial group since it consists of transformations preserving the inertial motions in

physical domain. By decomposing a matrix belongs to the group O(1, 4) or O(2, 3) as

λ




N P

∓ PT ηN√
1∓ηµνPµPν

√
1∓ ηµνPµP ν


 ,

with matrices N = (Nµ
ν) and P = (P 0, P 1, P 2, P 3)T satisfing the relation

NT ηN = η +
NT ηPPT ηN

∓1 + ηµνPµP ν
, (3.4)
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where ∓ correspond O(1, 4) and O(2, 3) respectively, and λ is fixed to 1 or −1, then we can explicitly write these coordinate transfor-

mations as fractional linear transformations

xµ 7→ Nµ
νx

ν +
√
bPµ

∓ ηαβNβ
γPαxγ√

1∓ηµνPµPν
+
√
b
√
1∓ ηµνPµP ν

, (3.5) y,ab,aa

which come back to Poincáre transformations when ℓ tends to infinity. By Norther method, we can easily obtain the corresponding ten

conserved charges for a massive free particle
53,55
[11, 13].

By symmetry breaking, we can also construct the some other actions with less symmetries, which are closed related to the violation

of the law of inertia. The Lie bracket among the basis {MAB = −MBA, A,B = 0, · · · , 4} of Lie algebra o(1, 4) of de Sitter group

O(1, 4) is given by

[MAB,MCD] = η
(5)
ADMBC + η

(5)
BCMAD − η

(5)
ACMBD − η

(5)
BDMAC .

Let Jµ =
Mµ4

ℓ
, µ = 0, · · · , 3, then

[Jµ, Jν ] = −Mµν

ℓ2
,

[Jµ,Mαβ] = ηµαJβ − ηµβJα,

[Mµν ,Mαβ] = ηµβMνα + ηναMµβ − ηµαMνβ − ηνβMµα.

These relations can be realized via the following differential operators

Jµ = ∂µ +
ηµαx

αxν∂ν

ℓ2
,

Mµν = ηµαx
α∂ν − ηναx

α∂µ = ηµαx
αJν − ηναx

αJµ.

Let us introduce the following symbols

K±
i =

1√
2
(M0i ±M1i), i = 2, 3

F±
i =

1√
2
(
M0i

ℓ
± Ji), i = 1, 2, 3,

Li =
1

2
ǫijkMjk, i, j, k = 1, 2, 3,

P± =
1√
2
(J0 ± J1),

R = M01, T = M23.

The maximal Lie subalgebras of o(1, 4) are of 7 dimensions, which are exhibited in the following list

TABLE 2. Maximal Subgroups of O(1, 4)

Generators Algebraic Relations

Type I {K±
2 ,K±

3 , J2, J3, P
±, R, T }

[K±
i ,K±

j ] = 0, [Ji, Jj] = ǫij
T
ℓ2
, [K±

i , Jj] = δijP
±,

[K±
i , P±] = 0, [K±

i , R] = −K±
i , [K±

i , T ] = ǫijK
±
j ,

[Ji, P
±] =

K
±

i

ℓ2
, [Ji, R] = 0, [Ji, T ] = ǫijJj .

[P±, R] = ∓P±, [P±, T ] = 0, , [R, T ] = 0,

Type II {F±
1 , F±

2 , F±
3 , L1, L2, L3, J0}

[F±
i , F±

j ] = 0, [Li, Lj] = −ǫijkLk, [F
±
i , Lj] = −ǫijkF

±
k ,

[F±
i , J0] = ±F

±

i

ℓ2
, [Li, J0] = 0.

The little groups in O(1, 4) corresponding to these two types of Lie subalgebras are denoted by G and H respectively. When

the parameter ℓ tends to infinity, G are subgroups of ISIM(2), which are 8-dimensional maximal subgroups of the Poincaré group

generated by {K±
2 ,K±

3 , J1, J2, P
+, P−, R, T }, and H are isomorphic to the semiproduct of O(3) and 4-dimensional translation group

T(4). Note that there are no new invariant tensors for the groups G or H, therefore we should consider the subgroups of G and H.
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Example 3.1. Consider the subgroup S whose Lie algebra is generated by K+
2 ,K+

3 , P+, T . By means of the following matrix repre-

sentations of generators

K+
2 =

1√
2




0 0 1 0 0

0 0 1 0 0

1 −1 0 0 0

0 0 0 0 0

0 0 0 0 0




,K+
3 =

1√
2




0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

1 −1 0 0 0

0 0 0 0 0




,

P+ =
1

ℓ




0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

1 −1 0 0 0




, T =




0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 0




,

we find a second-order non-degenerate symmetric invariant tensor with respect to H

C =




a b 0 0 0

b 2b − a 0 0 0

0 0 b − a 0 0

0 0 0 b − a 0

0 0 0 0 b − a




(3.6)

with two constants a<b, thus a metric

C = adT 2 + 2bdTdX + (2b − a)dX2 + (b − a)dY 2 + (b − a)dZ2 + b(b − a)dW 2 (3.7)

Then the coordinate transformations (
t
3.1) give rises to an induced metric

Cµνdx
µdxν = (b − a)gµνdx

µdxν + b
[(b + ηαβx

αxβ)(dx0 + dx1)− (x0 + x1)ηαβx
αdxβ ]2

(b+ ηαβxαxβ)3
. (3.8)

Hence the S-invariant action can be chosen as

S = −
∫ √

Cµνdxµdxν . (3.9)

where the dimensionless constant b is set to be very small characterizing the violation of the law of inertia.

Example 3.2. Consider the subgroup V whose Lie algebra is generated by F+
1 , F+

2 , F+
3 . By means of the following matrix representa-

tions of generators

F+
1 =

1√
2ℓ




0 1 0 0 0

1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0




, F+
2 =

1√
2ℓ




0 0 1 0 0

0 0 0 0 0

1 0 0 0 1

0 0 0 0 0

0 0 −1 0 0




, F+
3 =

1√
2ℓ




0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 1

0 0 0 −1 0




,

an invariant vector

V = (a, 0, 0, 0,−a)T (3.10)

with a constant a. Therefore we can consider a Finsler-type V-invariant action
gg,gg1
[29, 30]

S =

∫
(gµνdx

µdxν)
1−δ
2 (Vµdx

µ)δ, (3.11)

where

V0 = a(b+ ηµνx
µxν)−

3

2 (b+ x · x− x0), (3.12)

Vi = a(b+ ηµνx
µxν)−

3

2 xi(1− x0), i = 1, 2, 3, (3.13)

and the dimensionless constant δ is set to be very small characterizing the violation of the law of inertia.
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4. EMERGENT FINSLER GEOMETRY

We have seen that our method in previous sections cannot admit a universal constant tending to zero. As mentioned in Introduction,

we consider the bipartite-Finsler-like action (
41
1.3). Here, we set ξ = κ

ℓ
for a new universal constant κ identified with Planck length. Once

again, one imposes the law of inertia on the corresponding Euler-Lagrange equation. Obviously, one can choose Bµν to be the solution

providing by (
33
2.11). Then the dynamical symmetry group breaks down to the Lorentz group O(1, 3).

For simplicity, we only work on the physical domain B − t2 + x · x > 0 with A > 0, B > 0. A Finsler metric emerges from the

action (
41
1.3) as

z2,z3
[24, 25]

gF
µν :=− 1

2

∂2L̃2

∂vµ∂vν

=− [
L̃

λ
ηµν + ξ

L̃

σ
Bµν + ξλσkµkν ], (4.1)

where kµ =
ηµνv

ν

λ2 − Bµνv
ν

σ2 , L̃ = L
m

= −λ − ξσ for λ =
√−ηµνvµvν and σ =

√
−Bµνvµvν . Some dynamical effects can been

studied via this Finsler metric.

For example, we derive the new dispersion relation for the massive free particle. We need to calculate the inverse (gF)µν of gF
µν . In

general, it is quite difficult. However, fortunately, for our case, taking advantage of (
333
2.12)-(

344
2.17), we can explicitly obtain

(gF)µν =− {( L̃
λ
+ ξAχ

L̃

σ
)−1Φµν + (

L̃

λ
+ ξABχ2 L̃

σ
)−1Ψµν

− ξλσ

1 + ξλσk2
[(
L̃

λ
+ ξAχ

L̃

σ
)−1Φµα + (

L̃

λ
+ ξABχ2 L̃

σ
)−1Ψµα]

· [( L̃
λ
+ ξAχ

L̃

σ
)−1Φνβ + (

L̃

λ
+ ξABχ2 L̃

σ
)−1Ψνβ ]kαkβ}, (4.2)

where

χ =
1

B + ηµνxµxν
,

Φµν = ηµαηνβΦαβ ,Ψ
µν = ηµαηνβΨαβ,

k2 = [(
L̃

λ
+ ξAχ

L

σ
)−1Φµν + (

L̃

λ
+ ξABχ2L

σ
)−1Ψµν ]kµkν .

Then the dispersion relation is given by

(gF)µνPµPν = −m2, (4.3) mj

where

Pµ = − ∂L

∂vu
= P

η
µ + ξPB

µ (4.4)

is the canonical 4-momentum in the sense of dynamics with

P
η
µ = m

ηµαv
α

λ
, PB

µ = m
Bµαv

α

σ
.

Expanding the identity (
mj
4.3) until the first order in ξ, we get

λ2ηµαηνβ(kαkβ − 1

σ2
Bαβ)P

η
µP

η
ν + 2

λ

σ
ηµνPη

µP
B
ν = −m2. (4.5)

More discussions on kinematics and dynamics in the general bipartite-Finsler geometry can be found in
z2,z3
[24, 25].
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